

Edinburgh Research Explorer

Helping Inexperienced Users to Construct Simulation Programs:
An Overview of the ECO Project

Citation for published version:
Robertson, D, Bundy, A, Uschold, M & Muetzelfeldt, R 1987, Helping Inexperienced Users to Construct
Simulation Programs: An Overview of the ECO Project. in Proceedings of Expert Systems '87 on Research
and Development in Expert Systems IV. Cambridge University Press.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of Expert Systems '87 on Research and Development in Expert Systems IV

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/helping-inexperienced-users-to-construct-simulation-programs-an-overview-of-the-eco-project(3fd8388d-bbf4-4992-ba34-b8962b92f894).html

HELPING INEXPERIENCED USERS TO
CONSTRUCT SIMIJLATJON PROGRAMS:

- 	AN OVERVIEW OF THE ECO PROJECT

Dave Robertson
Alan Bunny
Mike Uschold
Bob Muetzel Veldt

DAT RESEARCH PAPER NO. 336

Copyrioht (c) D Robertson, A Bundy, Ii Uschold & B Muetzejfeldt, 1.987

Paper accepted for ES-87 Conference,
Briohton, 1987.

Helping Inexperienced Users to Construct Simulation
Programs: An Overview of the ECO Project

Dave Robertson t Alan Bundy t, Mike Uschold t, Bob Muetzelfeldt

tDepartment of Artificial Intelligence, University of Edinburgh.
*Department of Forestry and Natural Resources, University of Edinburgh.

Abstract

We provide an overview of the development of ECO, a program which enables ecolo-
gists with minimal mathematical or computing skills to build simulation models. The
first version of this system used a System Dynamics formalism to represent users'
models and relied on simple interface techniques. Subsequent trials revealed that the
formalism was insufficiently expressive to represent the sophisticated models which
users sometimes required. The system was also over—reliant upon users to drive dia-
logue during model construction and provided insufficient guidance for inexperienced
users. We discuss techniques for solving these problems. Finally, we note the key
contributions of thisresearch in the context of related work.

1 Introduction

Ecological researchers are becoming increasingly reliant upon mathematical models
as a means of concisely representing their understanding of ecological systems. Hav-
ing constructed a model of a given system, it is possible to test the validity of the
representation using computer simulation and analysis of results. Models which are
deemed valid may be used to predict the behaviour of their corresponding real world
system when subjected to a specific set of conditions. This capability is particu-
larly necessary in the assessment of environmental impact of resource management
decisions.

Ideally, it should be possible for any ecologist to fit his/her description of an
ecological system into a modelling framework which allows it to be easily accessed
and analysed by other researchers. Currently, this is not possible for the following
reasons

1. Many ecologists do not have the mathematical or programming skills needed to
construct ecological models.

2. There has been little standardisation of modelling approaches. Individual mod-
ellers tend to write large, one—off, representations using their favourite modelling
language and/or mathematical framework. These models are extremely difficult
to analyse unless one is familiar with the formalisms involved. Model defects
are thus liable to pass unnoticed by the ecological community.

1

3. Model parameters and relationships are scattered through a wide range of lit-
erature and are expressed in different formalisms (e.g. mathematical formulae
Fortran subroutines). Therefore, a large amount of effort is wasted in defining
model components which have already been used elsewhere.

Ecologists need to be free to concentrate on investigating the dynamics of the
systems which interest them, rather than wasting time learning esoteric program-

ming techniques or deciphering obscure mathematical formalisms. They require an
Intelligent Front End [Bundy 841, which will help them convert their ecological ideas
into a simulation model. An Intelligent Front End is a kind of expert system which
builds a formal description of a user's problem through a user—oriented dialogue. This
task specification is then used to generate suitably coded instructions for the target
computer package. Our research aim was to provide an ecological modelling system

which could be used by ecologists with minimal mathematical or programming skills.
In order to address the problems (listed above) of our target user group, we considered
that the following features were required in the system:

• A task specification formalism which is capable of representing a wide range
of ecological simulation models. This helps provide a standard representation
for different models, tackling problem 2 in the list above.

• A front end which would interact with the user in terms familiar to him/her,
converting the user's ecological statements into a mathematical formalism ca-

pable of translation into source code for a simulation model. The purpose of
this dialogue control mechanism is to help overcome the technology barrier of
problem 1 by making it easier for users formally to describe the program they
require.

• An automatic checker of the consistency and ecological sense of the model.
This also addresses problem 1 by preventing all syntactic and some semantic
errors during the interactive specification phase.

• A data base and browsing mechanism for storing and accessing ecologi-
cal data and relationships. By providing this repository of information, users
should find it easier to isolate model structures appropriate to their application
(alleviating problem 3).

• A back end interpreter to run the completed model and display the results.

The current ECO system, although prototypical, largely achieves these original re-
quirements for a subset of ecological modelling. However, it also exhibits a number
of deficiencies which we are attempting to remedy in our current research.

This paper contains a summary of the programs which we have constructed in
order to provide the facilities listed above. We begin by describing our first prototype

system and its relationship to our original objectives. We highlight some important
inadequacies in the basic system and provide a short discussion of our attempts to
alleviate these problems. We then summarise the benefits of this project - its contri-
bution to artificial intelligence and ecological research.

2

I 	Coe User In thce 	Task 	d
- jSpecification j Genei

I Run Simulation I 	 Results
Model I

Knowledge Base

Figure 1: The original ECO system

2 Description of the First ECO System

ECO, ((Uschold et al 86), [Muetzelfeldt et al 85]) is a computer program - written
in Prolog - for constructing ecological models. A diagram illustrating the general
architecture of the system appears in figure 1. It relies upon a System Dynamics
formalism [Forrester 61] to express model structure. This formalism can be manipu-
lated by users, via an interface package, to produce a task specification for the model
they require. A knowledge base of ecological relationships is used by the system to

perform some simple checks for ecological consistency in the developing task specifi-
cation. When complete (as determined by the syntactical structure of the formalism),
the task specification is automatically converted into a target language (e.g. Fortran)
and the simulation may then be executed. Recently, we have added the ability to run
simulations directly in Prolog, our chosen implementation language, using a special
purpose interpreter. This bypasses the code generation phase but does not effect the
core of our research - the interface between user and formal task specification. We
now consider the main components of the system, in relation to our original objectives
from section 1.

2.1 The Task Specification Formalism

ECO can be used to build a special class of models, called System Dynamics models.
This methodology encompasses the technique of compartment modelling, commonly
used in ecology to model the flow of materials such as energy, nutrients, and pollutants.
System Dynamics modelling makes use of a concise schematic representation which
helps the ecologist think about the model without mathematical formulae. This
representation was adapted and expanded to produce a task specification formalism
which helps to bridge the gap between the user's view of the problem in ecological
terms and the final Fortran simulation program. Each model is represented by an

P .

instance of this formalism which is built up while the user is interacting with the
system. Figure 2 shows a diagrammatical representation of this formalism for a very
simple model in which wolves are preying upon sheep. Predation is represented as a
flow of some material (e.g. sheep biomass) from compartment sheep to compartment
wolf, with the rate of flow as a function of the current values for sheep and wolf
compartments and a coefficient. The initial values for sheep and wolf are set to
100 and 10 respectively.

3

sheep 	
edation o

¶
coefficient

0.2

Figure 2: A System Dynamics Mode)

2.2 Interacting with the User

At the most general level, the ecologist user describes a model in terms of objects (such
as trees, sheep, wolves) and relationships between these objects (such as predation,
photosynthesis, etc). Equations and parameters defining these objects and relation-
ships can be selected by the user, with automatic connection of appropriate structures
in the underlying task specification. The user is free to decide how to approach the
task of model construction. For example, submodels can be constructed separately
and linked together later or, alternatively, the user can specify all the objects and
relationships at the general level before finally attaching equations and parameters.

In order that ecologists should readily accept the system, it is crucially important
to have a friendly means of interaction. Initially, users were required to input eco-
logical statements in stylised English. For example, if a user inputs the statement
"wolves eat sheep", this would be converted into a predation flow from a sheep to
a wolf compartment (see figure 2). This allows the user to decide how the model
will be constructed but requires that the user remember the syntax of each com-
mand. As a means of providing more guidance for users, an alternative menu based
interaction system was implemented and, recently, computer graphics techniques are
being tested as a more convenient way of eliciting input and displaying the developing
model. This removes the necessity for remembering command syntax but provides
no help with decisions about strategies for building the model (e.g. Should a sheep
population be represented as a single entity or as separate individuals). Incorporat-
ing this sort of advice into the system will be tackled in future research. Currently,
the user must make strategic decisions which are only checked for mathematical and
simple ecological consistency by the system.

2.3 Consistency Checking

As the user is building the specification for his/her model, it is continually checked
for internal consistency. Two separate types of consistency checking are performed.
First, there is a syntactic or mathematical consistency associated with the formalism
(e.g. destructive circularity should not occur in the task specification, a parameter
must have an initial value). Since these consistency rules are few in number and
clearly defined, we can ensure that ECO never produces a model which cannot be run
- the user is guaranteed to get something that works. Secondly, there is semantic con-

4

sistency checking whichhelps maintain ecological sense in the specification. Ideally,
we should like to guarantee that a final model will be ecologically sound and, fur-
thermore, will accurately and appropriately describe the behaviour of the ecological
system to meet the original goals of the user. This is well outside the capabilities of
our current implementation but we do provide limited semantic checking capabilities.
For example, if the user says that "sheep eat wolves" he/she is warned that this
relationship may be the wrong way round. If the system does not recognise a par-
ticular object, it will make Uefault assumptions on the basis of the context in which
it appears. Thus if the user says "f 00 eats sheep", the system assumes that "foo"
is a carnivore. All future uses of the object "foo" must be consistent with it being
a carnivore. However, this rudimentary form of semantic checking is not always de-
sirable, since a user may want to test non—standard ecological theories which are not
recognised as valid by the system. A more comprehensive attempt to define specific
objects and relationships in terms of general ecological principles is described briefly
in section 3.1. This should facilitate improved checking and explanation capabilities.

2.4 Storing and Accessing Ecological Data

During the model building phase, the user has access to a base of ecological knowledge
and data. Its primary function is to provide the user with the building blocks neces-
sary for creating the model. This includes such things as ecological objects which may
be contained in the models (e.g. animals, trees etc), taxonomic information relating
classes of objects when possible (e.g. primates are mammals), mathematical relation-
ships (with associated contexts indicating their appropriateness), and processes (e.g.
grazing and evaporation) each with the appropriate types of objects which may par-
ticipate (e.g. only animals may graze). Note that this knowledge is used to perform
semantic consistency checking as described above.

Ecologists need the capability to store data from field observations or laboratory
studies and retrieve them in a flexible, efficient manner. Often, these observations
are made in different contexts and ecologists want to store and retrieve information
according to the circumstances in which it was first recorded. For example, an obser-
vation may be made that "A tree in plot 5 of the Glentrool plantation was 5 metres
high in summer 1976". Another observation may state that "The rate of photosyn-
thesis of Sitka spruce is 10 mgC kg' day' in bright sunlight". We have utilised
relationships between items in different observations to provide a structure for brows-

ing through observational records, progressively refining the user's description of the
observation he/she wants to find. Ecologists who have used the system find the brows-
ing mechanism easy to understand and operate. For a more detailed description of
the ECO browser see [Robertson et al 85].

2.5 Running the Completed Model

Completed models can be passed to a code generation subsystem which translates
the task specification into Fortran source code. Due to the constrained nature of our
formalism for expressing models, this process was relatively straightforward. The user

5

can then compile this code, run it and revise the task specification if the program
does not behave as expected. Currently, the onus is on the user to decide whether
revisions to his/her task specification are necessary. Ideally, there would be a much
closer association between the system for eliciting the model specification and the
subsystem for running the model so that feedback on program execution can be
related to the specification. As a first step towards integrating these systems a Prolog
program for running simulations has been developed. This allows test simulations to
be executed directly from the task specification (no intermediate translation phase)

and provides for the possibility of automatically passing back information from the
simulation to influence subsequent model refinement. Because our research effort
is directed primarily at formally representing user's models rather than analysis of

program execution, we have yet to concentrate on these more sophisticated execution
issues.

3 Improving the Original EGO System

The system described in section 2 can construct a particular type of simulation model
easily and efficiently, provided that the user knows what he/she wants to do. We

tested this version of the system on undergraduate students of ecology and on various
visitors to the department. These trials revealed several shortcomings of the original
system. The most important of these are that the task specification formalism is
insufficiently expressive; the system is too reliant upon the user to drive dialogue
during model construction and the modelling guidance provided by the system is
insufficient for naive users. We then diverted our attention to exploring ways to
combat these difficult problems. Our current progress in each area is suturnarised
below:

3.1 Extending the Task Specification Formalism

Although the System Dynamics formalism was useful for constructing a wide range of
simulation models, it could not easily be adapted to represent certain more complex
computational structures (e.g. models with age class subdivisions or models in which
structural components were created and destroyed, perhaps representing births and
deaths).

3.1.1 The Submodels Modelling System

A separate program (the Submodels system tMuetzelfeldt et al 87]) was developed to
achieve a more flexible way of representing model structure. In this system, users are
provided with a library of "base" models, each of which requires a fixed set of input
data; generates a fixed set of output data; and performs some procedure in order to
obtain output from input. Users may arrange base models hierarchically to represent
subunits of the ecological system which they want to describe. Communication be-
tween models is achieved by connecting data—flow links between appropriate inputs
and outputs. This method allows arbitrarily complex computational procedures to be

I.

I Sfl•D male I
	 tel wolf mat

wolf miss I-ti sheep 	 shttp 	i-ti
wol F 	I wof most I

I 0.21 co.fflct.ntj—t(1 	 0. 2 1coefficIent

Figure 3: A Submodels Model

incorporated into the model but, like the System Dynamics formalism, places a heavy
burden of responsibility on users, who must directly express their models in terms of
the computation involved. Figure 3 shows a display, using Submodels symbols, of the
System Dynamics model from figure 2.

3.1.2 Use of lyped Logic

Ideally, users should be able to state, in ecological terminology, the problem which
their model has to solve and the system should help them convert this description
into a computable solution. This raises the problem of how to represent formally
these, often qualitative, "high level" statements of modelling problems and how to
link these statements to a computable program.

We have performed initial experiments with a formalism in which common eco-
logical statemeiits are represented using a 	logic. Some examples- of typical
ecological statements expressed in the logic are: 	 h.
"All wolves prey upon all sheep at all times."
VW € wolf VS € sheep VT E time predation(W,S,T)

"If animal A preys upon animal B at any instant in time, there will be some
probability distribution determining whether A kills B at that time"
VA,B € animal YE € time EP e probability.4istribution 	 -

predat;on(A,B,T) — probability7ill(A,B,T)) = P

The procedural structure of the simulation is supplied by introducing fragments
of simulation code (schemata), similar to those used in the Submodels system, each
being active only under certain conditions of the user's description of the ecological
system. This approach to program construction provides greater representational
power along with increased ability to represent ecological statements in a form close to
that employed by users. It also provides a foundation for future work on dialogue and
guidance. A more detailed discussion of these issues appears in Robertson et al 87aj.

3.2 Flexible Dialogue Control

Many computer systems (ECO included) tend to force users into a rigidly structured
dialogue, designed to suit some "average" user. In the original ECO system, the dia-
logue was primarily user driven, with the system responding to the user's commands.

VA

Fs top1 1nex4

.tl.J r.pr...nt,Uon V St.t. v.rI.bl.

 dr,iEtv Og, clan
flfl 	 fl 	CIOW

fr,dMdwpi

Figure 4: Menu System - Sample Display

As a means of exploring the other extreme of the range of possible dialogue mech-
anisms we have constructed several simple systems in which the computer plays a
strongly active role in guiding the design. Principal among these is a system in which
important characteristics of users' models are represented using frame—like structures,
possessing attributes which users must instantiate to suit their required model. The
system determines the sequence in which these frames are presented to users and
suggests values for attributes. The users' role is simply to accept or reject the in-
formation offered by the system. A sample of the display produced by this system
appears in figure 4. The user has been shown sets of options for three attributes of a
prey mammal and has chosen an age_class substructure. In response to this choice,
the system has excluded the options lumped, individuals and groups because they
could not apply at the same time as age_class. However, sexclass option remains
available, since mammals may have both age and sex classes simultaneously. The user
may also select options from the state_variable or spatial_representation attributes.
When all the required options have been selected, clicking the "next" button prompts
the system to generate a new set of menus for related attributes.

In reality, different types of user require different balances between system and
user initiative during model construction. Expert users want freedom to define task
specification structure as they see fit. Novice users want to be guided through the
model construction process until they become accustomed to the system. A flexible
dialogue system is required, which allows users to take the initiative if they want to
but continually provides advice as to what it thinks would be a useful move at any
time.. This suggested to us a dialogue architecture which utilises graphics displays
and multiple windowing facilities to simultaneously display different possibilities for
interaction. Among the options available to the user would be

• A graphical display of the model which the user could manipulate by hand
(direct user initiative). This approach is similar to that used in the existing
ECO program.

• A window in which users may, of their own volition, provide information about

model structures and their goals for the current model. This has been imple-
mented, based on a mechanism for selecting and editing typed logic statements,
rendered into English text [Robertson et al 87a]. The left—hand window in fig-
ure 5 shows a sample display in which the user has, using a browsing system,
selected a sentence (number 218) from the system's knowledge base. This sen-

t 	 tence is represented internally as:

'vT E time predatzon(A,B,T)

but has been rendered into stylised English to make the logic mbre understand-
able to ecologists. The user has edited this sentence by restricting the type of
A to wolf and B to sheep, forming the expression:

VA € wolf VB E sheep VT e time predation(A, B, T)

which has then beeri added to the problem description.

• A suggestion box of system advice about model construction. These suggestions

are generated by the system, allowing an entire model to be constructed simply
by following the system's advice. This part of the system has been only partially
implemented (see section 3.3). A display from our current prototype appears
in the right—hand window of figure 5. Here the system has used the expression
added by the user (see above) in conjunction with the following rule from its
knowledge base:

VA,B € animal VT E time BP E probability_distribution
predatiori(A, B, T) -* probability TAill(A, .8, T)) = P

to generate a suggested sentence, rendered into stylised English by the system
but represented internally as:

VA e wolf V.8 E sheep VT e time BP E probability_distribution
probability(33kill(A,B,T)) = P

By referring to the appropriate identification number, the user may get the
system to implement this advice.

This architecture would allow smooth and flexible changes of initiative during the
session. It also avoids the perennial problem of ordering the sequence suggestions
because the user is allowed to choose which to accept at any time. Further discussion
of dialogue issues may be found in [Robertson et a! 87b].

Figure 5: Mixed Initiative System - Sample Display

3.3 Guiding the Design of Specifications

Even when presented with a friendly dialogue system, many users have difficulty in
constructing program specifications. This is because they have only a vague notion of
what should be included in their model and how to represent it (a problem common
to all non—trivial specification systems). For example, the user may be unable to
decide whether to represent a sheep population as a single entity or as a number
of individual objects and, if the latter option is chosen, he/she may not know the
appropriate structures to insert into the task specification. Novice modellers do not
know how to idealise the objects in models so that they are consistent with the overall
objectives of the model. Without this information, they may construct inelegant
specifications or, worse, may leave out crucial structures. The system must be able
to advise users about the best structures for representing objects in the model, based
on an analysis of existing model structure and a knowledge of the user's goals for
the finished program. We have investigated possible methods of providing this form
of guidance and hope to provide a working implementation, utilising a typed logic
problem description (see section 3.1).

At the start of a session, advice may be provided by asking users to specify their
modelling objectives or to provide some of the principal high level components of
their model - for example, the fact that wolves prey on sheep. From this general
description, the system may be able to select a modelling framework - a predator-
prey schema, perhaps - and display this to the user as a suggested structure. lithe
structure is acceptable, it may be further elaborated, using additional schemata if
necessary. For instance, a respiration subschema might be added to the predator
(wolf) component of the predator—prey schema. This feature should fit cleanly into

$

10

the dialogue architecture mentioned above, allowing the user to obtain guidance in
converting his/her initial vague ideas into a final formal specification and making sure
that important parts of the specification are included. The resulting system would be
an expert modelling consultant rather than merely a convenient tool. A discussion of
the guidance requirements in ECO can be found in [Uschold 861.

4 Related Work

The ECO system synthesises Fortran programs from specifications in ecological ter-
minology provided by the user. As a program synthesis system it occupies an im-
portant niche on the power/generality spectrum between general-purpose synthesis
systems like NuPRL, [Constable et al 861, and the special-purpose, application gen-
erators [Horowitz et al 851. ECO is restricted to the synthesis of a particular class
of programs, but this is a much wider class than application generators can typically
deal with. It exploits this restriction by synthesising more complex programs than
those that can be dealt with by general-purpose systems.

An exciting aspect of our recent work using typed logic for specifying ecological
problems, is that it is upwards compatible with the techniques used by the general-
purpose synthesis systems. This gives the hope of a smooth transition between weak
general-purpose synthesis systems and more powerful special-purpose systems em-
ploying domain specific knowledge. Our long range goal is to develop mechanisms
for incorporating such domain specific knowledge in a general-purpose framework: to
extract specifications from users, to guide the synthesis process and to interpret the
results of the program. -

ECO is an example of an intelligent front end package (i.e. a system which acts as
an intermediary between a user and a complex program, making it easier for the user
to use the program correctly). Previous work in our group concerning intelligent front

ends has included the Mecho system, [Bundy et al 79], which built sets of equations for
describing a mechanics problem stated in English, and the ASA system, [O'Keefe 82],
which built instructions for a statistics package to analyse the results of a psychological
experiment. These three systems have a strong family resemblance to the extent that
we have suggested the possibility of a general intelligent front end framework or 'shell'
to simplify the generation of similar systems, [Bundy 841.

5 Conclusion

The development of the ECO system can be divided into two phases. Our initial
work relied upon a simple System Dynamics formalism which represented users' eco-
logical models in a mathematical framework. Users were assumed to be capable of
constructing solutions to their ecological problems by directly manipulating System
Dynamics constructs. Our justification for this assumption was that ecologists were
familiar with System Dynamics and that a large number of ecological problems could
be easily represented in this formalism. However, tests of the initial system revealed

11

that the number of users who fitted into this classification was smallefthan we had an-
ticipated. Users sometimes required more complex models than could be represented
using System Dynamics. They also wanted to describe their modelling problem, using
terminology with which they were familiar, and receive guidance in converting this
into a computable solution. This requirement provided the impetus for the second
phase of development, which continues today. We have constructed prototype systems
which allow users to describe their modelling problem using ecological statements -
represented in a typed logic. Typed logic permits a much wider range of problems
and solutions to be represented than was possible using System Dynamics. These
statements can be used to isolate fragments of simulation code (represented in a for-
malism similar to that used in the Submodels system) which, together, constitute a
computable simulation model. We are also designing guidance mechanisms, based on
a "suggestion box" system. This will allow the system to take control of dialogue at
a user's request, thus elevating ECO from the role of a passive assistant to that of an
active participant in the modelling process.

Acknowledgements

This work was funded by SERC/Alvey grants GR/C/06226 and GR/D/44294. We
are grateful to members of the Mathematical Reasoning Group in the Department of
Artificial Intelligence at Edinburgh University for their practical advice and support
during the course of this project.

References

[Bundy 841 	 A. Bundy. Intelligent front ends. In J. Fox, editor, State of
the Art Report on Expert Systems, pages 15-24, Pergamon In-
fotech, 1984. also in proceedings of British Computer Society
Specialist Group on Expert Systems 1984 and available from
Edinburgh as DAI Research Paper 227.

[Bundy et al 	A. Bundy, L. Byrd, C. Luger, C. Mellish, R. Milne, and M.
Palmer. Solving mechanics problems using meta-level infer-
ence. In B.G. Buchanan, editor, Proceedings of IJCAI-79,
pages 1017-1027, International Joint Conference on Artificial
Intelligence, 1979. Reprinted in 'Expert Systems in the mi-

croelectronic age' ed. Michie, D., Edinburgh University Press,
1979. Also available from Edinburgh as DAT Research Paper
No. 112.

[Constable et a! 86] 	R.L. Constable, Allen, Bromley, Cleaveland, Cremer, Harper,
Howe, Knoblock, Mendler, Panangaden, Sasaki, and Smith.
Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, 1986.

12

(Forrester 611 	J. W. Forrester. Industrial Dynamics. MIT Press, 1961.

(Horowitz et al 851 	E. Horowitz, A. Kemper, and Narasimhan. A survey of appli-
cation generators. IEEE Software, January:40 - 54, 1985.

(Muetzelfeldt et al SSJ R. Muetzelfeldt, M. Uschold, Bundy A., N. Harding, and
• 	 Robertson D. An intelligent front end for ecological modelling.
- 	 In Working Conference on Artificial Intelligence in Simula-
• 	 tion, Flanders Technology International, University of Chent,

Belgium, 1985.

fMuetzelfeldt et al 87] R. Muetzelfeldt, D. Robertson, M. Uschold, and A. Bundy
Computer-aided construction of ecological simulation models.
In International Symposium on AZ, Expert Systems and Lan-
guages in Modelling and Simulation, Elsevier Science Publish-
ers, Barcelona, Spain, 1987.

(O'Keefe 821 R. O'Keefe. 	Automated Statistical Analysis. 	Working Pa-
per 104, Dept. of Artificial Intelligence, Edinburgh, 1982.

[Robertson et al 851 D. Robertson, R. Muetzelfeldt, D. Plummer, M. Tischold, and
A Bundy. The eco browser. In Expert Systems 85, pages 143-
156, British Computer Society Specialist Group on Expert
Systems, Coventry, England, 1985.

(Robertson et al 87a] D. Robertson, A. Bundy, M. Uschold, and R. Muetzelfeldt.
Synthesis of Simulation Models from High Level Specifications.
Research Paper RP-313, DAI, 1987.

[Robertson et al 87b} D. Robertson, M. Uschold, A. Bundy, and R. Muetzelfeldt.
Dialogue in eco: a system for building ecological simulation
models. in preparation, 1987.

[Uschold 861 M. Uschold. 	Computer-Aided Design of Program Specifica-
tions in the domain of Ecological Modelling. 	Technical Re-
port DP-35, DAT, 1986.

[Uschold et al 861 M. Uschold, N. Harding, R. Muetzelfeldt, and A. Bundy. An
intelligent front end for ecological modelling. In T. O'Shea, ed-
itor, Advances in Artificial Intelligence, Elsevier Science Pub-
lishers, 1986. Also in Proceedings of ECAI-84, and available
from Edinburgh University as Research Paper 223.

S

13

