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Constructing Induction Rules for Deductive Synthesis Proofs *

Alan Bundy Jeremy Gow Jacques Fleuriot Lucas Dixon

February 16, 2005

Abstract

We describe novel computational techniques for constructing induction rules for deductive
synthesis proofs. Deductive synthesis holds out the promise of automated construction of
correct computer programs from specifications of their desired behaviour. Synthesis of pro-
grams with iteration or recursion requires inductive proof, but standard techniques for the
construction of appropriate induction rules are restricted to recycling the recursive structure
of the specifications. What is needed is induction rule construction techniques that can in-
troduce novel recursive structures. We show that a combination of rippling and the use of
meta-variables as a least-commitment device can provide such novelty.

1 Introduction

One of the most under-exploited techniques in the arsenal of formal methods of system development
is the deductive synthesis of programs from a constructive proof of their specifications. Deductive
synthesis presents many difficult technical challenges, and this may be one reason for its relative
neglect. In this paper we address one such challenge: the choice of induction rules in the presence
of existential quantifiers. We describe some new techniques for the automatic construction of
induction rules that provide an approach to this problem.

2 Deductive Synthesis

For expository purposes, we will adopt an especially simple version of deductive synthesis. This
is illustrated in Figure 1. Programs will be represented as recursive functions and specifications
as formulae within the same higher-order, typed, constructive logic. This will enable us to finesse
issues of program semantics and to turn synthesis conjectures into verification conjectures by
substituting synthesised programs for existential variables, as in Figure 1.

To illustrate the process, consider the task of synthesising a sorting algorithm sort : list(N) —
list(N), i.e. a function whose input is a list of natural numbers and whose output is an ordered
permutation of the input list. The synthesis conjecture might be:

Vi:list(N).Im:list(N). ord(m) A perm(l,m)

where ord : list(N) — bool is a predicate for testing whether a list is ordered and perm : list(N) x
list(N) — bool is a predicate for testing whether one list is a permutation of another. We adopt
the convention that lower-case roman letters stand for object-level variables or constants, whereas
upper-case roman letters stand for meta-variables that range over object-level expressions.

The proof will construct a witness for the existential variable m. This witness will be a
function of I, which we will call sort(l). Since the logic is constructive, sort will be (recursively)

*The research reported in this paper was supported by EPSRC grant GR/S01771 for the first and third author
and an EPSRC studentship to the second author. We are grateful for feedback from Andy Fugard.
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‘H Constructive Theorem Proving

‘H Program Extraction

— Functional program prog(i) meeting specification

—

V 7. Spec(i, prog(i))

Spec(f, 0) is a logical specification of the relationship between the inputs i to the required
program and its output o. The conjecture to be proved is that whatever the input there
is a always an output that meets this specification. Constructive proof is used to ensure
that a suitable output, prog(f) is constructed as a side effect of the proof. This output
provides the definition of the required program. By construction, this program is known
to meet its specification. Some steps of the proof provide program operations. For
instance, case splits provide conditional branches and induction steps provide recursive
definitions.

Figure 1: Deductive Synthesis from Constructive Proof

defined in terms of previously defined functions. The proof will have verified that sort(l) meets
its specification, i.e. that:

Vi:list(N). ord(sort(l)) A perm(l, sort(l)).
The kind of sorting algorithm that is synthesised will depend on the details of the proof [Darlington, 1978].

3 Induction Rules

Figure 1 notes the correspondence between the steps of a synthesis proof and the steps of the
program they synthesise. In particular, applications of induction rules in the proof insert recursion
in the synthesised program. Moreover, the kind of induction rule determines the kind of recursion.
In imperative programs, inductive steps will create iteration or loops. More generally, induction
is needed whenever some form of repetition is required in the synthesised object. Repetition
arises in recursive data-structures, recursive or iterative programs, temporal change, parameterized
hardware, etc., i.e. in nearly all non-trivial systems. Induction is, thus, of central importance in
deductive synthesis.

There are many recursive data-types: natural numbers, integers, rationals, lists, trees, sets, etc.
For each recursive data-types there are infinitely many induction rules. They can all be derived
from the general schema of noetherian induction (also known as well-founded induction).

Var. (VYyr. y <z — ¢(y)) — é(x)
V1. ¢(z) (1)
where < is some well-founded relation on the type 7. By well-founded we mean that there are

no infinite, descending chains of the form ... < a3z < as < a;. The infinitely many possible well-
founded relations < for each non-trivial data-type 7 give infinitely many possible instantiations




of this noetherian schema. Since it is not possible to pre-store all well-founded relations < on all
types 7, most inductive theorem provers construct induction rules on demand. The universally
quantified variable x is called the induction variable. It is also possible to simultaneously induce
on more than one variable, but in the interests of simplicity we omit this additional complexity
here, but will return to it below.

The practical situation is more complex than this. The noetherian schema is rarely used
directly. Usually, we use an induction rule derived from it, such as the following rule for the type

list(T).
o] Vllist(T). L £ [] A o(tl(1) — &)

Vi:list(T). ¢(1) (2)
where [ ] is the empty list and ¢I(I) is the tail of the list . This induction rule is based on some
well-founded relation < under which ¢/(I) < I. Many such relations, prec, will suffice, for instance,
one based on the size of the list. The first premise of this rule, ¢[], is an example of a base
case; the second premise, Vi:list(r). I # [ ] A ¢(tl(l)) — &(1), is an example of a step case. The
antecedent of the step case, ¢(tl(1)), is the induction hypothesis and the consequent, ¢(1), is the
induction conclusion. The function tl(l) is an example of a destructor function, as it destructs the
recursive data-type. When a destructor function surrounds the induction variable in the induction
hypothesis, we say that the induction rule is in the destructor-style. To formulate a destructor-
style induction rule it is necessary to identify the base and step cases and to find a well-founded
relation under which the destructor functions output strictly smaller terms than their inputs.

An alternative to destructor-style induction rules is constructor-style. In constructor-style rules
the destructor function in the induction hypothesis is replaced by a constructor function in the
induction conclusion. A constructor function constructs new elements of the recursive data-type
from old. For instance, the constructor function [h|¢] constructs a new member of the type list(7)
from a list ¢:list(7) and an element h:7. The constructor-style induction rule corresponding to the
destructor induction (2) is:

o([]) VhrVtlist(r). ¢(t) — o([h]t])

Vi:list(r). ¢(1) (3)
where [ ] is the empty list and [h|¢] is the list constructed by putting h at the head of the list ¢.
The base case of this rule is also ¢([]) and the step case is Vh:7.Vt:list(7). ¢(t) — o([hlt]).

As we will see below, it is also possible to have hybrid destructor/constructor-style induction

rules. It is also possible to have inductions on more than one induction variable, such as the
following constructor-style rule for the data-type of binary trees.

o(leaf(e)) Vitree(r).¥ritree(r). ¢(1) A ¢(r) — ¢(node(l,r))
Vitree(r). ¢(t)

where lea f(e) constructs a leaf of the tree with label e and node(l, r) constructs a new binary tree
from the left and right subtrees [ and r.

The rules above are all, so called, structural induction rules, i.e. they have used the destructor
and constructor functions from the recursive definition of the data-type. Non-structural rules are
also possible, for instance,

o([]) Vilist(r). ¢p(butlast(l)) — o(1)
Vi:list(7). o(1) (4)

where butlast(l) outputs the list [ with the last element deleted.

4 Synthesising Recursive Programs

Suppose induction is used to prove a synthesis conjecture, such as

Vi:list(r).3m:list(T). spec(l,m)



A program synthesised using the destructor-style, induction rule (2), with ! as the induction
variable, will have the following recursive form.

prog(l) = ifl=][]thenbd
else f(1,prog(t(1)))

where b and f do not contain prog. On the other hand, a program synthesised using the
constructor-style, induction rule (3) will have the following recursive form.

prog([]) = b
prog([hlt]) = f(h,t,prog(t))

And a program synthesised using the non-structural, induction rule (4) will have the following
recursive form.

prog(l) = lfl = [ ] then b
else f(I,prog(butlast(l)))

To synthesise a pair of mutually recursive programs, we would have two existential variables:
Vi:list(T).Imq:list(T), Imq:list(T). spec(l,mq, ma)

from which we would extract prog; and progs as the existential witnesses of m, and ms, respec-
tively. If constructor-style, induction rule (3) were used to prove this synthesis conjecture, then
the following mutually recursive definitions would be synthesised.

progi([]) = b proga([]) = b2
progi([h|t]) = fi(h,t,progi(t),proga(t)) proga([hlt]) = fa(h,t,progi(t),proga(t))

5 Constructing Induction Rules

Recursion analysis is the best known technique for constructing customised induction rules for
specific conjectures. It is due to Boyer and Moore and was implemented in their Nqthm prover
[Boyer & Moore, 1979]. The essential idea is to identify recursively defined functions in the conjec-
ture and then convert these into the corresponding induction rules. For instance, if the conjecture
contained a function g whose recursive definition was g(k,l) = f(k,l, g(k,tl(l))), then the destruc-
tor induction rule (2) with induction variable I would be suggested. Boyer and Moore developed
techniques for merging and generalising the suggestions from the different recursive function into
one induction rule that subsumed them all. Walther later refined and improved these rule merg-
ing techniques [Walther, 1993]. The heuristic underlying recursion analysis is that by choosing
an induction hypothesis containing the same destructor functions as the recursive definitions, we
maximise the chances that these definitions will be able to manipulate the hypothesis. Recur-
sion analysis can also be adapted to constructor style definitions and induction rules. Recursion
analysis is illustrated in Figure 2.

Recursion analysis was developed for purely universally quantified conjectures. When it comes
to conjectures containing existential quantifiers, especially the conjectures used in deductive syn-
thesis, it suffers from a major drawback.

e The induction rule used in the proof will determine the recursive structure of the synthesised
program, i.e. its fundamental algorithmic nature, including its complexity.

e Recursion analysis will choose this induction rule using the forms of recursion it finds in the
conjecture, i.e. the algorithmic nature of the specification.

e Thus the programs constructed by deductive synthesis are algorithmically similar to their
specifications.



Conjecture: Vi:list(r).Im:list(r). perm(l,m)
Recursive Definition:

perm(l,m) = ifl=]]thenm =[]
else perm(ti(l), del(hd(l),m))

where del(e,l) deletes the element e from the list .

Constructed Induction Rule:

81 Vidist(r). 1 £ [] A S(HE) — o)
Vi:list(T). ¢(1)

perm is the only recursively defined function that appears in the conjecture. Its re-
cursive definition is on l, the first argument of perm, and the recursive call on this
argument is tl(l). This suggests constructing a one-step, destructor-style induction
in which 1 is the induction variable and the induction hypothesis is applied to ti(l).
When this induction rule is applied, the induction term, ¢(1), will be instantiated to
Ime:list(r). perm(l,m).

Figure 2: An Example of Recursion Analysis

This is not a desirable state of affairs. For instance, it means that recursion analysis is unable to
construct the induction rule needed for the synthesis of quick-sort, because its recursive structure
is radically different from that of either ord or perm. We will use the definition of perm in Figure
2 and the following definition of ord:
ord(l) < ifl=[]thenT

elseif [ = [h] then T

elseif hd(l) < hd(tl(1)) then ord(tl(1))

else L

Whereas the usual definition of quick-sort is:

gsort(l) = ifl =[] then|]
else gsort(less(hd(l),tl(1))) <> [hd(l)] <> gsort(more(hd(l),tl(l)))
where less(h,t) is a list of members of ¢ less than or equal to h, more(h,t) is a list of members of
t strictly more than h and <> is the infix list append function. Recursion analysis would use the
definitions of ord and perm to construct induction rule (2) or (3), whereas to synthesis gsort we
need something like the following hybrid destructor/constructor style induction rule.
o([]) VhrNtlist(T). ¢p(less(h,t)) A p(more(h,t)) — ¢([hlt])
Vi:list(r). ¢(1) (5)

6 Rippling and Ripple Analysis

Rippling is a heuristic technique for controlling the proof of the induction conclusion with the aid
of the induction hypothesis [Bundy et al, 2005]. It works by annotating the differences between
the conclusion and hypothesis, and then trying to reduce them using annotated rewrite rules called
wave-rules. Figures 3 and 5 illustrate the process and give examples of annotation and wave-rules.



Givens: . .
Initially Neutralised

ord(gsort( less(h,t) ))  ord(gsort(less(h,t)))
ord(gsort( more(h,t) )) ord(gsort(more(h,t)))

Goal and Ripple:

ord(gsort( [h|t] T))

;
ord( gsort( less(h, t) ) <> [h|gsort( more(h,t) )] ) (6)
ord( gsort(less(h,t)) <> [h|gsort(more(h,t))] T) (7)

ord(gsort(less(h,t))) A ord(gsort(more(h,t)))
- A ord(gsort(less(h,t)))<[h] A [h] < ord(gsort(more(h,t))) ! (8)
ord(gsort(less(h,t))) A ord(gsort(more(h,t))) ! 9)

T
TAT (10)
Wave Rules:
N

gsort( [H|T] ! ) = gsort(less(H,T) ) <> [H|gsort( more(H,T) )] (11)
ord( L <> [X|M] T) = ord(L) A ord(M) AN LL[X] A [X] < MT (12)

This example is taken from the step case of a verification proof of ord(gsort(l)) using
induction rule (5). The two induction hypotheses, in the cases where | = less(h,t) and
I = more(h,t), provide the givens. The induction conclusion is the goal to be proved by
rippling. Both the givens and the goal are annotated to indicate where they are similar
and where they differ. The annotation consists of hollow grey bozxes called wave-fronts;
the holes in these wave-fronts are called wave-holes. The expressions in the wave-holes
are shared by a given and the goal and the expressions in the grey areas are where they
differ. At step (7) it becomes possible to increase the size of the two wave-holes by
dropping the wave-fronts in the givens and the innermost wave-fronts in the goal. This
is because the similarities between the goal and the givens has increased. We call this
process neutralisation.

Rippling proceeds by rewriting the goal with the wave-rules. Wave-rules are rewrite rules
annotated with wave-fronts, which mark the similarities and differences between the
left- and right-hand sides of the rules. When applying wave-rules, the wave-annotation
must match. Notice that the effect of applying the wave-rules is that the content of the
wave-holes increases in size until a copy of a given appears inside them. These givens
may then be used to replace the copies with T in step (10). Wave-rule (11) arises from
the recursive definition of qsort and is applied at step (6). Wave-rule (12) is a lemma
about ord and is applied at step (8). Note that L < M means that every element of
list L is less than every element of list M and LM that every element L is less than
or equal to every element M. At step (9) the wave-front is simplified by applying the
two lemmas qsort(less(h,t))<[h] and [h] < gsort(more(h,t)).

Figure 3: An Example of Rippling
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Rippling suggests an alternative to recursion analysis for the construction of an appropriate
induction rule. Instead of using recursive definitions to suggest induction terms and variables, we
can use wave-rules. We call this technique ripple analysis. Ripple analysis conducts a one-step
look-ahead into the rippling process and suggests an induction rule that would facilitate rippling
by providing an induction term that will match the left-hand-side of the wave-rule. Ripple analysis
is illustrated in Figure 4, using the same example that we used for recursion analysis, in order
to emphasise the difference. In particular, ripple analysis is able to break-out of the recycling of
recursive definitional structure by suggesting induction rules based on derived lemmas rather than
recursive definitions.

Conjecture: Vi:list(r).Im:list(r). perm(l,m)
Wave-Rule:

T T T
perm( K <> L | K'<>L ) = perm(K,K') A perm(L,L")

Constructed Induction Rule:

o([]) Yhr. ¢([h]) VElist(r)Vm:list(T). ¢(1) A p(m) — ¢( 1 <> m ! )
Vi:list(r). ¢(1)

Suppose induction were applied to the conjecture with induction variable I, which, as
the only universally quantified variable, is the only induction variable candidate. The
above wave-rule would apply to the induction conclusion if the induction term were

ll<>m ! . The above induction rule has thus been constructed to provide just such
an induction term. Note that the wave-rule is based on a distributive-law lemma about
perm, rather than its recursive definition. Of course, other wave-rules will make other
induction rule suggestions, including the wave-rule based on the recursive definition of
perm, as in recursion analysis.

Figure 4: An Example of Ripple Analysis

Unfortunately, ripple analysis does not always suggest the optimal induction rule. The main
problem is that it conducts only a one-step look-ahead into the rippling process. Later rippling
steps may put additional requirements on the induction term that are not apparent at the first
step. Figure 5 gives an example of the failure of ripple analysis.

7 Middle-Out Reasoning

In §5 we described the problem of constructing induction rules to prove synthesis theorems. In
this section we propose the following solution to this problem. We will use higher-order meta-
variables as a least-commitment device to postpone the construction of the induction rule. In
particular, we will assume that we have a recursive definition for the synthesised program, but use
meta-variables to stand for the constructor and destructor functions in its definition. We will then
proceed with the synthesis proof. Just as in ripple analysis, we will construct an induction rule
that allows rippling to proceed, but this rule will contain meta-variables, so will only be partially
defined. During the course of the synthesis proof, higher-order unification will instantiate the
meta-variables, firming up both the induction rule and the synthesised program’s definition. This
will allow not just the first but all the ripple steps in the proof to side-effect the construction of
the induction rule. This increased flexibility comes at a price: a larger search space. Applying
higher-order unification to meta-variables in the goals, increases the branching rate of rippling.



Conjecture:
Va,y, z:N. even(z + y) A even(y + z) — even(z + z)

Wave-Rules:
T T
s(M) +N = s(M+N)

cven(3((X) ) = even(X)

Goal and Ripple:
T 1
even( s(z) +vy)ANeven(y+z2) — even( s(z) +2z2)

even( s(z/+y) ! )Aheven(y +z) — even( s(z + 2) ! )

blocked blocked

One-Step Induction Rule Constructed by Ripple Analysis:

1

¢(0) Vn:N. ¢(n) — ¢( s(n) )
Vn:N. ¢(n)
A Better, Two-Step Induction Rule:
6(0) 6(s(0)) Vn:N. g(n) — o(s(s(n)) )
vn:N. ¢(n)

The rippling analysis one-step look-ahead uses wave-rule (13) to construct the one-step
induction rule (15), with x as induction variable. x is preferred to y and z because
wave-rule (13) will be able to ripple both occurrences of s(x). If y were chosen, only
the second occurrence of s(y) could be rippled and if z were chosen, neither occurrence
of s(z) could be rippled. Rippling proceeds in the induction conclusion using the above
wave-rule (13) on both sides of the implication, but then gets blocked on both sides
of the implication. Ideally, wave-rule (14) would now be applied on both sides, but it
requires a wave-front containing two nested occurrences of s, rather than just one. We

should have used the two-step induction rule (16), instead of (15).

Figure 5: An Example of a Ripple Analysis Failure




Fortunately, the additional rippling requirement that wave annotation in goal and wave-rule must
match, dramatically decreases what would otherwise by an unacceptable combinatorial explosion.
We will have a proof obligation to show that the constructed induction rule is valid, i.e. well-
founded and covering.

We call this technique middle-out reasoning, since it postpones the early proof-search decisions,
allowing these to be decided as a side-effect of the proof process in the middle of the proof. Middle-
out reasoning is illustrated in Figure 6.

Middle-out reasoning is a simple idea, but has proven to be surprisingly difficult to imple-
ment. Accordingly, our first attempt addressed a simplified version of the problem. Instead of
dynamically constructing induction rules using a middle-out version of ripple analysis, we merely
selected them from a pre-verified store. This work was conducted as a PhD project by Ina Kraan
[Kraan et al, 1996, Kraan, 1994]. It was implemented in the Periwinkle system and applied to the
successful synthesis of a number of logic programs. More recently, we have tackled the full problem
of middle-out construction of induction rules via the PhD project of Jeremy Gow [Gow, 2004].

Note that middle-out ripple-analysis suggests candidate induction terms as a side-effect of
rippling. These must then be turned into a valid induction rule. This may require combining
several distinct induction term suggestions into complementary step cases of the same induction
rule. It may also require the construction of the corresponding base cases. The induction rule
must then be proved to be valid. This involves showing that it is based on a well-founded order
and that the base and step cases cover the data-structure. To simplify the well-foundedness
proofs, we restricted the well-found measures to those arising in Walther’s estimation calculus
[Walther, 1994, Gow et al, 1999]. This provides a simple family of well-found measures, but with
wide coverage, including most practical algorithms.

In practice, the construction of the base and step cases is interleaved with the proofs of coverage
and well-foundedness, i.e. base and step cases are invented to fill gaps in the coverage proof, and
a well-founded order is evolved to include all these step cases. It is this interaction between the
different proof processes that makes middle-out induction-rule construction such a challenging
task. The resulting proof obligations are illustrated in Figure 7.

Despite this challenge, middle-out induction-rule construction has been totally automated
within the Dynamis system, building on the AClam proof planner, [Div2000]. Dynamis has been
successfully applied to the proof of properties of higher-order, functional programs, especially
to theorems whose proofs require novel induction rules. Figure 1 shows a selection of theorems
proved and the induction rules automatically constructed in those proofs. At the time of writing,
Dynamis is being ported to the IsaPlanner proof planner [Dixon & Fleuriot, 2003] and adapted
for deductive synthesis.

8 Related Work

The standard technique for choosing induction rules in explicit-induction theorem provers is re-
cursion analysis. We have already compared this to ripple analysis in §6.

Many people have investigated the synthesis of programs from specifications of their required
behaviour. Some approaches have used constructive type theory and some have used classical
logics. There have been varying degrees of automation, including the use of rippling. However,
the discussion below will focus only on mechanisms for the construction of non-standard induction
rules and least-commitment mechanisms to support such construction.

8.1 Protzen’s Lazy Induction

Apart from the work of Kraan and Gow, described above, we are aware of one other attempt to use
least commitment devices to postpone the choice of induction rule and then incrementally build
an appropriate induction rule during proof search. This is the work of Protzen on Lazy Induction
[Protzen, 1995]. It uses a copy of the conjecture as the induction conclusion, proves the step cases



Givens: . . .
Initially Neutralised Instantiated

+
ord( F(i_i,t, qsort(ELDl(E, t))J, o, qsort(: Dn(f_i, t))) ) (17)

5 = = T
ord( F(h,t, gsort(Dy(h,t)),..., gsort(Dy(h,t))) ) (18)

ord(gsort(Dy(h,t))) A ord(qsort(Ds(h,t))) A gsort(D; (h,t))<[h] A [h] < gsort(Ds(h,t)) (T19)
ord(gsort(less(h,t))) A ord(gsort(more(h,t))) ! (20)

1
TAT

Wave Rules:

qsm“t(fC(ﬁ,T)i) = F(ﬁ,T, gsort( Dl(ﬁ,T) ),...,qsort(iDn(ﬁ,T)E)) (21)

1 ’
' '
' D

[ 3 Lo o [ o

This synthesis proof fragment above follows the same pattern as the verification proof
in Figure 3 except that meta-variables are used to represent unknown structure. Wave-
rule (21) is derived from the initially unknown, schematic definition of gsort. In this
schematic definition, we use the second-order meta-variables C and the D; to represent
the initially unknown constructor and destructor functions, and F to represent the body.
The dotted boxes around these meta-variables represent potential wave-fronts — since
we are not yet sure which of them will be non-trivial*. The aim of the synthesis proof
s to instantiate these meta-variables and, hence, to construct the definition of gsort.
This instantiation will turn wave-rule (21) into wave-rule (11).

Just as in Figure 3, ripple analysis constructs an induction rule based on the definitional
wave-rule (21). This wave-rule is then used to ripple the goal (step (17)). The wave-
fronts around the D; destructor functions in both givens and goal are then neutralised
and removed (step (18)). At step (19) wave-rule (22) applies. This application requires
second-order unification to instantiate F to AhAtN.Am. | <> [hlm]. As a result, h
becomes h and n is instantiated to 2 by the discovery of the arity of F, i.e. the number
of recursive calls is established. At step (20) the resulting wave-front is simplified
away with the lemmas qsort(less(h,t))<[h] and [h] < gsort(more(h,t)). This time,
the second-order unification instantiates Dy to less and Dy to more, completing the
instantiation of the schematic gsort definition into a concrete one. The remainder of
the proof proceeds as in Figure 3.

Figure 6: Middle-Out Synthesis
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Conjecture:

Vo : N x N — N.Va:NV:list(N). foldleft _tr(o,x,1) = foldleft(o, x, rev(l))

foldleft and foldleft_tr are second-order functions that repeatedly apply their first argu-
ment to the elements of the list in their third argument, starting with their second argument.
foldleft deals with the elements of the list in first to last order, but foldleft _tr deals with them
in reverse order, i.e.

foldleft(o,z,[e1,...,en]) = (eno(...(e10x)...)) = foldleft_tr(o,z,[en, ..., e1])

Schematic step case proof:

foldleft _tr(o, x, C’T) = foldleft(o,x, rev([é’jT))

T T
C" o foldright_tr(o, z,C") foldleft(o, z,rev (| C' <> [C"] D)))

We show how the induction rule from the foldleft example from figure 1 is constructed.
Since | is the only universal variable with a recursively defined type, it is chosen as induction
variable and is replaced by a second-order meta-variable C' in the induction conclusion. An
attempt to ripple foldleft_tr with its definition fails. After backtracking through this failed
ripple, it is rippled instead with the following wave-rule:

T T
foldleft _tr(F, X, L <> [Y] )= F(Y, foldright_tr(F,X,L))

which is based on a lemma. This ripple instantiates C to C' <> [C"] and so introduces
the essential structure of the induction term. We can now prove this step case of the induc-
tion well-founded. The ripple also turns the potential wave-fronts into concrete wave-fronts.
Rippling continues to successful fertilization, but only after some further instantiation in the
well-foundedness proof®.

Show step case well-founded: C’ < C’ <> [C"]

The estimation calculus is given the task of finding a well-founded measure < to show
that the induction term C' <> [C"], suggested by this ripple, is strictly greater than the
corresponding term, C', in the induction hypothesis. It succeeds with a measure based on the
length of the list.

Discover missing cases: Vi:list(N).AV Je:N, f:list(N). [ = f <> [e]

We know one case of the induction rule and need to discover any others. In this case,
the meta-variable A will be instantiated to l =[], i.e. one base case is discovered. In general,
any number of base or step cases might be needed.

Prove new cases: foldleft_tr(o,z,[]) = foldleft(o,x,rev([]))

We now need to prove the theorem for the newly discovered base case.

Constructed induction rule:

o) VerVfdist(r). (f) — o F <> )
Vi:list(r). (1

Figure 7: Proof Obligations in Middle-Out, Induction-Rule Construction
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Theorem InductionRule

vz, y, zN. 6(0) 6(s(0) VaN. g(n) — o(/s(s(n)) )

even(zx +y) N even(y + z) — even(x + 2) Vn:N. ¢(n)

Yo : N x N s N.¥a:N.¥I:list(N). A1) Verpiist(r). o(f) = o( [ <>[e] )

foldleft_tr(o,z,1) = foldleft(o, z,rev(l)) Vilist(T). ¢(1

The first example is similar to that in Figure 5. Middle-out reasoning removes the
restriction to just a one-level look-ahead. When the ripple gets to the point where the
definition of even should be applied, there is still an uninstantiated meta-variable that
can be used to influence the induction term and produce the two-step induction rule
required. The second example is explained in more detail in Figure 7. It shows that the
middle-out reasoning can be applied to higher-order theorems and can construct quite
ad hoc induction rules.

Table 1: Selected Experimental Results of the Dynamis System

using rippling, invents new induction hypotheses as needed for fertilization and then shows that
the emerging induction rule is well-founded.

Lazy Induction has three disadvantages over middle-out induction-rule construction and no
advantages of which we are aware.

1. It is restricted to destructor-style, whereas Dynamis can destructor, constructor and hybrid
styles.

2. It lacks search control mechanisms to deal with the inherent threat of non-termination when
potential wave-fronts are used (see Figure 7), whereas Dynamis has mechanisms for prevent-
ing non-termination.

3. It can mix up induction rules in its search, leading to the wasted exploration of impossible
combinations of step cases, whereas Dynamis only explores compatible step cases. For
instance, suppose two different induction rules each have two step cases. Lazy Induction will
explore all four combinations of step case. Dynamis uses shared meta-variables to restrict
the search to the two compatible combinations. When a meta-variable is instantiated by
proof search in one case it is automatically instantiated to the same value in the other case,
which will rule out incompatible combinations.

8.2 Hutter’s Labelled Fragments

Hutter has also used rippling as the basis of an attempt to construct induction rules for synthesis
conjectures [Hutter, 1994]. His approach is also based on rippling and proof planning. Before
attempted the concrete proof, his INKA system first builds an abstract plan of the inductive step
cases. The induction rule is constructed from this plan. To form the plan, he uses abstractions
of wave-rules, in which the details of the wave-fronts are removed, leaving only the information
that it is possible to ripple past skeleton fragments. The induction rule is then constructed by
recovering and combining the abstracted wave-fronts. Although Hutter’s technique does not use
higher-order unification on meta-variables, as Kraan’s, Protzen’s and Gow’s do, it has a similar
effect. He has successfully applied it to the synthesis of the inverses of standard functions, using
these functions as the specifications, i.e. proving Vi.Jo. f(0) = i to synthesise an inverse of f.
Amongst the functions synthesised are log, half, quotient and rev. The synthesis of rev, for
instance, constructs induction rule (4).
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8.3 Narrowing

Narrowing [Hanus, 1994] is the extension of rewriting to allow the wunification of the rewrite rule
with the goal, rather than just matching, i.e. the goal can contain meta-variables, which may be
instantiated during rewriting. Our middle-out reasoning is essentially the extension of rippling to
narrowing. The main role of narrowing has been to the construction of existential witnesses. On
negation of the conjecture and skolemization?, existential witness become meta-variables. Narrow-
ing will instantiate these meta-variables as a side-effect of rewriting, incrementally constructing
the existential witness.

The main difference between Dynamis and previous work on narrowing is that we are using
meta-variables to stand for unknown induction terms as well as existential variables. In other
work we have also used meta-variables to stand for unknown structure in generalised conjectures
and in missing lemmas [Ireland & Bundy, 1996].

9 Conclusion

In this paper we have discussed the issue of constructing an appropriate induction rule for the
automated synthesis of computer programs by constructive proof. Induction is a vital ingredient
of any synthesis proof of a program containing iteration or recursion. There are an infinite number
of induction rules for each non-trivial data-type, so induction rules need to constructed to order
rather than pre-stored. However, recursion analysis, the standard technique for induction rule
construction, was developed for purely universally quantified theorems. Synthesis conjectures
always contain existential quantifiers. Applied to synthesis theorems, recursion analysis merely
adapts the recursions in the specification of a program. It would be incapable of suggesting a
novel recursive structure, such as that used in the quick-sort algorithm, for instance.

We have developed a series of techniques for induction-rule construction that are not limited
to recycling the recursions in the original conjecture. These are based on a combination of ripple
analysis and middle-out reasoning. They have been successfully used to construct novel induction
rules automatically. Two principles are at work.

1. Induction terms and hence induction rules are suggested by applying lemmas and not just
recursive definitions.

2. Constructing the induction term, and hence the induction rule, is postponed by the use of
meta-variables. These are incrementally instantiated during the course of the proof, so that
the requirements of several different proof steps can be taken into account in the shape of
the constructed induction rule.

The least commitment mechanisms used in middle-out induction-rule construction lead to a
complex juggling of proof obligations. Not only must the original theorem be proved, but the
induction rule must be shown both to be well-founded and to cover the data-type. As a side effect
of these proof obligations, the following objects are constructed: induction terms, a well-founded
measure, missing base and step cases and an induction rule. Each proof obligation is sharing
and instantiating a set of meta-variables. It is necessary to co-routine between these proofs: as
the instantiation of a meta-variable in one proof obligation sufficiently restricts proof search in
another, temporarily frozen, proof obligation to allow it to restart safely.

Initial experiments with middle-out induction-rule construction have been limited to purely
universal theorems, such as may arise in verification proofs. We are now turning our attention to
theorems containing existential quantifiers, as required in synthesis proofs. The Dynamis system
is being ported to the IsaPlanner proof planner and applied to the synthesis of programs from
their specifications. Proof planning has played an essential role in this work, for instance, enabling
the flexible construction of proofs using middle-out reasoning and providing the powerful rippling
method.

30r, equivalently, dual-skolemization of the goal.
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In addition to applying our techniques to a growing corpus of synthesis conjectures, we plan
to extend our approach to cope with having an unknown number of recursive calls in a schematic,
recursive definition. We also want to allow more flexible co-routining between different proof
obligations. For instance, we want to be able to freeze partial proofs that have too high a branching
rate and to unfreeze partial proofs whose branching rates have been significantly reduced as a side-
effect of shared meta-variable instantiation in other proofs since they were previously frozen.
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