

Edinburgh Research Explorer

Altering the Description Space for Focussing

Citation for published version:
Wielemaker, J & Bundy, A 1985, Altering the Description Space for Focussing. in Expert Systems 85:
Proceedings of the Fifth Technical Conference of the British Computer Society Specialist Group on Expert
Systems (British Computer Society Workshop Series). DAI Research Paper No. 262.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Expert Systems 85: Proceedings of the Fifth Technical Conference of the British Computer Society Specialist
Group on Expert Systems (British Computer Society Workshop Series)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/altering-the-description-space-for-focussing(f82b716a-8420-4f1a-bb74-5357a9bc0236).html

ALTERING THE DESCRIPTION SPACE
FOR FOCUSSING

Jan Wielemaker *
Alan Bundy

D.A.I. RESEARCH PAPER NO. 262

Jan Wielemaker
University of Amsterdam
Institute for Cognitive Studies
Weesperplein 8
1018 XA Amsterdam
Netherland

Copyright (c) 1985 Jan Wielemaker & Alan Bundy

Paper submitted to Expert Systems-85,
Warwick, December 1985.

LI]lI[ji5 P:sjlItIs:sJkw
a.. u as:.j'

Jan Wielemaker
Alan Bundy

University of Edinburgh
Department of Artificial Intelligence

Hope Park square
Edinburgh EH9 NW

Scotland

ABSTRACT

This paper discusses improvements on the heuristic rule and concept learning
technique, called focussing. Central to this technique is the description space.
It is a set of trees, representing knowledge about the domain in which the
concepts (or rules) to be learned are described (see figure 2-1 for an example).
The heuristic Information is kept In the hierarchy of these trees. Unfortunately
focussing can t learn a concept or rule If this hierarchy is wrong. A technique
called "tree-hacking" is Introduced to repair this flaw.

Also discussed is a way to build description spaces for focussing, given the
properties that should be concerned and their possible values. The hierarchy
Is constructed by looking at a (large) set of concepts that share (parts of) their
description space.

Acknowledgements

Jan Wielemaker
would like the thank Jim Howe, Alan Bundy and Bob Wielinga for their work

done to let me visit the Al department in Edinburgh. I also would like to thank
Alan Bundy and Bernard Silver for their advise, and all the others who made
this visit interesting.

keywords concept learning, rule learning, focussing, tree-hacking, description
space

Focussing is a heuristic technique to learn concepts or rules from examples
and counter examples (called "specimen"). Central to this technique is the
description space. It is a set of trees, representing knowledge about the domain
in which the concepts (or rules) to be learned are described. Each tree
describes a certain aspect and its possible "values". For example a tree might
describe "tense", with values "past", "present" and "future" (see figure 3-1). The
structure of the tree represents heuristics for the learning process. Markers
on the trees represent the state of the learning process. Focussing is discussed
in more detail in section 2.

Focussing does not need to store all the specimens presented in the past.
Together with its heuristic nature these are the main advantages of the
technique. Unfortunately focussing also has a some serious flaws. One of them
is that the hierarchy of the trees in the description space should be suitable
for learning the concept you want it to learn. If this is not true focussing will
eventually find a contradiction in the learning process.

[Bundy '821 and [Bundy e.a. '841 describe a technique, called "tree hacking"
to change the hierarchy of the trees when focussing faces a contradiction.
Section 3 describes refinements on this technique and Its Implementation.
Section 4 introduces another technique, not only to enable focussing to cope
with wrongly structured trees, but also to build trees by examining a set of
concepts. Suggestions for further research are presented.

2. FOCUSSING

Remark

Learning concepts or rules from examples and counter examples is exactly the
same process. In the rest of this report only learning of concepts is mentioned.

2.1. A description of foaming

Focussing is a heuristic technique to learn concepts from specimen. It uses a
"description space" to represent its rule and heuristics. This description space
consists of trees representing the important aspects to decide whether a
specimen is an example or a counter-example. For example the trees used to
learn the concept of an arch are: "shape" tree, "support" tree, "touch-relation"
tree and "orientation" tree. The state of the learning program is represented
by two markers on each tree: the "upper marker" and the "lower marker". See
figure 2-1.

Tree Hacking 	 - 2 - 	 J. Wlelemaker, A. Bundy

shape (upper)

/\
prism pyra -nid

/\
block wedge

(lower)

support

/\
support 	unsupport

(upper & lower)

figure 2-1: Two of the trees used to learn
the arch concept.

Ifinitlons

The current marker in a tree is defined to be the node corresponding to the
value of the property described by that tree of the specimen we are studying.
A node is under a marker if that node belongs to the subtree whose root the
marker marks (the node can be the root itself), a node is above a marker if
It Is not below that marker. A specimen can be classified in three ways:

- As an example ("yes"). A specimen is classified this way if all current
markers are below the lower markers.

- As being out of the concept ("no"). A specimen Is classified "no" if one
or more of the current markers is above the upper marker.

- Undecided ("grey"). A specimen is classified this way if all the current
markers are below the upper marker and at least one current marker is
above the lower marker (otherwise it would be classified "yes").

2.2. LearnIng a concept

To learn a concept we should start by presenting an example of this concept.
On each tree the program places the lower marker on the current marker and
the upper marker on the root. The lower markers determine the part of the
universe definitely in the concept (the most specific view), the upper markers
determine the most general view: all except what is Iaiown to be out of the
concept.

We now present the program a set of examples and counter examples and adjust
our markers in the following way:

- in case of an example:

* If the classification is "yes": do nothing (correctly classified).

Tree Hacking 	 - 3 - 	 J. Wielemaker, A. Bundy

* If the classification is "grey": raise the lower marker on all the trees
where the current marker is above the lower marker (grey trees). The
lower markers should be placed on the root of the smallest subtree
containing the old lower marker and the current marker (then both
are below the new lower marker).

* If the classification Is "no": contradiction, see discussion below.

- In case of a counter example:

* If classification is "yes": contradiction, see discussion below.

* If classification is "grey": If there is one tree with the current marker
above the lower marker (a treth whose current marker is below the
upper and above the lower marker is called a "grey" tree) we call this
a "near miss". If there are more of these grey trees we call it a "far
miss". In general we should place at least one upper marker on a node
so that the current market on that tree is above the upper marker
(classification should become "no"). If the counter example is a near
miss the grey tree should be used to discriminate upon. Otherwise we
have a choice point: in theory we can discriminate on every non-empty
subset of the grey trees. See the discussion below for more details.

* If classification is "no" there is nothing to be done.

Termination

The learning process is terminated if, on each tree, the upper and lower
markers are in the same position. (*)

23. Problems with foctmslng

- In case a far miss is encountered the program is in trouble. It can not
decide which subset of the grey trees to use in order to discriminate.
Possibilities to handle this case are discussed in [Bundy e.a. '84]. Under
them 	are: setting 	up a search space, 	using a teacher, neglecting 	and
avoiding (= adapting the training instances).

- The concept described by the markers is conjunctive. Focussing is not able
to cope with disjunctive concepts [Bundy e.a. 19841

(*) This is only true if the hierarchy of the trees is right.

Tree Hacking 	 - 4 - 	 J. Wielemaker, A. Bundy

- Focussing is not capable to deal with noisy data.

- It is possible that the description space is not suitable for learning the
concept we want to learn. There are three possible flaws in a description
space:

* There is a tree missing (an aspect relevant to decide what is in or
out of the concept is not considered).

* A tree is not detailed enough. For example it might be necessary to
• refine the shape tree of figure 2-1 by splitting the concept "pyramid"

in "pyramid_4" and "pyramid_3" (a pyramid with a square c.q. a
th triangle at e bottom).

* The hierarchy of one or more of the description trees is wrong. (see
section 3.1 for an example). In theory there are two ways to handle
this situation: change the hierarchy or split the concept into a
disjunction.

In the following sections two techniques to change the hierarchy of a
description tree are described.

3. TREE HACKING

3.1. The pi.u-jz of free hacking

Tree hacking is an extension on focussing, described in section 2. One of the
drawbacks of focussing is that is relies on a suitable set of description trees.
Otherwise focussing will over-generalise and/or over-discriminate. See -for
example- the foliowing tree:

tense (Lper & Lower)

/ I \
past(Y) pre- tuture(Y)

(Qirrent) sent(Y) (+)

(+)

figure 3-1: The status of the tree after two
positive instances.

Because of the two positive training instances on present(Y) and future(Y) the
lower mark is lifted one leveL If, at this moment, we present the program

Tree Hacking 	 - 5 - 	 J. Wielemaker, A. Bundy

with a negative training instance with the current marker for this tree on
"past" and also for all other trees below the lower marker (*) a conflict is
detected. The simple focussing algorithm is in trouble. -

On the other hand if the program discriminates on a tree the upper marker
is lowered in such a way that an as small as possible subtree is eliminated.
Nevertheless it is possible that this part is too large.

These are the two typical situations where a wrong hierarchy of one of the
trees in the description space leads to a contradiction in the learning process.
Tree hacking is a technique to deal with these situations: it changps the
hierarchy of the tree in such way that it becomes consistent with the old data
and the specimen that made the inconsistency visible. In order to do this it
needs Information about the status of each node with respect to the past
training instances. Tree hacking splits the original tree in consistent parts and
constructs a new tree from these parts.

3.2. When to use tree hacking

Tree hacking might be the right action to perform if a contradiction is found
during the learning process. This means that either an example should be
classified -on the bases of the rules learned so far- "no" or a counter example
should be classified "yes".

To be sure that hacking one or more of the trees is the right action to perform
at this moment one should know that the contradiction in the learning process
Is caused by a faulty hierarchy of one or more trees (and thus excluding all
other possible reasons for the detected contradiction). Unfortunately we don t
know a good tactic to figure this out in generaL

33. Information, needed for free hacking

To be able to hack the tree in an -for this state of the learning process-
acceptable hierarchy we have to know the status of each tip-node with respect
to the previous training instances. We distinguish between four classes of
tip-nodes:

- "Positive" marked tip-nodes.

- "Negative" marked tip-nodes.

- "Visited" marked tip-nodes.

(*) If, on another tree, the current marker is above the lower marker
focussing will discriminate on that tree. This Is a far miss situation that
can not be detected by the focussing algorithm.

Tree Hacking 	 - 6 - 	 J. Wielemaker, A. Bundy

- "Undefined" marked tip-nodes.

The program starts with marking all tip-nodes undefined. During learning the
process described in the table below is used to mark the nodes.

specimen classification action

example don't care Mark all current nodes positive.

counter-example yes Mark current node in the tree you are
going to hack, negative.

counter-example grey Mark current node in the tree you are
going to use for discrimination negative.

counter-example no 	 If only one of the current nodes is
marked undefined: mark it negative. If
there are more of these nodes mark
them visited. These marks are necessary
to make sure that, once correctly classi-
fied, a specimen will always be correctly
classified.

table 3-1: Marking of nodes to obtain necessary
information for tree hacking.

34. The algorittin

Fortunately, the hacking algorithm for the two cases in which tree hacking is
useful are identical. However the cases differ in the algorithm to detect which
tree should be hacked.

Example presented, but classification gives tnohI:

- Hack all trees with the current mark above the upper mark. It is advisable
not to hack the whole tree, but the smallest subtree containing both the
current mark and the upper mark (and thus the lower mark). This is the
smallest part to restore consistency in the whole tree.

Counter-example presented, but classification gives "yes":

- Find those trees for which the the current marker is on a not earller
marked tip-node. If there exist more of these trees then we have to deal

Tree Hacking 	 - 7 - 	 J. Wieiemaker, A. Bundy

with an analogous problem to the far miss problem during focussing: we
have to choose which tree to hack. At this moment the program Just takes
one of these trees.

- Hack the selected tree. The smallest possible tree to hack is the subtree
with as root the lower mark. In spite of this it is not advisable to hack
just that subtree because the upper mark will be lowered by the hacking
program to somewhere in the changed subtree, excluding the whole grey
area that existed. Therefore it is better to hack the subtree with as root
the upper marker.

The hack algoritiwn

There are many ways to hack a tree to a consistent tree. The algorithm below
describes one that destroyes as little as possible from the original hierarchy
and grey area.

- Split the tree into the following three sets of subtrees:

* A set of "consistent positive" subtrees. A consistent positive subtree
is an as large as possible subtree of the original tree, only containing
positive marked tip-nodes and undefined marked tip-nodes, with at
least one positive marked tip-node.

• A set of "consistent negative" subtrees. A consistent negative subtree
is an as large as possible subtree, only containing negative, visited and
undefined marked tip-nodes.

• A set of "consistent tndeflnee subtrees. A consistent undefined
subtree is an as large as possible subtree, only containing undefined
tip-nodes.

- Rearrange the subtrees to a complete tree in the following way:

Tree Hacking 	 - 8 - 	 J. Wleiemaker, A. Bundy

root

/\
(upper) not _neg 	nag

/
	

PtgSubtrees

	

(lor) pas
	

undef

	

A
	

/\
PosSubtrees UidefSubtrees

figure 3-2: Structure of the new tree

One may wonder what the purpose of the visited markers are. Their role is
to make sure that a negative training instance that was once classified correct
will still be classified correct after tree hacking. Without using the visited
markers it is possible that a negative training instance that was once specified
correct because it encountered an undefined marked tip-node above the upper
marker will be classified wrong after the hacking process because the tip-node
is included In the unmarked subtrees.

3.5. An example

This example Is derived from Winston's arch program. I will discuss the
focussing on the tree, that describes the shape of the upper part of the arch.
The tree for describing the hierarchy of shapes is extended to show the working
of the algorithm in a clear way. Suppose this tree starts with the following
structure:

shape

pri&n 	 cylinder 	pyranid

ill 	 1
block 	wedge 	 pyranid_3 pyranid_4

figure 3-3: Shape tree as used for testing the
tree hacking algorithm.

The following table shows the given specimen, and the actions that the learning
program performs (We just consider what happens at the top of the arch, it
is assumed that the other parameters don't lead to far misses).

Tree Hacking 	 - 9 - 	 J. Wielemaker, A. Bundy

specimen In concept

block 	yes

pyramid-4 yes

pyramid-3 no

action.

Put upper mark on shape, lower on block;

Lower mark is raised to shape.

A contradiction is detected, the whole tree is
hacked to the shape shown in the figure below.

shape 	 -

	

(upper rmrker) not neg 	 pyranid_3

1-I 	I
(lr narker) pos 	 cylinder

I 	(?)
I 	1

	

priri pyranld4 	(+) neans rmrked by a positive

I 	(+) 	 training instance
(-) mans rrerked by a negative

training instance
block wedge 	 (?) mans mrked undefined

Ci-) 	(?)

figure 3-4: Resulting tree after hacking.

table 3-2: A worked example of the extended
focussing program.

3.6. EvaluatIon

Although this way of tree hacking satisfies if you just want to enable the
program handling wrongly structured description trees it is far from optimal.
The major drawbacks of the algorithm are the following:

- If a certain tree is used In more than one concept we are learning, and/or
- more than one time in a concept, then the program stores a copy of the

tree for every occurrence of the tree. This is done because it is possible
that the shape for one occurrence of the tree can't be equal to another
occurrence.

Tree Hacking 	 - 10 - 	 J. Wielemaker, A. Bundy

- It is likely that if a tree is wrong shaped and used for various concepts
It will get different Siapes In most occurrences. I believe that It is
preferable to check whether it is possible to hack the tree so that it
satisfies as many as possible occurrences. I will discuss this idea in more
detail In the next section.

4. BUILDING A DESCRIPTION SPACE FOR FOCUSSING

When using focussing for learning a concept there exist a lot of possible ways
to build and alter the hierarchy of the trees which constitute the description
space. In this section I present a way to build and maintain the description
trees needed for focussing. A tree that describes a certain property can be
used to learn properties of various objects or relations in a concept and for
many concepts. I will call these occurrences of the tree.

4.1. Suitable and Ideal description trees

A mutable tree

If a certain concept is completely learned the upper and lower markers on each
tree are on the same node. The set of properties of each tree Is then divided
Into two parts: a subset below the markers and a subset above the markers.
This division Is determIned by the concept, and therefore it is only possible
to learn a specific concept If each tree has a node in it so that all tip-nodes
below that node refer to specimen In the concept and all other to specimen
outside the concept. Apart from this It is unimportant (*) what the structure
of the subtree below this node is and how the rest of the tree is structured.

A proposal for an 9deal' tree

An "ideal" tree Is a tree whose hierarchy is likely to be suitable for learning

a certain concept. One thIng is sure: you can not build the "ideal" shaped tree
by looking at just one occurrence of the tree. The reason for this Is that all
suitable trees (see above) are as ideal as each other if you Just examine this

one occurrence. This means that you Siould a) have more information about

the properties you want to include in the tree and/or b) use information from
other (earlier) learned concepts.

I choose to examine the possibility to use information from other occurrences
of the tree (other concepts). An obvious solution is to build a tree that satisfies
an as large as possible subset of the occurrences. I will call this tree the
"consensus" tree. If the set of occurrences is representative for the universe

(*) It only affects the effectiveness of the heuristics.

Tree Hacking 	 - 11 - 	 J. Wielemaker, A. Bundy

of occurrences of this tree we build the tree most likely to be suitable for
learning an arbitrary concept. This does not mean it is Ideal for a particular
concept, but without additional information we can't do better.

4.2. ComputIng the Cai8lS tree

The main problem in this approach is computing the tree that fits for as many
as possible occurrences. The formalisation of this problem is given below:

given:

- A set of properties F.

- A set of occurrences C. Each occurrence C(I) of this set has two other
sets connected to them; Cmax(i) (the disjunction of the positive and
undefined marked properties), and Cmin(i) (the positive properties).

For example look at the tree of figure 3-4. Here F would be {block, wedge,
pyramid_4, cylinder, pyramid-3, Cmin would be {block, pyramid_41 and
Cmax {block, wedge, pyramid_4, cylinder}.

To compute:

A tree T that has the following properties:

- For as many as possible occurrences C(i) there exits a subtree S. The set
of tip-nodes of S is a superset of Cmin(i), and a subset of Cmax(i).

Of course this algorithm should have an acceptable order: generating all tree
and selecting the best is not a solution in a practical sense of view.

A heuristIc approach

While learning the concepts the sets Cmax(i)\Cmin(i) (the grey area) will
gradually disappear. This means that if we can solve the problem stated below
we have a heuristic solution, that will get closer to the ideal solution as the
grey area gets smaller.

To compute in a reasonable order:

A tree T that has the following properties:

Tree Hacking 	 - 12 - 	 J. Wleiemeker, A. Bundy

- For as many as possible concepts C(l) there exist a subtree S. The set
of tip-nodes of S is Cmin(l). After constructing this tree try (in a heuristic
way) to Include the remaining concepts by using the grey areas.

The first part of the problem is well defined and solvable in order N cubed
(N is the number of concepts involved). Adapting the construction if only one
subset Cmin(i) changes can be even more efficient. I have not done any
research to the heuristic part of this algorithm but I believe it should be
possible to write an acceptable algorithm for this part with order N.

4.3. A crIterIon for the existence of one consens*m tree

Lemma 1

Given a set of property-sets Cmln. There exist a tree, so that for every Cmin(i)
there is a subtree with a set of properties equal to Cmin(i) if and only if for
every Cmiri(i), Cmiri(j) one of the following statements is true:

- CmIn(i) and Cmin(J) are disjoint.

- Cmin(i) is a subset of Cmin(J).

- Cmln(J) Is a subset of Cmin(i).

Proof:

If this criterion is met it Is possible to build the tree with the algorithm given
below. This proves that such a tree exists.

If this criterion Is not met there exist two sets CmIn(i) and Cmin(j) with a
nonempty intersection I(i,J). The elements of I(i,j) have to be in two subtrees:
the subtree with root 5(i) for Cmin(i) and the subtree with root SQ) for Cmin(J).
The subtree with root 5(i) must have a tip-node set CmIn(i). The elements of
Cmin(j)\I(i,j) should be outside this subtree, but in the subtree of 5(j). Thus
5(J) is not a node in the subtree of 5(1). In the same way 5(i) is not a node
in the subtree of SO). Because 5(i) and 5(j) are both in the tree there must
be a loop (root - 5(i) - "element of I(i,J)" - 5(J) - root). Contradiction.

4.4. The algwitlwn

Given the set of properties F and a set of Cmln sets of which we know they
satisfy lemma 1, we can compute the consensus tree as follows:

Let the tree be represented as:

Tree Hacking 	 - 13 - 	 J. Wielemaker, A. Bundy

tree ::= tree(<riode nn>,
[list of properties In the subtree of the node],

- 	 [list of subtreea])

- Initialise the tree as tree(<root>,FjJ).

- DO (for every Cmin) flt_ln(Cmin,[Tree],[NewTreeD OD.

To fit Cmin in the list of trees the following actions have to be performed:

- Split the subtrees in the following 4 classes:

1. A class of subtrees for which the property set is equal to Cmin.

2. A class of subtrees for which the property set is disjoint to Cmin.

3. A class of subtrees for which the property set is a superset of
CmIn.

4. A class of subtrees for which the property set is a subset of
Cmin.

- Because of lemma 1 and the way the tree is built three different situations
can occur:

* If class 1 is nonempty no action has to be performed because there
Is an equal Cmin set fitted In the tree earlier.

* If class 3 is nonempty we fit the Cmin set in the tree of class 3.
There are never more then one set in class 3 because of lemma 1.

* Otherwise we built a new subtree. The root of this subtree is the node
S for Cmin. All subtrees of class 4 are attached to this node. The
new list of subtrees is the union of class 2 and the new subtree.

43. SplittIng the occarences

To use the algorithm above we should first split the Cmin sets in an as large
as possible part containing Cmin sets that can be together in a tree and the
rest. The following algorithm does this:

Tree Hacking 	 - 14 - 	 J. Wielemaker, A. Bundy

- Btiild a graph. The vertices are the Cmin sets. If two sets do not meet
lemma 1 they should be connected by an arc.

- Do until there are no area left in the graph:

* Eliminate the vertex with most arcs connected to It. If there are two
or more vertices with an equal number of arcs remove an arbitrary
member of this set.

The remaining set of vertices is the largest non conflicting set of Cmin sets.

4.6. Experiments

On the basis of this theory I built a Prolog program to learn simultaneously
a set of concepts. As mentioned I did not pay any attention to the heuristic
part of constructing the trees. I planned to do this after writing and testing
the version without, but ran out of time.

The program handles incoming specimen8 using focussing. If a contradiction is
detected in the focussing process the program looks for trees to be altered
in the same way as the tree hacking extension described in section 3. Then
all occurrences of this tree are considered and a new set of trees created.
There are many other ways to use this description space building algorithm in
focussing. For a further discussion on this subject see section 4.7.

Because of the limited time I decided not to construct a "real life" testing
environment. Instead I tested the program with a set of nine abstract concepts,
sharing a description tree with ten properties. The concepts where designed to
need three different trees.

The program was then tested by presenting it 90 specimens in a random order,
but so that for a specific concept the first one always is an example (necessary
for focussing). To reconstruct the three trees from one tree in which all
properties were directly attached to the root it needed to change the
description space 17 times.

4.7. Further research

In this section an algorithm is discussed that uses information of other
occurrences of the same tree to build a hierarchy for description trees. The
presented algorithm is not worked out well and needs further research on the
following aspects:

- What is the optimal heuristic algorithm to maximise the number of
occurrences of the tree for which one common hierarchy fits? Solving this

Tree Hacking 	 - 15 - 	 J. Wielemaker, A. Bundy

-- 	problem will especially improve the behaviour of the algorithm on partly
learned concepts.

- How should the tree changing algorithm interact with the focussing
program. Some possibilities are:

* Change all occurrences of the tree after every specimen.

* Change all occurrences of the tree if a contradiction occurs in the
focusing process (the solution I choose).

* If a contradiction in the learning process occurs look to see if it is
possible to use another tree of this set. If not then change all
occurrences.

* Change part of the occurrences in one of the above situations.

- In what sense can the information stored from other concepts help to
provide heuristics for choice points in the learning process (far misses,
choosing between one of the alternative options described above etc.)

This paper presents technique -called tree hacking- to enable focussing learning
concepts while the hierarchy of one or more of the description trees is wrong.
Ways and problems to select a tree which hierarchy should be changed are
discussed. An algorithm that restores the consistency of the tree but changes
as little as possible of its hierarchy is presented.

Section 5 starts a discussion about how to build an optimal hierarchy for
description trees. The basic idea of this section is that the optimal hierarchy
is the hierarchy that is most likely to be suitable to learn a new -arbitrary-
concept. if other occurrences of the same tree is the only available information
this tree is the tree that is suitable for as many as possible of these other
occurrences. An outline of a concept learning program based on this idea is
presented, together with suggestion for further research.

a] IT 2Z [s1

[Bundy e.a. '841
	

Bundy, A., SlIver,B., Plummer, D., "An analytical
comparison of some rule learning programs", D.AJ
Research Paper No. 215, 1984.

[Bundy '821 	 Bundy, A., "Changing a description space by tree

Tree Hacking 	 - 16 -
	 J. Wielemaker, A. Bundy

hacking", D.A.I. Note 106, 26 march 1982

[Clockein & Mellish '811 Clocksin, WY., Mellish, C.S., "Programming in
Prolog", Springer-Verlag Berlin Heidelberg, 1981.

[Winston '753
	

Winston, P., "LearnIng structural descriptions from
examples", in Winston P.H. (editor), The psychology
of computer vision, McGraw Hill, 1975.

