-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Analysing Mathematical Proofs (or Reading between the Lines)

Citation for published version:
Bundy, A 1975, 'Analysing Mathematical Proofs (or Reading between the Lines)'. in Proceedings of the 4th
international joint conference on Atrtificial Intelligence -.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the 4th international joint conference on Artificial Intelligence -

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28961457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/analysing-mathematical-proofs-or-reading-between-the-lines(73c17f1f-acc9-491a-a1b0-845149769bbe).html

ANALYSING MATHEMATICAL PROOFS
(OR READING BETWEEN THE LINES)

Alan Bundy

Department of Artificial

Intelligence

University of Edinburgh
Edinburgh, Scotland.

Abstract

He study equation solving and analyse the sol-
utions of experienced mathematicians. We find
that traditional theorem proving methods are
inadequate to explain the directness of these
solutions, and that the well known algorithms for
polynomials etc. are inadequate to explain the
wide variety of equations solved. Our analysis
reveals a system of high-level descriptions,
strategies and goals, which can be used to guide
the search through an explosively large search

space. A few of these strategies will be
investigated in detail. It is hoped that this
analysis will eventually be incorporated into a

computer program that solves equations.

Introduction

The problem domain we address ourselves to in

this paper is equation solving. In fact we are
Interested in finding real valued solutions to
equations involving rational, trigonometric,
inverse trigonometric, exponential and logarithmic
functions. In this paper we concentrate on find-
ing general solutions to single equations in a
single unknown.

A study of this domain is overdue because
although the experienced human mathematician finds
equation solving straightforward, no existing
computer program can match his performance.
Traditional theorem proving programs are inad-
equate to explain the directness (lack of search)
of his solutions. The well known algorithms for
polynomials (e.g. Gaussian elimination, Sturm
sequences, Newton-Bairstow, etc.) are inadequate
to explain his range (e.g. trigonometric,
logarithmic equations, etc.). See, for instance,
Martin and Fateman, 1971 p68 or Moses 1974.
Neither can his solutions be regarded as part of a
process of putting the equations into some normal
form or of reducing their syntactic complexity.
So the standard simplification packages provided
by systems like REDUCE (Hearn 1967 3.3) or
MACSYMA (Martin and Fateman 1971 p64) are inad-
equate to explain the success of his solutions.

In order to try to match the human mathematician's

performance we analyse his solutions. This
analysis reveals a system of high level descript-
ions, strategies and goals, which can be used to

guide the search for a solution through an

explosively large search space. These high
level concepts appear to be useful not only
equation solving, but throughout elementary
algebra. We believe, the methodology should
prove useful throughout mathematics.

in

In addition elementary equation solving appears to
be an especially appropriate domain to start with
because:

i) Many useful high level concepts are revealed
in the language used by mathematicians when they

discuss equation solving, e.g., elimination of

22

variables,
isolation,

change of variable, collecting terms,
trigonometric equations, etc.

ii) Equation solving and pattern matching
(unification)are very similar. Since all
algebraic manipulation is made easier by having a
sophisticated pattern matching package, we make
life easier by studying equation solving first.

In this paper we analyse some solutions, tease out
some high level strategies and discuss how these
might be incorporated in a computer program. The
strategies we discover are:
attraction and the basic

isolation, collection,

method.

In the extended version of this paper, Bundy 1975,
we show how these strategies can be used to de-
rive some historically interesting general solu-
tions. We go on to analyse some solutions which
cannot be explained by the above strategies and
discover further strategies.

The Proposed Program

At the time of writing not all these ideas have
been implemented in a computer program. I have
no doubt that they all could be, and a student at
Edinburgh, Bob Welham, has experimented with
implementing some of them in the PROLOG language
(see Warren 1974). However, it would be prem-
ature to invest a lot of effort in a program before
the whole domain has been explored. New connect-
ions between strategies are constantly being dis-
covered, and new problems are constantly emerging,
so that such programming effort might be wasted.
Our current ideas about the form of the program
are reproduced below:

The program will be organised around a convent-
ional theorem prover, run in proof checker mode.
That is, the theorem prover will not be able to do
anything unless instructed to. The strategies
are the procedures which will do the instruction.
The word "strategy" was adopted to describe each
of these procedures because they provide the
theorem prover with search strategic guidance

information. However, for some of them descript-
ions like "tactic", "method" or "algorithm" seem
more appropriate. In such cases we will some-

times use the more appropriate description as a
synonym for "strategy", albeit with connotations.

These strategies will examine the current equation,
using high-level predicates,to decide what to do.
On the basis of this examination they may call
other strategies or apply individual axioms. They
will also decide whether those calls were success-
ful, and what to do next. The strategies will
need to exploit all the benefits of a high-level
programming language, e.g., recursion, condition-
als and search. It would be convenient if this
language and the theorem prover could share

facilities such as search and database mechanisms.
This may be possible using PROIOG, but care must be
exercised in the mixing of Metalanguage and Object
language concepts. For instance,we might decide
to have a predicate ISVAR which is true if and
only if its argument is a variable. Then ISVAR
(U) would be true and ISVAR (3) false. However,
we can derive ISVAR (3) from ISVAR (U) leading to
a contradiction. Our solution to this problem is
to regard all expressions in the object language
(constants, variables, terms and formulae) as
constants in the metalanguage, so that we cannot
deduce ISVAR (3) from ISVAR (U). For a further
discussion of these issues see, for instance,
Kleene 1962 pp62-65 and p298.

The strategies will have available to them a store
of laws of real number theory. We will call these
laws axioms because the program will assume them
true without proof. The axioms which we are
planning to put in this store are listed in an
appendix to Bundy 1975. These axioms are highly
redundant and include many facts which would
normally be regarded as theorems in a parsimonious
logical system. We will reserve the words
theorem and lemma for facts provel at run time.
Strategies may pick which axiom / apply next,
a variety of ways, according to t. context.

in

For instance:

i) A strategy may have the axioms useful to it
earmarked at compile time.

i)

A strategy may have only a general descript-

ion of the axioms useful to it and have to
retrieve suitable axioms at run time. (This
does not prevent some prior indexing).

ill) A suitable axiom may not be available, and

the strategy may have to appeal to a theorem
proving program to prove a lemma to use
instead.

No suitable axioms may be found, and the strategy
will have to fail. On the other hand several
suitable axioms may be found and the strategy will
have to conduct a short search.

No manipulation of the equation will be allowed
except by the theorem prover applying an axiom to
it. This idea of separating the inference system
from the search strategy is due to Kowalski 1970

pl81. It has a number of advantages (see Hayes
1974, section 3). For instance:
i) Provided the theorem prover is sound, the

correctness of any solution
This is sometimes in doubt
program.

is guaranteed.
in a more ad-hoc

[1) All the axioms can be equally accessible to
all the strategies, so a new axiom need only

be added once.

ill) The learning of new axioms and new strategies
is made easier.

A Logarithmic Example

Let us consider an equation which most people will
find fairly easy to solve.

23

Solve for X: loq-(x+1) + loge(x-ll - 3

To the best of my knowledge, there are no known
equation solving algorithms which could solve
this equation (because it is logarithmic).
addition, it defines a search space which al-
though modest by equation solving standards would
present a considerable challenge to most Resolut-
ion (see Robinson 1965) theorem provers.

In

The solution we are going to analyse is given
below:

1. loqe(x+1) + loqa(x-l) = 3
.............. (i)
2 loge(x+1). (x-1) = 3
.........) C‘..ll.(ii)
2
L B B I B NN) L3 .(iii)
4 X ~]l = e3
........ esasasas (iV)
2 xz - e3+1

6. X = f§3+1 or x = /e3+1

Analysis will
of attraction,
we will
method.

lead us to discover the strategies
collection, and isolation, which
link up into a strategy called the basic

Notation

Since in what follows we shall be reading between
the lines of this solution, it will be necessary
to be able to refer to the spaces between the

lines. We have, therefore, labelled these spaces
with Roman numerals, (on the right of the solution) .
These spaces will be referred to as steps, e.g.,
step (ill) is the one from line 3 to line 4.

In problem solving, the word "solution" has two
different meanings. It can mean either

i) The written protocol of the solver, as in

the sentence "Hand in your solutions by
Friday".
[I) The answer to the problem, as in the sentence
"The solution of the equation is x=6".

For instance in the above solution the written
protocol is the whole thing from lines 1 to 6, the
answer is just line 6. Since we will need to

distinguish carefully between these two concepts
we use the word "solution* to mean the written
protocol and we will use the word "answer" to mean
the answer.

We will also need to define what syntactic forms
are acceptable as answers. In equation solving,
answers give values for the unknown in terms of
expressions not involving the unknown. So close
is this to the concept of a substitution that we
have decided to make the connection between
pattern matching and equation-solving more
explicit and use the word "substitution" to mean

those formula which are syntactically acceptable
as answers.

As explained in Bundy 1974, the x in the above

solution is not a variable in the predicate logic
sense. If it were we would be allowed to sub-
stitute arbitary terms for it during the course of

the solution and we would get solutions such as

. - = 3
1 loqe(ml} + loqe(x 1)

- - i 3
2 lage(1+1l + loqe(l 1)
3'

logez + loqeo = 3

etc.

In fact x actually behaves like a constant when
we are searching for a general solution and like a
variable when we are searching for a particular

solution. In this paper we are concerned only
with general solutions so we regard x as a con-
stant. Following Polya 1962 we distinguish it
from any other constants in thee equation by call-
ing it the unknown. We reserve the letters

xX,Y,2 fer unknowns

a,b,c.,d for other constants

u,v,w for (genuine) variables

{in the axioms}

8,t for terms

f.,g.,h for function sympols

A,B,C for formulae

and E for equations

The Analysis

In this analysis, because we look only at the final

solution, we are guilty of the sin of not display-
ing the search involved in discovering that sol-
ution. We will try to atone for this sin when we

discuss how to implement the strategies we discover
Unfortunately it will not be possible, until the
program is run, to be certain about the size of
the space searched before the solution is found.
However, in the conclusion we argue that this
space will be a small function of the length of

the solution.

We look first at the end of the solution, lines 3
to 6. In line 3, for the first time the equation
contains only a single occurrence of the unknown,
X. From here on the solution is straightforward.
The next three steps consist of stripping away the
functions surrounding this single occurrence of Xx
until it is left isolated on the left hand side of
the equation. Each step consists of identifying
the outermost (or dominant) function symbol on the
left-hand-side, recovering the axiom which will
remove it from the left-hand-side and insert it's
inverse on the right-hand-side, and then applying
this axiom. We will call the strategy which
guides these three steps isolation, because it
isolates the single occurrence of x on the left-
hand-side. We will explain it in more detail in
the isolation section. It can be regarded as the

24

basis of nearly all work in equation solving as
well as much of the rest of algebraic manipulation
As with simplification, mathematicians often omit

isolation steps from their written protocols,

crowding as many as three or four steps into the
transition from one line to another.
We look next at line 2:
2. loge(:ul). {x-1) = 3
This contains 2 occurrences of x, so isolation is

not applicable. However, we can see step (ii) as
preparing for isolation, by achieving a reduction
in the number of occurrences of x from 2 to 1.
This is done by applying the identity.

2

furv} ., (u=v) = u -v
This is an example of our second strategy, which
we call collection, namely, when there is more than

one occurrence of the unknown,
which will collect occurrences

try to find an axiom
together.
look at line 1 and step

(i)
= 3

Finally we
1. loge{x+l) + logetx-l)

The two occurrences of x cannot be
collected,

immediately
presumably because a suitable axiom was
not stored. We can however prepare the occurr-
ences for collection by moving them closer to-
gether, so that more identities will match the
term containing them both. This is what happens
in step (i). The notion of "closer*™ is defined
in the next section. The strategies of moving
occurrences closer together to increase their
chances of collection, we call attraction.

When the above three strategies are combined we
will call the resulting equation solving strategy,
the basic method.

Our analysis is now as below.

1. loqe(x+ll+1?qe(x—l) =]
(1)) attraction)
)
2. log (x+l).{x-1) = 23)
e))
(ii)) collection)
)
3. loge(x?—l) = 3) the basic
)
(iii}) } method
) }
4q. x2—1 ® e3))
))
(iv) } isclation
}
5, x2-93+1)
)
(v))
6. x = Je 41 or x--J53+1

Definitions

In order to explain how we might implement these
strategies, we will need to have some notation to
discuss algebraic expressions, especially the
notion of distance between occurrences of symbols.

We can represent any algebraic expression as a
tree (we do not use a graph, since we want to be
able to distinguish between occurrences):

loge(x+11 + loge(x—l) = 3

can be represented as
+

log 1

3

7\
e + e -

A

The distance between several occurrences of
symbols in an expression is the size (number of
links) of the smallest subtree in the tree which
connects them all, e.g., the distance between the
two occurrences of x in the example is 6 and the
distance between the three integers is 8.

x 1 1

be represented by a
at the root of that

Any term or formula will
complete subtree. The symbol

subtree is called the dominant symbol of that term
or formula:
log is the dominant symbol of log (x+1)
e
+ is the dominant symbol of x+1

An occurrence of an expression is said to contain
another expression if the tree of the second is a
subtree of the tree of the first:

and Xx.
is said to dominate an
is the dominant

log (x+1) contains x+1
An occurrence of a symbol
expression (¢ say} if the symbol

symbol of an expression which contains ¢

log dominates x+1, e, and 1 in log (x+1)

Isolation

We now consider the four strategies in more detail
in order to see how they might be implemented.

If we have an equation, E, containing a single
occurrence of the unknown x then we can apply
isolation. For the sake of argument suppose x
occurs on the left-hand-side of E and that the
dominant function symbol on the left-hand-side
the n-ary symbol f, i.e., E is of the form

is

f(sl......si(x).....sn) = t

is the only term containing x.
isolation process is to first isolate s., and
isolation recursively to complete the
To isolate s. we need an axiom

where s,
The
then to call
isolation of x.
of the form

(say)

flu0,

o ->
1 i gt =V A

is some substitution for u. in terms of
A is often of the form

where A
the u; , 3#i and v.

25

ui = fi{ul.....v.....un)where fi is an inverse

of F.

But this as the axioms for

sin and squared

wl =y - (0= Vv v

is not always the case,
illustrate.

u= -)

8in u = v -> (3n ¢ integers) (u = n. n + -n’
arcsin v

We therefore define a substitution for x as follows

i) If S does not contain x, then x _ ¢
non-trivial substitution for x.

is a

substitutions for
substitution for x

If A and B are non-trivial
x then AvB is a non-trivial

If A(n) is a non-trivial substitution for x
and S is a set of real numbers then (In ¢ 8)

(A(n)) is a non-trivial substitution for x.
iv) "True" and "False" are trivial substitutions
for x.
V) A substitution for x is a trivial or non-

trivial substitution for x.

With this definition of substitution there is an
axiom of the required form associated with each of
the functions of elementary algebra. We might

speculate that this is not an accident, that
mathematicians have deliberately defined new inverse
functions, (e.g.,arcsin and square root) so that
these axioms would exist. About these inverse
functions little is known, and this causes prob-
lems when they occur in equations we are trying to
solve. How these problems are tackled is dis-
cussed in Bundy 1975.

It should be a straightforward matter to write a
procedure which can decide whether or not there
is a single occurrence of the unknown in an equat-

ion and on which side it occurs; identify the
dominant symbol of that side; recover the appro-
priate axiom; apply it and then apply isolation

recursively to the resulting equation or dis-
junction of equations. The only difficulty that
might arise is if the axiom was stored in the
wrong form:

e.g., the sin axiom as

gin u = s8ip v -» n
(3n ¢ integers) (u = n.n + (-1} .v)

the right form would have to be recovered as a
subgoal. We delay consideration of this problem.

Collection

Collection is the strategy which takes an equation
and tries to reduce the number of occurrences of

the unknown which it contains. For the sake of

clarity we will limit our discussion initially to
the case when two occurrences are reduced to one.
This is the most common situation and, at the cost
of some complication, our discussion can easily be
extended to the more general case.

Having decided which two occurrences to collective

focus our attention on the smallest expression
which contains them both. If the two occurrences
are on the same side of the equation this will be
a term, called the containing term, otherwise it
will be the whole equation. We deal with the
former case first. The containing term must now
be replaced by another term containing one occur-
rence of the unknown, say x, so we must look for
an axiom, say A, which will do this. We can
easily build up a description which A must obey.

A must be an
the form:

1) identity, i.e., an expression of

sl- 8, or B -» sl = 52, where B is called its

precondition.

ii) One of the variables, say u, must occur
either
(a) twice in s and once in s

or (b) twice in s, and once in s;
without loss of generality we will assume
case (a),

iii) s1 must match the containing term, with one of

its variables, say u, being instantiated

to x. Note that we are not allowing u to be
matched to a proper term, say t(x), contain-
ing Xx. This situation will be handled by

making a prior change of unknown of, say vy,
for t(x). We are also not allowing the
situation where two variables, say u and v,
are both matched to x. If A(u,v) is useful
to collection by matching u and v to x then A
(u,u) is also useful, and therefore non-
trivial. We will assume that we will not
need to do collection using A(u,v), because
A(u,u) will also be present. To justify
this assumption we need only make sure that
all non-trivial axioms which can be gotten
by identifying the variables of existing
axioms are added to the axiom store.

If A obeys parts(i) and (iia) of the above

description we will say that it is useful to col-
lection, left to right, relative to u. If A obeys
parts (i) and (lib) we will say that it is useful

to collection, right to left, relative to u.

sin 2u - 2.sinu.cosu

is useful to collection, right to left,

relative to u.

{u+v). (u-v) = uz-v

is useful to collection,
relative to u (and v)

left to right,

wi u+v) = wu + w,v

is useful to collection,
relative to w

right to left,

u+a = u

is useless to collection

26

To find a suitable axiom the collection strategy
need only search among those axioms useful to it
and find one which also obeys part iii) of the
description.

The case when the two occurrences of x appear on
opposite sides of the equation can be dealt with
in a similar way. This time we are interested
in axioms of the form:

-> <>
{a) B (Cl Czl
or possibly
(b} B ~> {c1—>c2)
where C4; (or C, in situation (a)) can be matched to

the whole equation. We can build the appropriate
definitions of "useful to collection" by replacing
s with C4 and s, with C, in parts (ii) and (iii)
of the previous descriptions.

We will want to extend these definitions to deal
with any reduction in the number of occurrences of
the unknown. Then we can include in collection
the use of axioms like

u -u-o0
to reduce 2 occurrences to none.

to the definitions
comes

The modification
is straightforward, (iia) be-
u must occur more often in s than in s).

Even though strategies
search for a solution,
search altogether.
to choose:

like collection guide the
they do not eliminate
For instance, collection has

which set of occurrences of the unknown
to try to collect, (and therefore which
subterm to try to replace)

(a)

useful-to-collection

(b)

which matching,
axiom to apply.

is that collection narrows
the search considerably. In fact we are lucky to
find a single axiom, useful for collection, which
matches one of the containing terms. In the
event of a real choice we could use heuristics
based on the fact that we would like to reduce the
number of occurrences as much as possible.

Our initial experience

Notice that we are demanding that collection do
its job with one application of an axiom. This
is because we want collection either to succeed or
to fail quickly, so we can try something else.

We could allow it to conduct a short search, but
it would be difficult to know on what grounds to
terminate an unsuccessful search. The problem
with keeping such a tight rein on collection is
that it might fail simply because the axiom which
should have succeeded was not in the right form.

It would be a pity to fail to collect x in

(1) loqe(x+1).tx—1} = 3

because the axiom were in the form

2

(2) (u-v). (u+v) = usev

instead of

{(3) (u+v).(u-v) = uz-v

Our solution to this problem is to have a pattern
matcher which can recognise that axiom (2)

matches (x+1) . (x-1). This entails building-in
axioms like the commutativity of multiplication
(c.f. Plotkin 1972). One aspect of this build-

ing-in process is discussed in the section on
pattern matching in Bundy 1975, but a complete
discussion is delayed until a later paper. Such
a pattern matcher will increase the number of
axioms which will match the containing term.

However, we still believe that collection will be
lucky to find an axiom which both matches and is

useful to it.

We will want the pattern matcher to spend a large,

but bounded, amount of effort to try to make an

axiom match an expression. If this is not to be
computationally very time-consuming, collection

had better only feed good candidate axioms to the
pattern matcher. It can select good candidates
by ;

"useful to

(a)

Only choosing those
collection™

(b) Insisting that both the axiom and the
expression it is to match obey the

same high level description e.g., both
are quadratic, trigonometric, logarith-
mic, etc.

Attraction

The attraction strategy is very similar to col-
lection. As before we must choose the occur-
rences we are going to attract, then focus on

their containing term. As before we will use a
definition of axioms useful to attraction to
recover a suitable axiom to apply. The main
difference is in the type of axioms useful to
attraction.

An axiom is useful to attraction, left to right,
relative to some subset of its variables, u say,
if for all ueu, u has the same number of occurr-
ences on left and right, but the distance between
all the occurrences is strictly smaller on the

right than the left.
definition for useful

We can make a similar
to attraction, right to

e.g., 1ogeu + logev = logeu.v

is useful to attraction, left to right,
fortu,vy

w,(U+v)} = w.u + w.v

is useful to attraction, right to left,

forfu,v}

wu.v - (wu) v

is useful to attraction, right to left,
for{u,v}

The variables in the subset p will
terms containing the unknown, x.

left.

each be bound to

27

The Basic Method

Isolation, collection and attraction can be com-
bined into a basic method for solving equations.

If the equation contains a single occurrence of
the unknown we isolate this occurrence. Other-
wise we try collection on each combination of
occurrences until either the number of occurrences
is reduced to one, or no more collections are
possible. In the first case we call isolation,
in the second case we call attraction. We try
attraction on one combination of occurrences. If
this is successful we call collection, otherwise
we try attraction on some other combination. If
we run out of attractions to attempt, the method
fails.

Conclusion

We have studied elementary equation solving.
Existing equation-solving, computer programs, do
not match either the range or the directness of the
human mathematician. We have analysed such
mathematician's solutions and discovered a system
of high-level strategies. These strategies are
not restricted in their range of application.

They guide the search for a solution by

i) Providing a series of intermediate subgoals
between the present equation and the final
solution.

Focusing on the subterm of the equation
which is to be manipulated next.

iii) Selecting a small set of axioms which can be
nade to apply to that subterm and which are
relevant to achieving the next subgoal.

We claim that this guidance reduces the size of
the space searched considerably and that sometimes
there is no search at all.

We have discovered and investigated the strategies
of isolation, collection, attraction, and the basic
method. This is only a small part of the story.
There are many other strategies at work in equation
solving. There are general-purpose strategies
like simplification, pattern-matching, change of
unknown, and elimination, and there are special-
purpose strategies for well understood types of
equations like polynomial and trigonometric
equations. We delay discussion of these to
another paper.

Acknowledgements

We would like to thank the many people with whom
we have interacted over this work for their en-
couragement, suggestions and inspiration. It
difficult to separate the contributions of each
individual. Odd remarks and suggestions have
often fermented together, resulting in a product
unrecognisable to the original contributors.

is

However, we single out for special mention Soei
Tien Tan, Gordon Plotkin, Ira Goldstein, Joel Moses,
Luis Pereira, Bob Welham, Alan Robinson, Woody
Bledsoe, Bob Kowalski and George Luger. We apol-

ogise to the many other people we have omitted.

10.

11.

12.

References

Bundy, A. (1974) "A Treatise on Elementary
Equation Solving". Internal Memo, Depart-
ment of Artificial Intelligence, Edinburgh.

Bundy, A. (1975) "Analyzing Mathematical
Proofs (or reading between the lines)".
Department of Artificial Intelligence
Research Memo No. 2, Edinburgh. (An
extended version of the present paper).

Hayes, P.J. (1974) "Some Problems and Non-
Problems in Representation Theory". Paper
presented at the A.1.S.B. Summer Conference
at Sussex.

Hearn, A.C. (1967) "REDUCE : A User Oriented

Interactive System for Algebraic Simplific-
ation". In Interactive Systems for Exper-
imental Applied Mathematics. Academie
Press, New York, pp 79-90,

Kleene, S.C. (1962) "Introduction to Meta-
mathematics". North Holland.

Kowalski, R. (1970) "Search Strategies in
Theorem Proving". In Machine Intelligence
5, eds. B. Meltzer and D. Michie. Edinburgh
University Press, pp 181-201.

Martin, W.A. and Fateman, R.J. (1971) The
MACSYMA System. In Proceedings of the 2nd
Symposium on Symbolic Manipulation, ed.
S.R. Petrick,Los Angeles, pp 59-75.

Moses, J. (1974) Private Communication.

Plotkin, G. (1972) "Building in Equational
Theories". In Machine Intelligence 7, eds.
B. Meltzer and D. Michie. Edinburgh Uni-
versity Press, pp 73-90.

Polya, G. (1962) "Mathematical Discovery",
Vol. | and I1. John Wiley and Sons, Inc.

Robinson, J.A. (1965) "A Machine Oriented
Logic Based on the Resolution Principle".
In JLA.CM., Vol. 12, No. 1, pp 23-41.

Warren, D. (1974) "Epilog [400,400) - A Users

Guide to the D.E.C. 10 PROLOG System**.
Internal Memo. Department of Artificial
Intelligence, Edinburgh.

