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SPECIAL PURPOSE, BUT DOMAIN INDEPENDENT, INFERENCE MECHANISMS

by
Alan Bundy, Lawrence Byrd and Chris Mellish

Abstract

vie describe a number of special purpose, but domain independent, inferencemechanisms. 
While these rl1echanisms are limited to certain kinds of inference and

illference rules, they do not rely on special properties of the domain, but on
logical properties of predicates and rules, ~Ihich make them equally applicable to
other domains. These logical properties include: transitivity, functionality and
unarit.y. The union of the~e mechanisms handles nearly all the inference required in
the Mecho project for solving 11echanics problems stated in English.
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1. Introduction
Many pr'oblems studied within Artificial Intelligence call for. inference.

Unfortunately, the general purpose inference mechanisms, which have been built in
Artificial Intelligence, are ~nown to be susceptible to combinatorial explosions.
One solution to this problen\ is to build domain specific inference mechanisms.
Building such D mechanism is non-trivial and, by definition, the researcher can
inherit little from those which have been built before.

This paper takes a different approach: the attempt to build special purpose, .but
domain independent, infercnce mechanisms. The :::cchc:nisms we will present rely on
special properties of the inference rules, predicates, etc that they manipt:late.However, 

these special properties are logic8l properties, like transitivity,
functionality, unarity, etc, and so the mechanisms may be useful to researchers inother 

domains.

These inference mechanisms are the product of the ~1echo research project, [Bundy
et al 79], to build a comp'.Jter program which can solve t-!echanics problems stated inEnglish. 

Mecho uses inference for s number of different purposes: interpreting the
meaning of English stat<:ments; forming a mathematical model and solving the
specified problem; and solving the resulting simultaneous equations. Each time \~e
were confronted ~:ith a combinatorial explosion we investigated the nature of the
inference rules. predicates, etc, involved, to see how the explosion might be
avoided. The range of the probl(:ms being solved by ~1echo prohibited ad hoc,
patch-type solutions. Those solutions which emerged often depended on logical,
rather than domain specific properties to do with physics, geometry, etc. At the
close of the project most of the ~1echo inference rules were catered for by one or
other of the special purpose mechanisms. Thus, whilst each mechanism accounts for
only a part of the inference being done, the set of mechanisms covers nearly all the
inference required by Mecho.

This paper describes the Mecho special purpose inference mechanisms, and outline~
the framcwork into which they fit. The framework consists of meta-level rules which
are responsible for allocating inference goals to the appropriate mechanism. It
does this by inferrlng the logical properties of the goals from meta-level
assertions of the properties of their syntactic parts (e.g. predicates, arguments,etc).
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2. Controlled Term Creation
Perhaps the major cause of the combinatorial explosion in automatic infererlce

systems, is the substj.tutj.on of terms for variables in formulae. In classical
predicate logic, the ability to do this is represented by the substitution rule of

inference:

FCX)

FCt)

where F is a formula, X a variable and t a term. This rule can cause a infinite
branch in the search space! In many systems, fo,' example resolution systems, this
rule is embedded in the standard rule of inference. In such systems, some of itspower 

is controlled by limiting substitutions so that only the "smallest"
instantiation required for some matching task is actually used (this is a property
of unification). But these are not just difficulties \.sith resolution, the general
problem applies to many different inference systems -indeed any system which allows
the introduction of function-like expressions during its inference. Even when the
substitutions are limited this rule is too powerful in many practical applications.
It causes the introduction of terms which have not previously been encountered in
the seach space, many of wl::.ch are not required in the proof.

For 

instance, consider the constant acceleration formula:

v = U + A.T

,~here U and V are the initial and final velocities of an object, A its acceleration
and T the duration of the period of travcl.* The implication of the words following
'where' above are that V, U, A and T are functions of the object, 0, and the period
of travel, P, i.e.

vCO,P) = uCO,P) + aCO,P).tCP) Ci)

Suppose that in a Mechanics problem about a car, the initial velocity, acceleration
and distance travelled, are given, but the final velocity is sought. Applic~tion of
formula (i), S3Y as a re\~rite rule, to find the value of v(car,trip), will unify 0
to car and P to trip and instantiate t(P) to t(trip). But the duration of the trip
is not given, and may not be easily calculated, leading to a long search and a
non-optimal solution.

An experienced Mechanics problcm solver would not use formula Ci), but formula
) instead.

vCo,p)2 = uCO,p)2 + 2.aCO,P).sCO,P) Cii)

(ii

where s(O,P) js the distance travelled by 0 during P. Since s(car,trip) is alreadygiven. 
no new terms are introduced into the search space. In Mechanics terminology,

this is known as not introducing unnecessary intermediate unknowns.

Thus the important difference between these two problem solving strategies lies
in whether or not certain additional terms are introduced during the inference. We
have devised a term creatiorl mechanism ill which the introductiorl of the intermed iateunkno\-In. 

t{trip), is controlled by problem specific considerations. The
instantiation of t{P) to t{trip) by unification, makes implicit use of the existence
property of functions, that is, given P. the quantity t{P) is guaranteed to exist.
Our term creation mechanism '-lorks by removing the existence property, so th,lt
unification cannot use it willy nilly, and replacing it by an exl-)licit. creation rule
of inference, which is only applied in suitable circumstances.

*Throughout this paper we wiJ.l follow the convention that variables al\oJays start
with an upper-cCJse letter, i,hile constants $tart with c: lower-case letter.
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The existence property is removed by the replacement of functions by relations.
For instance, formula (i) is rewritten as:

initvel(O,U.P) & finvel(O,V.P) & accel(O,A,P) & duration(T,P)
--) V = U + A.T

Now if the value of v is sought, where finvelCcar,v,trip), then various subgoals
will be set up, namely, finding the value of U + A.T where initvelCcar,U,trip) ,accelCcar,A,trip) 

and durationCT,trip).'- Note that T is not automatically
instantiated, i.e. no intermediate unknown is introduced.

The existence property is reintroduced by an explicit creation inference rule:

Yx,z 3Y r(X,Y,Z)

r(s,f(s.t),t)
where r is a predicate, X and Z are vectors of variables, Y a variable, sand tare
vectors of terms, f a new skolem function, and r(X,Y,Z) has the existence property
for Y. This \...ould be as explosive ('!s the substitution rule, if used forwards in an
undirected way. Therefore. it is usually used back\~ards to satisfy a subgoal of the
form, r(s,Y,t), by substituting f(s,t) for Y.

The version of this rule in Mecho was only designed to handle the case where s
and t are ground terms. In this case f might as well be a nullary skolem function(i.e. 

just u new gensymed constant), ~s its dependancy on sand t provide no ne\~~nformation. 
Because of this, tht' backwards use of the creation rule does not

generate any search, but satisfies the subgoal in a single step

The hypothesis part of the rule is stored, not as an object level, predicate
calculus formula, but as a piece of meta-information about the predicate r, stored
in the form,

exists(r(X,Y..Z).X u Z)

This assertion is used by the (meta-level) inference system to justify the use of
the explicit creation rule for the predicate r. liote that r does not hCive to be a
function from X end Z to Y, because the Y need not be unique. Thus the creativn
rule could also bc applied to the relation, parent(X,Y), meaning Y is the parent of
X. Every person has two parents, so the predicate has the existence property without
the uniqueness property. Separating the two properties of functions, existence anduniqueness, 

thus allo\-Js predicates which only have one of these properties to be
uniformally handled, as \-lell as r!1al~ing clear the different inference steps that
these properties justify. Uses of uniqueness .properties are described in sections 5
and 6.

Note also that a relation can have existence and/or uniqueness properties in more
thDn one way, and so a single relation can be made to replace two or more functions,
provided suitable meta-properties about it are stored. For instance, the relation
time--sys(Period,Initial,Final) , meaning Initial and Final are the first and lastmoments 

of a period of time, respectively, can replace the functions,
initial(Period) , final(P~riod) and period(Initial,Final).

11 first order theory in which (;1).1 functions have been replaced by relations has
only a finite Hcrbrand Universe, ~r.d hence generates only finite search spaces. This
fact has been used, with great effect, to elirllinate the combinatorial explosion in
automatic inference, by [Bundy 73, Gelernter 63, Nevil1S 75. \';os et al 65]. The use
of the creation rule restores the infinite s~arch space, but its controlled use
provides an effective way of guiding the scat"ch.

For exDmple, in [Gelernter 63], the crf'Gtion rule corresponds to the construction
of new points as the intersection of r,oT!-parallel lines. The Geometry t-1achine
explored the entire finit.c search space, using only those points mentioned in the
origini:~l diagrc:m. It then pi(;Y.cd ,~ subgoal which \-1as not true in the (.'urrc-nt
dic.;f~r<:lril, but coulrj be madc true in D diC:Jgram cxtcnded by one point. 1ni~ point w",s
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applied

constructed,recursively.

thus cxtending the and the whole thenprocess wasspace,

Mecho uses essentially the same idea, when forming equ"ations. It tries to solve
for un unkno\,n using equations containing only this unknov:n and quantities given in
the problem statement. If th:!.s fails it uses one of the other equations, invoking
the creation rule to introduce the required intermediate unknowns. Tl1cse
intermediate unknowns must then b~ solved for in turn, but again the creation rule
is only invoked when attempts to proceed without it have failed.

The control regime used by both these programs is:

.Explore 

the ~ntire finite sp~ce. without using the creation rule.

2. If the problem is still not solved, then pick an unsatisfied sl)bgoal in
this space and use a backwards application of the creation rule to
satisfy it.

3. Apply the same control regime to the extended. space.

This regime allows the r;radu2l developrucnt of an infinite space by the recursive
development of a nested series of finite spaces. Although quite successful as it
stands, its success can be enhanced by the careful choice of the unsatisfied subgoal
in step 2.

For more details on controlled term creation see [Bundy 77]

3. Equivalence and Similarity Classes
Another major cause of combinatorial explosions in automatic inference are the

symmetric aild transitive laws, e.g.

Symmetry: 

X=y -.-> Y=X
andTransitivity: 

X=y & y=z --> X=Z

These laws combine with themselves and each other to produce infinite chains of
redundant inferences. This has long been one of the ackno\...ledged difficulties of
incorporating the = relation into an automatic inference system, but our research
has revealed that the same difficulty obtains for a wide class of other relations,
for instance, the relation, samcplace(X,Y,T), that two point objects, X and Y, are
at the same place at some time, T. In this c~se the laws are:

Quasi-Symmetry: 

sameplace(X,Y..T) --) sameplace(Y,X,T)
andQuasi-Transj.tivity: 

sameplace(X,Y,T) & sameplace(Y,Z,T), --) sameplace(X,Z,T)

In the case of equality, various solutions to t:his problem have been adopted.
These include the use of equality classes [I~evins 75] and the use of systems of
rewrite rules [Huet 77]. We have adapted these solutions to deal with I'elations,
like sameplace, which obey quasi-tr~nsitivc, quCJsi-symmetric and also
quasi-reflexive laws;

s3meplclC~(Y ,X,T)

Quasi-Reflcxivity:

We have replaced the conventional axiomatization of these predicates by an
axiomatization \-!hich does not have the same explosive properties as the standard
axioms given above. We \.,.jll see tl!.,t this axiomatization incorporates the intuitive
notions of the equivt:ilence cla~s and re\-lrite rule solutions.

Our solution consists of a (~"'l1er(:!l axiom scheme, wj th which C]uD~i-.cquDljt.y
(::lc:tions cun be defined. This sc;}Jcme contains the ~xtra CJrgument positions, Ilk::?
I,e ti::le arGument of sDmcplc~ct::, ,.Il.icl. ar'(; n~c:;Jc(l L1Y the defirl(.d I~el~'t:.iol). ;.ny
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relation noted as having quasi-equality properties is automatically defined using
this scheme.

This general axiom scheme is:

Rootof(X.Root.Aux) & Rootof(Y.Root.Aux) --> Reln(X.Y.Aux) (iii)

Arc(X,Next,Aux) & Rootof(Next,Root,Aux) --> Rootof(X,Root,Aux)

notjNext Arc(X,Next,Aux) --) Rootof(X,X,Aux) (v)

To make this into a set of axioms defining a particular predicate, say sameplace,
\-le must instantiate ReIn to sameplace, and Hootor G!nd Arc to new relation names, say
rootof1 and arc1. Aux will play the rolc of the tirne argument of sameplc:ce. In the
general case where the defined predicate has more than one auxiliary argument, Aux
will be a set.

These axioms can best be understood as describing properties of a set of trees,
where the nodes are labelled with names of entities and the arcs represent Arc
relations between them. For instance, the arc1 relEJ"tions

arc1(fred,trainA,then) arc1(fred,trainB,now)
arc1(trainA,station1,then) arc1(trainB,station2,no\-l)
arc1(trainB,station1,then) arc1(trainA,station3,now)

ar~1 (Joris,station3,no\~)
can be understood as describing the trees in figul'e 3-1.

fred

\
fred

1troinI3

l
station2

trainA trainB

~/
station1

trainA doris

\1
station3

time = then time = now

Figure 3-1: Sameplace Trees for Then and Now

The idea is that for each Aux argument there is a set of " trees: two objects, X

and Y, being in the same Aux tree iff Reln(X,Y,JI.ux). Two objects, X and Y, are
joined by an Aux arc directed from X to Y iff Arc(X,Y,J\ux). The root of each tree
is a distinguished element: Root beirlg the root of an Aux tree containing X iffRooto.f(X,Root,J\ux). 

This assumes that the Arc relations are all ground units and
that for each flux and X there is at raost one Y such that Arc(X,Y,Aux). Thc
inference mechanism is responsible for seeing t!lat this is so.

Axiom (iii) says that two objects are in the relation if they have the same root,
i.e. are in the same tree. Mecho uses this axiom backwards, to sho,,! that two
objects are in the relation. AxiOl,1 (iv) says that the root of the successor of a
node is also the root of that node. Axiom (v) says that a node "lith no successors
is its own root. t1echo uses axioms (iv) and (v) back,,:ards, to find recursively the
root of an object or to determine whether the root is a given node.

These trees can be vie\oled as cquiv2lence classes, where the root node is arepresentative 
of the class. The mcchanism, dcfincd by 'Mecho's back\-IDrds use of

axioms (iii). (iv) and (v), tests that t\oiO objEcts are in a relation by checking
th&t they are in the same equivalel)ce cltJss. It does this by c}1ecking that they
sllare the same class representative. For thi s reason \ole call this special purpose
infercnce mechanisI:J, the equivalence class mechanism.

rh~ t1'~(;~ iJ~;;q b~ v1ew~g tll~p~n der~. v~1t,~on tr'ee~ ofp~ Qi'1T)t';>n~q?~ f'Qrrnf!
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mechanism, 

whet'e each arc represents a rewriting of one object into another, and a
root node represents the canonical form of its predecessors. Under this view, thE:
equivalence class mechanism tests that two objects are in a relation by rei-lritin~
each into its canonical form and then checking these for identity. Currently, these
two views of the mechanism are isomorphic, but we expect the rewrite t'ule view to be
more suggestive of a solution to the problem of representing additional axioms about
quasi-equality relations, other than ground unit clauses, like those in fi~ure 3-1.

The class of relations exhibiting quasi-equality, explosive properties also
includes relations like rel-vel(p1.p2,v,t), that two objects, p1 and p2, have a
relative velocity, v, at time t.

Quasi-Symmetry: 

rel-velCX,Y,V,T) & inverseCV,V')
--) rel-velCY,X,V',T)Quasi-Transitivity: 

rel-velCX,Y,V1,T) & rel-velCY,Z,V2,T) & addCV1,V2,V)
--> rel-velCX,Z,V,T)Quasi-Reflexivity: 

rel-velCX,X,zero,T)

Wnere zero is the vector \-lith 0 magnitude. inverse calculates vector negation and
add is vector addition. Unlike the time argument of the sameplace predicate. the
velocity argument of rel-vel. is not a passive passenger. but has different values
in different occurrences of the rel-vel relation. Tile equivalence class mechanism
can be extended to handle such arguments by makj.ng the arguments label the arcs of
the trees. as pictured in figure 3-2.

port

Figure 3-2: Relative Velocity Similarity Tree

The predicates ReIn, Rootof and Arc must be given an extra argument, called the
arc label argument. Axioms (iii) and (iv) must be modified to include additional
conditions to make the necessary arc label combining calculations. We call the
extended mechanism the similarity class mechanism.

Thc similarity' mechanism can be used, for instance, to calculate the relati,ve
velocity between the plane and the cruiser in figure 3-2. The shal~ed root of each,port. 

is found and the relative velocity of each to the port is calculated by vector
addition of the velocities labelling each at'C of the route. The relative velocityof 

the cruiser to the port is then subtracted from the relative velocity of the
plane to the port to give the relative velocity of the plane to the cruiser.

In fact. the similarity class axioms are not a simple modification of the
equivalence class ones, since care has been taken to return the simplest possible
arc label combination (e.g. velocity vector). This is done in two ways: by tryj.ng to
preserve the ReIn arc labels as Arc arc labels when building trees; and by finding
the shortest path bet\-/een two nodes j.n a tree. rather than going to the I'oot eachtime. 

This latter modification makes the similarity class axioms rather complicatrd,
and for this reason we omit them here.

Our main difficulty with both the qu3si-cquaJ.ity and similarity class mechanisms
has been the question of how to intl~oduce extra axioms, apart' from the ones
descr1bcd above, \oJhj.le maintaining the effici<:nt inference properties of these
mf;Gha!1$~m~, ;I;n pri:\otice this ha$ not b{~en too n:t.lch of a problem rlithin t1echo, and
WC~ havE: hDndlr::d the fe,! c~ses th<1t urose using f~lr urd inf'erencc r\ll (:3 tni'1t t",{:'.nerutc
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additional facts from the extra axioms, which are then added to the class trees in
the usual way. However, we ere aware that this al4ea requires further investigation.For 

more details of the equivalence and similarity class mechanisms see [Bundy 78J.

get into trouble
a situation where

(A)
(B)
(C)
(D)
(E)

4. Inference Involving Unary Predicates
Another place where conventional inference techniques can

concerns Dxiomatisations involving unary predicates. Consider
there is a large number of axioms of the form:

particle(X) --> physobj(X)
particle(X) --> point shape(X)
rod(X) --> physobj(X)- .;", "j:('!
man(X) --> particle(X) :'i..", ;i:i t
mnn(X) --> male(X)

;1;, :1man ( john) .., ,:f

rod(rodl) .1 "
woman(mary) , :

');

and inference go~ls like

physobj(john)

When such a goal is encountered, therc are two standard possibilities, Inference
can proceed forwards from the axiom 'man(john) , (deriving 'particle(john) , and so on

until the gonlisencountered). Or inference CDn proceed backwards from the goal
(generating subgoals 'particle(john) , and so on until an axiom is encountered),

Iiowever we do it, there are t~iO basic problems. First of all, the chains required
may be quite long (man-particle-physobj here, but longer chains are often
encountered), Secondly, there may be a choice at each point which axiom to use. For
instance, going forwards, should we use (D) or (E)? If (D), should we then use (A)
or (B)? Because these .choices are multiplied for each step of the chain, we hDve
quickly run into 0 combinatorial explosion.

Our solution to this problem has teen to devise a special purpose inferE:nce
mechanism for unary predicates. I:y suitably restricting the kinds of inference
goals that may be encountered and the kinds of general rule that may be expressed,
we have reduced the problem to one that is amenable to an efficient solution with no
search. 'rfe follow Hayes and Hendrix in viewing the well known notion of a ~ as
corresponding directly to the use of unary predicates in logic. Thus, our special
inference mechanism is really just z form of type checking, where the inferencp
rules express certain restricted relations bet\Jecn types. The type checking is
implemented using the operation of unification of patterrls I"epresenting types
(described belo\1).

4.1. Unary Predicates as Types
In ~~echo, inference involving all unary predicates is handled by this special

type checking mechanism. All the objects in a problem are typed ~ll1d these types are
tGken to apply over the whole problEm. In our representation t.ime arguments are
a l\...a ys explicit; any property that may only be vCilid for p<'!rt of the time will be
represcntcd by at least a binDry predicate, ~nd so \-Ie are free to assume that unary
predicates only express certcin kinds of constLlnt property.

Given the identification of unary prerjj.cates with essential properties and types,
we have been able to restrict the kinds of general rules il;1volving unary predici3tcs.
As () result \,e did not need the full pn\-..(~r of loCic~l inference; inste~d. ...special
purpose mechCClnism was adequate. TI1(: foJ.:I.o\-iinG are our prj.nciple restric1;ions:

-Vi thin our system there dre only '[",:0 ~:il1ds of infc:rcncc goal that m8Y
arise for unary predicates. Firstly, one mC!y ask \-Ihether a particular
object has a purticulcir type. S(:ond, one may ~~l: \...hct.hcr tlJcre <-,xis",::: zn
Ci\.Jj('C.;t \;itli c' giVe!i t)'pc: or \o:t;(-It, objl:'c:ts ",toe currfC'lltly l:ijlj.,.n to flclVC: (1
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given type. In fact, we have found goals of only thf: first t~rpE~ quite
Cldequate for most of our purposes. The second kind of (';oal Trlight arise in
natural langauge understanding, where the referent of a phrc.se like tIthe
pi1rticle" is to be determined. l!owE;ver, given ~:ome w"y of enumerating the
objects in current II focus" [Grosz r{r(, Sidner '(9], we can easily reduce the

problem to that of determining wllet:her a particul ar ob,iect has the type.
Thus our implementatjon optimises type checking while leaving the

generation of objects of a type compClratively experlsive.

Since unary predicates represent essential properties, ~n inference rule
that enabJes one to prove that CI type holds of an individual need not
involve Ciny reference to other individuals or irlvolve anything other than
other proper'ties of the SDme individual.

These restrictions led us to consider an infel'ence system of a restricted kind

as we now explain.

First of all, the main kind of rule that needed to be expressed was one that
expressed how the world brc8ks do\.m int.o parts, and how tlJOSC parts themselvesdecompose. 

\...e chose a reserved prEdicate' entity' to rcprE:'sent the property that
holds of all objects. and disjoint unil'n of sets, D~ t.hc primjt.j ve operation fordescription. 

In the loGic, this is treated by the use of a variadic connective
oneot:, which assert.s that exactly orje of a set of propositions is true. Thus one ofour 

rules is:

entity(X) <---> oneof {male(X).female(X),neutcr(X)}

in the

world.Another

This ex-prcsses one clGiSSification
independent classification is given by:

of the objects

<--) oneof {zero_d(X) .onc_d(X) .t\,o_d(X) .shapclcss()~)entity(X

Given these rules, any object in the world CCin be fully described by tt-l0
propel"ties. corresponding to its gEnder and its 'fdimensionBl i ty". If tlJere were
rules describing how 'one_d' objects decomposed, thc description would, of course.
have to include a mention of how the object be)1aved relative to that
sub-cl"ssification. If we wanted to refer to some p2rticular combinat:ion of types
more briefly I ../e c"n do so by using another kirld of rule involving colljunctiol1. For
instGrlcc:

man(X) <--> zero_d(X) & male(X)-

migllt be appropriate for the idealised Y}.e\ol of men tc;;~:en in mo3t mechanics problcms.
Pred icC'ltes introduced in tllcse conjunctive rules cc!n themselves be furt.her described
by 'oneof' rules, for instance:

mc;n (X) <--> oncof {boy(X ,b2ch(~lor(X

To summarise. the type clleckj.nr; systcm ir.corpuj"otcs cl rcscrvcd predicc!t(? 'cnti ty'
and tile possibility of rules of tt-l0 typ<.'s, c:S excmplified c,bovc. In addition \1e mal{(~
tile cxt.ra stipul\:1tion th8t every unclry predjc;lte (cxccpt." 'entity') arpc'ars exactJ.y
once either on ti)(~ !'left h;;!nd sial-" of c;n conj\ll1ctive rule or 011 the "rj.r,ht hCind
side" of a 'oncof' rule. \-!e are hence dealjng \'oittl a considcrr::bly regtrictcd subset
or thc, unc:.t"y PrcdicDtc C;Jlc;u)1.is. Indc'cd. j tic:, in ~,O:i:<'~ sense even rcore l'e~tt'jctLd ir,
r-°\.:er th~n thp Pt'oposjtioTlc:l CC'Jlculu5. The t\iO kirl-:!s of rul(;s form the uclsis of ;:!n
e1fi(~ient special purpos(; infcrenr~e IrJ(:chi:1nisr:). 'fll) S [j;ecr.Cit:isr!1 is cc~pahlc of
.::rls' <:rin~ qu~~:tians fJbcvt~ '.-!hetljrlr p.:;rtieul.r c!.j('('t.s I"&\'~ J';:'rt.icu1.,'Y' I)r()l)ert;i('~.

exhaustively describes wh~t kind of object it is. Of course, this does
rIot mean that ascct.t~ininc whet,h~r 8n nrbitCiry ~1ropert:y holds \;ill c:l\ IYs
be trivic::l. In section lI.3. \.;e \-lill see thc:t our type mechanism can
actually handle incompletely described objects as well.
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given arbitrary complete descriptions of the objects as conjunctions of simple typeassertions.

4.2. Representing Types as Logical Terms
The fundament-al idea behind the implementation of this inference mechanism is

that of representing each type property by a patt,ern (a term of logic), such that
the intersection of two properties corresponds to the pattern which is the most
general unifier of the terms associated with the two properties. ~1oreover, two terms
will fail to unify iff the corresponding properties are incompatible. For instance,
assuming the inference rules given above, we might have the following property-termassociations:

enti ty --enti ty(-,-) "'.01, I'"
male --entity(male(),) 'J".

female --entity(female, )neuter --enti ty (neuter ,-) ., , ';
zero d --entity( ,zero d) ..

one d --entity(-,one d)
two-d --entity(-,two-d)
shapeless --enti ty(-, shapeless)
man --entity(male( ),zero d)
boy --entity(male(boy) ,zero d)
bachelor --entity(male(bachelor):zero d).;"'" -

where the isolated underline symbols represent variables that only occur .once.
Given these basic patterns, we can construct new patterns for conjunctions, e.g.:

one d female entityCfemale,one_d)

But not all combinations are possible. A
because

"one d bachelor" will be disallowed

entity(_,one_d) 

and entity(male(bachelor) ,zero_d)

do not match.

1be- idea of representing types by logical terms has been used before in othercontexts. 
for instance in [Dahl 77]. One innovation here is the fact that we

automatically generate the logical terms in accordance with the supplied
relationships between the properties. i.e. the unary predicate axioms.

In addition to keeping a logical term for each property, it is also necessary to
keep a term for each known object. This expresses the total type knowledge about theobject. 

To determine whether an object has a given property, it is then only
necessary to see whether the type pattern of the object unifies with the the type
pattern of the property. This is an operation linear in the size of the patterns,
and the size of a type pattern is at worst a linear function of the number of
'oneof' rules. Moreover, it in~olves no search.

~.3. Handling Incomplete Type Information
The inference system for unary predicates can handle situations where there is

incomplete information about the type of an object. When the type of an object is
not completely known, there are variables in the object's type pattern correspondj.ng
to subclassifications where the object has not yet been placed. In this case,
checking unification of type patterns corresponds to checking that a type is"compatible" 

with what is already known.

In the natural language understanding part of Mecho, incomplete type information
can arise when the system is handling an unevaluated referent of a phrase. For
instance, one would like to perform certain ope,'.:tions on the referent of a phrase
like "it" before ffic:1king a decision about what it is. In fact, noun phrase referents
are treated just as variables whose values are to be determined by (possibly
po5tpon~d) inferences (section 6), Thus the situation of incomplete typc
ir!t'ormQtion about refcr~nts mo;::rgc~ into the g~ncr,jl situr:tion of incorI1pl.ct.e typc
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information about variables during inference

In order to cope adequately with incompletely described objects, the type
checking system has to be extended, so that when an individual's type pattern is

unified with the pattern of the type being tested, the result of the unification is
stored as the new type pattern for the individual. This means that, having assumed
that the individual has the type for some purpose, it is not thereafter able to make
a conflicting assumption (except by backtracking to where the first assumption was
made). Also, it is useful to have a record of the types that the individual must
have in order for the current analysis to be valid. This capability is used in a
limited facility for handling unknown nouns and adjectives in t1echo. For instance.
in dealing with:

Two particles are connected by a flurgle.

Mecho initially assigns a default type 'entity' to the "flurgle". However, the
analysis of the verb "connect" involves making inferences about the object doing theconnecting. 

This results in the flur~le being represented as an object capable of
connecting things. In our representation of the ~:echo world, the appropriate type is
a specialisation of 'physical object' that includes strings and springs.

5. Use of Negative Information
The inference systems in Mecho are principally used to derive positive

information from the problem specific information along with general facts and rules
about the domain. When, for example, the problem solver is trying to apply a
particular problem solving strategy, its goals will be questions about whether
certain objects exist in the riGht relationships, and if so, what. properties
(masses, velocities etc) they have. We have regarded negative information-as away
of pruning the search space. That is to say, when a goal of the form P is set up,
checks can be made to see if not P can be derived. If the proof of not P succeeds
then obviously the goal P should fail, and no effort should be spent trying to
derive P. This stategy'wil1 only be effective if proving not P is a considerably
simpler task than proving P. In the general case it will be just as easy to get lost
in a combinatorial search while attempting to de~ive not P as P. It has therefore
been our intention to associate simple, special purpose, methods of deriving not P
with ;]11 of our predicates. Such special mctl~ods are guaranteed to terminate
quickly and can therefore be used as quick checks on the goals generated- during

proofs.

In section 4 we described a proof mechanism for a restricted class of axioms in
unary predicate calculus. .If we encode a complete type hierarchy (for the purposes
of the program) in this way then we have a decision procedure which allo~ls us to say
for any two types whether or not they are compatible.

I.e. if we know solid(obj1) & one_d(obj1) & stretchable(obj1)

not particle(obj1)then

This follows immediately, given the nature of our type axiomatisaton: being aparticle 
is not compatible with being one dimensional. If we ~Jere trying to prove

'particle(objl)' we would thus fail the goal. If our type information "bout an
object is complete, i.e. we know for every division of our universe into disjoint
types, exactly which type the object is; then provin~ the positive case becomes the
some as checking the negative case. For such objects all unary predicate goals are
fully decidable. 110~lever. it is more common to know only the type of an object
along some subset of all possible dimensions, and here there ~Ji11 be an intermediate
case that what \.;e are trying to prove neither follows fror:1. nor is contrc:dictory
~Jith, what we already know. This is the often the CDse during the natural language
anCJlysis \.:hcre, as described above in section 4.2, the inference system will be
gradually improving its incompJete type information. !!ere the neGation <.,:hcc~~ forms
purt of the rfJerging of type inforrria~ion: impossiblc type mergE!S being ir:1mediately
rejected.
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This use of type information for pruning j.mpossible goals, can extended to apply
to all predicates in our representation. It suffices only to have a record of the
type restrictions that. the arguments of each predicate must satisfy, for instance an

axiom like:

velocityCX,V,T) 

--> physobjCX) & velocityCY) & timeCT)

\vhenever we are about to attempt a 'velocity' goal, we can then check that the
arguments satisfy the type restrictions ("coercing" incomplete type information asnecessary). 

The goal can be rejected if the type checking is unsuccessful.

These examples are unusual in that our tightly controlled use of unary predicateaxioms 
makes attempted proofs of not P very straight-forward. A more generalexample 
concerns predicates which have uniqueness properties (cf section 2). ~/hich

means that goals involving that pre.dicate are guaranteed to have unique solutions.
given that certain of the arguments to the goal are known. We represent thi::.
information with meta-facts such as:

unique(at(P.Place.Time) , {P.Time} )

Thiswhich states that particles. P. can only be 'at' one Place at any given Time.
fact justifies the inference rule:

at(P,Place,Time)
--> V Other (Other ~ Place --> not at(P,Other,Time»)

Let us suppose that we have

Kno~~ (in datab~5e):
and

As a goal: Prove

at(p1,startpoint,periodl)

at(p1,endpoint,period1)

Given the above inference rule and what is already knoh'n about p1, it suffices to
know that startpoint and endpoint are different objects for us to immediately derive
not at(p1,endpoint,period1) and thereby prune the goal. The .inequality of
startpoint and endpoint would be established by a use of a unique name assumption in
our current implementation. However other, more sophisticated, methods for proving
that two objects are different objects could also be used here.

The special method here thus applies to fully ground goals whose predicates haveuniqueness 
properties, and basically consists of checking that we don't already know

a fact that is immediately contradictory. Note that the proof of the subgoalat(pl,Place,periodl). 
where Place; endpoint. is deliberately limited to ensure that

this check is reasonably cheap. Simply trying to satisfy it by looking in the
database in a particularly tight limitation; more generally we can allow proof
methods which are known. to be inexpensive -such as some of the special mechanisms
described in this paper.

In a similar way we can incorporate various restrictions on the arguments of
predicates, such as stating that a predicate is aliorelative (w~lich means that the
relation can never be used reflexively):

aliorelativc( 

support(A,D,Time) , {A,B} )The meta-fact:

Vx not support(X.X.T

Justifies 

the rule:

Given a goal such as ~upport(block1,block1,period1), jt is easy to see that we
can immediately derive its negation (jnd thU3 prune the goal.

In this description, all these special mctl:ods hfJve been applied to ground goals
(that is, goals that contain n<;> variables). However, when solving general goals for
these predicates we can vic\-l these quick "n(~eation" checks 8S constraints on the
final values of the variables involved, \-lhich can be associated with the goal and
checkcd whenever the appropriate vnri,:blcs become instsntiGted. Such nn Dpproach hag
o.;cn succc:ssfull y used in parts of }:(;ctIO.



12

It is important. perhaps. to point out that "silly" goals continuously arise
within the problem solver and the natural language understander; for example. when
checking candidates for some problem solving method or trying to satisfy some
unsatisfied reference (see also section 6). It is essential that these cases are
handled quickly in n unj.form manner.

6. 

Dynamic Ordering of Inference Goals
This section discusses, not so much CJ special purpose inference mechanism for a

class of predicates as an optimisation of standard inference that makes use of
certain properties of predicates. The optimisation concerns the order in which
inference goals are attempted, and i5 similar to techniques used t;y--P;ereira and
Porto (Pereit-a and Porto 80] in logic programming.

Consider 

the following inference rule expressing what it is to be stationary:

stationary(X,T) (--) velocity(X,Y,T) & magnitude(Y,Z) & IDCDSUre(Z,O,ft/sec)

This says that X is stationary at time T precisely when it has a velocity vector
Y \-Jhose ffic;gnitude is Z and Z measures 0 ft/sec.* Say we need to find out \oJhether
'particle1' is stationary at time 'rnoment1'. Using this rule, \oJe have to find values
for Y and Z such that three propositions are true. \Ie might then treat these three
as inference subgoals. The qupstion is: in what order shou]d we attack them? The
goals initially look like:

veloci ty( particle 1, "i,moment 1)magnitude(Y,Z)

measure(Z,O,ft/sec)

Looking at the third Boal, we can possibly find mc:ny quuntities Z that measure 0ft/sec. 
Therefore, tc:ckling this subgo~l first might introducc some 3earch c!r;ong

possible values for Z. Similarly, tackling the second goal first would involve
searching among all the quantities that have magnitudes -which may be a number ofpossibilities. 

On the other hand, the first goal can only succeed in at most one
way. This is because a given object can only have at most one velocity at any given
time -something we know in general about the 'velocity' predicate. So it makes
sense to tackle the first goal first. When it has succeeded, a value ('velocity1',
say) ~lill have been obtained for Y, and the following subB()CJls will remain:

~agnitude(velocity1,Z)
measure(Z,O,ft/sec)

",:e can pick the next subgoal to be attempted by the same criteria. tIny vector has
at most one magnitud~, and hence the first of these c~n only succeed in one way. On
the other hand, the second gOCJl may be solvable in any number of j.rrelevant ways.

In ~1echo, we have experimenttd successfully with c: very simple mechanism for
dynamically determining the order in which infer(~nce subgoals should be attemfJted.
This mechanism involves considering the gouls individually (rather thai'! gJobc;;lly)
postponing those goals that do not have guaranteed uniqueness properties. As ~/e saw
in the above example, a goal th8t is postponed can later obtain uniqueness
properties ~/hen a variable becomes instantiated by the solution of some other goal.
At this point it can be sensibly tackled, even though it WDS previously postponed.
Therefore postponed inference goals must be stored in association ~/ith their unbound
variables, it) order that tlley can be reconsidered if a value suddE:n]y becomes kno\.;n.

'.fIn some parts of tlecho, we need to h:'!"e syrnbols denotinr; Loth the spf.c'ed and the
veJ.ocity of an object (:30 thClt we can specify that eilhcr ;;re 'given' or to be
'sought' ). We 81 so n("ed to be ublc to talk about a QUil!1tity witJ;CIIJt knowinE what. itmeasures. 

Hence the need for th~ predicC?,tcs 'rnagnj,tude I ~nd I n,en$Ut'E:'. It simply

would not be "d("quate to say 'velocity(X,O,ft/sec,T)'
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There must also be a default strategy, for resolving the situation when all current
goals have been suspended because they all lack the appropriate properties.

Pro2\!5mnfiI?#gr"QJffi11 Thgor&RrF~r[jf1lfig tiRn t11WfourS cfrr£l8rfr'-J1~orobP8I;r i~rgtfJlr.J! ~ s illJlasbagbR
" -

In the above example. the order of goals would in fact always be the samewhenever 
the rule was used. This does not always happen. For instance. consider the

following rule about what it is to be a left thumb.

leftthumb(X.Y) <--> lefthand(X,Z) & finger(1.Z.Y)

which says that Y is the left thumb of person X if Z is the left hand of X and Y is
the first finger of Z. If we had the goal to find a W such that 'leftthumb(john,W) ,

then uniqueness considerations would suggest tackling the goals in the orderwritten. 
On the other hand. given the goal to find a person W such that

'leftthumb(W,thumb29)', the other order would be most appropriate. So the dyn2mic
ordering of goals cannot entirely te replaced by adding explicit ordering
information to the rules at "compile time".

The selective postponement of non-unique goals provides a kind of solution to the
problem of when to perform reference evaluation in natural language understanding.
In 11echo, we regard reference evaluation simply as the instantiation of variables
subject to constraints. For instance, the referent of the phrase:

the particle of mass 5 lbs

\o.'ould

eventually have becometowould be something like a variable X. which
instantiated to a value such that:

:lY particle(X) & mass(X.Y) & measure(Y.5.lbs)

Similarly, 

the referent of the phrase

it

would initially be a variable, to later become instantiated to an object that has
been mentioned in the recent discourse context. As semantic interpretation proceeds,
extra constraints are placed apon the referents of phrases. For instance, by the
time the sentence:

It connects two particles of mass band c

has been interpreted, the referent of "it" is also constrained to be something that
can connect two objects (a string or spring, say). What form do these constraints
take? In Mecho, they take the form of (possibly postponed) inference goals whose
solution would cause the instantiation of th~ appropriate variable. In this
context, the problem of when to perforuJ reference evaluation, as discussed 'by
Ritchj,e [Ritchie 76J and Mellish [Mellish 81J, amounts to the question: how many
constraints should have accumulated (inference goals been postponed) before a guess
is made as to \~hat the referent is (the goals are finally tackled). Clearly, the
wrong guess may be made if the goals are tackled too soon. Using the uniqueness
properties of goals at least provides some critcrion. In particular, Ritchie's
example of where too early reference evaluation would be foolish:

The President of US

can be easily handled. Ritchie's point is that, before. the appropriate time isestablished, 
the number of possible candid.1tes is huge [1nd so evaluation should not

be attempted. In our system, such a phrase would cive rise to an inference goDl:
find X and T such that

president(us,X,T)

where X is the "referent" and T is the "currf'nt tlmc". Ecfore Twas ~nownt the COLI}

semantically significant (meta-level) properties of the predicates involved, and not
ad-hoc syntactic criteria.
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would have no uniqueness properties and would be postponed. However. once Twas
established (for instance by the reading of a phrase like "in 1962") the goal would
be tackled and the reference evaluated.

7. 

Meta Level Inference
The special inference mechanisms described in this paper are not simply a

collection of isolated methods. An important part of our work has been to integrate
all these n1ethods into a general approach for inference control, which we outline in
this section (see also [Bundy et al 79]).

Central to this organisation is a meta-level databa~e (metabase) containing
assertions about the predicates used in the object-level representation (our
mechanics domain). These assertions state that tt.e predicates have the various
properties described in this paper, such as uniqueness or aliorelativity or being a
quasi-equality or similarity relation. Indeed, we regard the whole of the
object-level axiomatisation as a series of assertions in the metabase; thus treating
inference rules, about mechanics and so on, as meta-level facts that we know apply
to the predicate involved. Inference rules themselves can be classified according
to the sort of task we wish them tc; perform; treditionally forward and backward
rules are distinguished and we have made use of these as well as normal form rules,
prediction rules and others (these are not described in" this paper). Such different
kinds of rule are stored as meta-level assertions under different meta-level
predicates. Thus for each object-J.evel predicate the metabase will contains a range
of assertions such as:

function(Pred,How)
exists(Pred,How)
unique(Pred,How)
aliorelative(Pred,How)
type )"ule(Pred, Rule)
object level rule(Pred,Rule)normal=form(Pred,Rule)

These meta-predicates provide us with a vocabulary with which we can describe our
object-level axiomatisation. Controlling search at t.hc object-level invol ves tal~ing
advantage of the properties which this vocabulary highlights -by applying special
purpose mechanisms, such as we have discussed in this paper, where they arcapplicable. 

vIe implement this as a set of rules which exc:.mine goals and decide
which properties hold and which methods are applicable. r~ot orJly do these rulcs
describe how goals should be solved, but the manipulations brought about by running
these rules actually constitute the object-level proof. I.e. our infercncc
mechanism consists of a m~ta-level axiomatisation over goals; predicates and their
properties; proof plans and methods. Our use of meta-rules differs from that of
[Davis et al 77J and others, in that wc do not just regard them as preference
criteria over a separate object-level search space; but rather we use meta-rules. to
completely specify the \vhole structure of thc search sp~ce.

This approach to inference control is a key element in all our work (e.g. [Bundy
and Sterling 81)). The use of a declarative rneta-level provides a uniform framework
\o/ithin which all the special mecllanisms we have introduced c~n be described andimplemented.

8. 

Conclusion
In this paper we have described several special purpo~e, but domain independentinference 

mechanisms. Each mechvnism handles a ljmited class of inferences;
exploitinr; the special, logical, properties of the predicates involved in order to
[;,uide s(~c:rch during inference, and to avoid the normal explosivc nC)ture of certain
!.:inds of' cc!xioms. 1'h(~ mechanisms describcd ore:

-Control1~d 

term creation: \-,'hjch r!vojds the explosive n[lture of t.hc-
uncor1trolJcd irJt.:,'o(:uction of f!(:w terms durin~ t;njfi(_~tjon b~i 5:-:.o1utinr; t.IJe
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existence properties of functions in a controllable rule of inference

Equivalence and similarity classes: which avoid the explosive nature of

quasi-symmetry and quasi-transitivity, by building these properties into
the quasi-equality testing and recording n-.echanisms.

-Type handling: which avoids the possibly explosive nature of type
heirarchies by restricting the type axioms allowed so that an efficient
inheritance testing mechanism can be used to satisfy all goals involving

unary predicates.

Simple negation checking: which prunes the search space by quickly
disc~rding obviously silly goals, making use of properties such as typing,
uniqueness and aliorelativity.

-Goal Ordering: which improves the search behaviour through limiting
unnecessary backtracking by dynamically ordering subgoals according to
whether their instantiation state gives them uniqueness properties.

Although each of these mechanisms handles only a limited set of the inferences
that must be made, taken together they cover a \.Jide range of them. \-le do not know
to what extent these results will extend to other domains, but expect that
additional special purpose mechallisms may be required. We hope that these
additional mechanisms can also be made domain independent, ~nd that the process of
designing new mechanisms will eventually produce a morc powerful and complete
catalogue of inference mechanisms, that are widely applicable in many domains.
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