Edinburgh Research Explorer

Special Purpose, but Domain Independent, Inference
Mechanisms

Citation for published version:
Bundy, A, Byrd, L & Mellish, C 1987, Special Purpose, but Domain Independent, Inference Mechanisms. in
Proceedings to the 5th European Conference on Artificial Intelligence, ECAI 82, Paris, 1982. vol. XXXI.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings to the 5th European Conference on Artificial Intelligence, ECAI 82, Paris, 1982

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 05. Apr. 2019

https://www.research.ed.ac.uk/portal/en/publications/special-purpose-but-domain-independent-inference-mechanisms(231e9a19-40f8-4ab0-b09a-ea3814e7845f).html

SPECIAL PURPOSE, BUT DOMAIN
INDEPENDENT, INFERENCE
MECHANISMS

Alan Burndy, Lawrence Byrd and

Chris Mellich

D.A.I. RESEARCH PAPER NO, 179

Paper presented at European Conference on
Artificial Intelligence,
Paris, July, 1982,

SPECIAL PURPOSE, BUT DOMAIN INDEPENDENT, INFERENCE MECHANISMS

by
Alan Bundy, Lawrence Byrd and Chris Mellish

Abstract

Ve describe a number of special purpose, but domain independent, inference
mechanisms. While these mechanisms are limited to certain kinds. of inference and
inference rules, they do not rely on special properties of the domain, but on
logical properties of predicates and rules, vhich make them equally applicable to
other domains. These logical properties include: transitivity, functionality and
unarity. The union of these mechanisms handles nearly all the inference required in
the Mecho project for solving Mechanics problems stated in English.

Keywords

Inference, Combinatorial explosion, Meta-Level Reasoning, Problem Solving,
Mechanics.

Acknowledgements

We thanks the many people who have worked on the Mecho project and who
contributed to the ideas in this paper, nemely George Luger, Rob Milne, Martha
Palmer and Bob Welham. The work was supported by SRC grant GR/A/57954.

1. Introduction

Many problems studied within Artificial Intelligence call for .inference.
Unfortunately, the general purpose inference mechanisms, which have been built in
Artificial Intelligence, are known to be susceptible to combinatorial explosicns.
One solution to this problem is to build domain specific inference mechanisms.
Building such &z mechanism 1is non-trivial and, by definition, the researcher can
inherit little from those which have been built before, :

This paper takes a different approach: the attempt to build special purpose, but
domain independent, inference mechanisms. The mechenisms we will present rely on
special properties of the .inference rules, predicates, etc that they manipulate,
However, these special properties are 1logicsl properties, 1like transitivity,
functionality, unarity, etec, and so the mechanisms may be useful to researchers in
other domains.

These inference mechanisms are the product of the Mecho research project, [Bundy
et al 79], to build a computer program which can solve Mechanics problems stated in
English. Mecho uses inference for & number of different purposes: interpreting the
meaning of English statcecments; forming a mathematical model and solving the
specified problem; and solving the resulting simultaneous equations. Each time we
were confronted with a combinatorial explosion we investigated the nature of the
inference rules, predicates, ete, involved, to see how the explosion might be
avoided. The range of the problems being solved by Mecho prohibited ad hoce,
patch-type solutions. Those solutions which emerged often depended on logical,
rather than domain specific properties to do with physics, geometry, etc. At the
close of the project most of the Mecho inference rules were catered for by one or
other of the specisl purpose mechanisms. Thus, whilst each mechanism accounts for
only a part of the inference being done, the set of mechanisms covers nearly all the
inference required by Mecho. '

This paper describes the Mecho special purpose inference mechanisms, and outlinen
the framework into which they fit. The framework consists of meta-level rules which
are responsible for zllocating inference goals to the appropriate mechanism. It
does this by inferring the 1logical properties of the goals from meta-level
assertions of the properties of their syntactic parts (e.g. predicstes, arguments,
etc).

2. Controlled Term Creation

Perhaps the major cause of the combinatorial explosion in automatic inference
systems, is the substitution of terms for variables in formulae. In classical
predicate logic, the ability to do this is represented by the substitution rule of
inference: '

F(X)

o e

F(t)

where F is a formula, X a variable and t a term. This rule can cause a infinite
branch in the search space! In many systems, for example resolution systems, this
rule is embedded in the standard rule of inference. In such systems, some of its
power 1is controlled by 1limiting substitutions so that only the "smallest"
instantiation required for some matching task is actually used (this is a property
of unification). But these are not just difficulties with resolution, the general
problem applies to many different inference systems - indeed any system which allows
the introduction of function-like expressions during its inference. Even when the
substitutions are limited this rule is too powerful in many practical applications.
It causes the introduction of terms which have not previously been encountered in
the seach space, many of which are not required in the proof.

For instance, consider the constant acceleration formula:
V=U+A.T

where U and V are the initial and final velocities of an object, A its acceleration
and T the duration of the period of travel.®* The implication of the words following
'where! above are that V, U, A and T are functions of the object, O, and the period
of travel, P, i.e. '

v(0,P) = u(0,P) + a(0,P).t(P) | (i)

Suppose that in & Mechanics problem about a car, the initial velocity, acceleration
and distance travelled, are given, but the final velocity is sought. Application of
formula (i), say as a rewrite rule, to find the value of v(car,trip), will unify O
to car and P to trip and instantiate t(P) to t(trip). But the duration of the trip
is not given, and may not be easily calculated, leading to a long search and a
non-optimal solution.,

An experienced Mechanics problem solver would not use formula (i), but formula
(ii) instead.

v(0,P)2 = u(0,P)2 + 2.a(0,P).s(0,P) (ii)

where s(O,P) is the distance travelled by O during P. Since s{car,trip) is already
given, no new terms are introduced into the search space. In Mechanics terminology,
this is known as not introducing unnecessary intermediate unknowns.

Thus the important difference between these two problem solving strategies lies
in whether or not certain additional terms are introduced during the inference. Ve
have devised a term creation mechanism in which the introduction of the intermediate
unknown, t(trip), 1is controlled by problem specific considerations. The
instantiation of t(P) to t(trip) by unification, makes implicit use of the existence
property of functions, that is, given P, the quantity t(P) is guaranteed to exist.
Our term creation mechanism works by removing the existence property, so that
unification cannot use it willy nilly, and replacing it by an explicit creation rule
of inference, which is only applied in suitable circumstances.

¥Throughout this paper ve will follow the convention that variables always start
with an upper-case letter, while constants start with a2 lower-case lectter,

The existence property is removed by the replacement of functions by relations.
For instance, formula (i) is rewritten as:

initvel(O,U,P) & finvel(O,V,P) & accel(0,A,P) & duration(T,P)
>V =U4+A.T

Now if the value of v is sought, where finvel(car,v,trip), then various subgoals
will be set up, namely, finding the value of U + A.T where initvel(car,U,trip),
accel(car,A,trip) and duration(T,trip).- Note that T is not sutomatically
instantiated, i.e. no intermediate unknown is introduced.

The existence property is reintroduced by an explicit creation inference rule:

V X,z 3Y r(X,Y,2)

r(s,f(s,t),t)

where r is a predicate, X and Z are vectors of variables, Y a variable, s and t are
vectors of terms, f a new skolem function, and r(X,Y,Z) has the existence property
for Y. This would be as explosive as the substitution rule, if used forwards in an
undirected way. Therefore, it is usually used backwards to satisfy a subgoal of the
form, r(s,Y,t), by substitvting f(s,t) for Y.

The version of this rule in Mecho was only designed to handle the case where s
and t are ground terms. In this case f might as well be a nullary skolem function
(i.e. Jjust a new gensymed constant), as its dependancy on s and t provide no new
information, Because of this, the backwards use of the creation rule does not

generate any search, but satisfies the subgoal in a single step

The hypothesis part of the rule is stored, not as an object level, predicate

calculus formula, but as a piece of meta- 1nformat10n about the predicate r, stored
in the fornm,

exists(r(¥X,Y,2),X u 2)

This assertion is used by the (meta-level) inference system to justify the use of
the explicit creation rule for the predicate r. Note that r does not have to be a
function from X end Z to Y, because the Y need not be unique. Thus the creation
rule could also bec applied to the relation, parent(X,Y), meaning Y is the parent of
X. Every person has two parents, so the predicate has the existence property without
the uniqueness property. Separating the two properties of functions, existence and
uniqueness, thus allows predicates which only have one of these properties to be
uniformally handled, as well as masking clear the different inference steps that

these properties justify. -‘Uses of uniqueness .properties are described in sections 5
and 0.

Note also that a relation can have existence and/or uniqueness properties in more
than one way, and so a single relation cen be made to replace two or more functions,
provided suitable meta-properties about it are stored. For instance, the relation
time-sys(Period,Initial ,Final), meaning Initial and Final azre the first and 1last
moments of & period of time, respectively, <can replace the functions,
initizl(Period), final(Period) and period(Initial,Final).

A first order theory in wvhich all functions have been replaced by relations has
only a finite Herbrand Universe, and hence generates only finite search spaces. This
fact has been used, with great effect, to eliminate the combinatorial explosion in
automatic inference, by [Bundy 73, Gelernter 63, Nevins 75, Wos et al 65]. The use
of the creation rule restores the infinite search space. but its controlled use
provides an effective way of guiding the scarch.

For example, in [Gelernter 63], the creation rule corresponds to the construction
of new points 2s the intersection of nor-parallel 1lines, The Geometry Machine
explored the entire finite search space, using only those points mentioned in the
criginel diagram. It then picked -~ subgoal wnich was not true in the current
dicgram, but could be made true in o dicgram extended by one point. 7This point wes

constructed, thus extending the space, and the whole process was then applied
recursively.

Mecho uses essentially the same idea, when forming equations. It tries to solve
for an unknown using equations conteining only this unknown and quantities given in
the problem statement. If this fails it uses one of the other equations, invoking
the creation rule to introduce the required intermediate unknowns., These
intermediate unknowns must then be solved for in turn, but again the creation rule
is only invoked when attempts to proceed without it have failed.

The control regime used by both these programs is:
. Explore the entire finite spzce, without using the creation rule.

2. If the problem is still not solved, then pick an unsatisfied subgosl in
this space and use a backwards application of the creation rule to
satisfy it.

3. Apply the same control regime to the extended. space.

This regime allows the graduzl developuent of an infinite space by the recursive
development of & nested series of finite spaces. Although quite successful as it
stands, its success can be enhanced by the careful choice of the unsatisfied subgoal
in step 2.

For more details on controlled term creation see [Bundy 771]

3. Equivalence and Similarity Classes

Another major casuse of combinatorial explosions in automatic inference are the
symmetric and transitive laws, e.g.

Symmetry: X=Y --> ¥=X
and
Transitivity: X=Y & ¥Y=Z --> X=Z

These laws combine with themselves and each other to produce infinite chains of
redundant inferences. This has iong been one of the acknowledged difficulties of
incorporating the = relation into an automatic inference system, but our research
has revealed that the szme difficulty obtains for a wide class of cother relstions,
for instance, the relation, sameplace(X,Y,T), that two point objects, X and Y, are
at the same place at some time, T. In this case the laws are:

Quasi-Symmetry: sameplace(X,Y,T) —-> sameplace(Y,X,T)
and
Quasi-Transitivity: sameplace(X,Y,T) & szmeplace(Y,Z,T)
' --> sameplace(X,Z2,T)

In the case of equality, various solutions to this problem have been adopted.
These include the use of equality classes [Nevins 75] &nd the use of systems of
rewrite rules [Huet T77J]. We have adapted these solutions to deal with relations,
like sameplace, which obey quasi-transitive, quasi-symmetric and 2ls0
quasi-reflexive laws;

Quasi-Reflexivity: sameplace(Y,X,T)

Ve have replaced the conventional axiomatization of these predicates by an
axiometization which does not have the same explosive properties as the standard
axioms given above. Ve will see thist this axiomatization incorporstes the intuitive
notions of the equivalence class and rewrite rule solutions.

Our solution consists of a general axiom scheme, with which quoesi-ecquality
clzbions cen be defined. This scheme contains the extra argument positions, like
Le time argument of sameplzee, which are nceeded by the definced relation., Aty

relation noted as having quasi-equality properties is automatically defined using
this scheme.

This general axiom scheme is:

Rootof(X,Root,Aux) & Rootof(Y,Root,Aux) --> Reln(X,Y,Aux) (iii)
Arc(X,Next,Aux) & Rootof(Next,Root,Aux) --> Rootof(X,Root,Aux)

notah’ext Arc(X,Next,8ux) --> Rootof(X,X, Aux) (v)

To make this into a set of axioms defining a particular predicate, say sameplace,
we nust instantiazte Reln to sameplace, and Rootof and Arc to new relation names, say
rootof1 and arcl. Aux will play the rolc of the time argument of sameplece. In the
gencral case where the defined predicate has more than one azuxiliary argument, Aux
will be a set.

These axioms can best be understood as describing properties of a set of trees,
where the nodes are labelled with names of entities and the arcs represent Arc
relations between them. For instance, the arci relations

arc1(fred,trainA,then) ' arci(fred,trainB,now)
arcli(trainh,station1,then) arci(trainB,station2,now)
arcl(trainB,station1, then) arc1(trainA,station3,now)

arc1(doris,station3,now)
can be understood as describing the trees in figure 3-1.

fred fred
|
trainA trainB trainB trainA doris
N |
station1 station2 station3
time = then time = now

Figure 3-1: Sameplace Trees for Then and Now

The idea is that for each Aux argument there is a set of trees: two objects, X
and Y, being in the same Aux tree iff Reln(X,Y,Aux). Two objects, X and Y, are
joined by an Aux arc directed from X to Y iff Arc(X,Y,Aux). The root of each tree
is a distinguished element: Root being the root of an Aux tree containing X iff
Rootof(X,Root,Aux). This assumes that the Arc relations are all ground units and
that for each Aux and X there is at most one Y such that Arc(X,Y,Aux). The
inference mechanism is responsible for seeing that this is so. ’

Axiom (iii) says that two objects are in the relation if they have the same root,
i.e. are in the same tree. Mecho uses this axiom backwards, to show that two
objects are in the relation. Axiom (iv) says that the root of the successor of a
node is also the root of that node. fxiom (v) says that a node with no successors
is its own root. Mecho uses exioms (iv) and (v) backwards, to find recursively the
root of an object or to determine whether the root is a given nodec.

These trees can be viewed as equivalence classes, where the root node is a
representative of the class. The mecchanism, defined by ‘Mecho's backwards use of
axioms (iii), (iv) and (v), tests that two objects are in a relation by checking
thet thcy are in the same equivalence class. It does this by checking that they
share thie same class representative. For this reason we call this special purpose
inferecnce mechanism, the equivalence class mechanism.

The trees can also be viewed as the derivation trees of a ecaponicel form

mechanism, where each arc represents a rewriting of one object into another, and a
root node represents the canonical form of its predecessors. Under this view, the
equivalence class mechanism tests that two objects are in a relation by rewriting
each into its canonical form and then checking these for identity. Currently, thess
two views of the mechanism are isomorphic, but we expect the rewrite rule view to be
more suggestive of a solution to the problem of representing additional axioms about
quasi-equality relations, other than ground unit clauses,ilike those in figure 3-1.

The class of relations exhibiting quasi-equality, explosive properties also
includes relations 1like rel-vel(p1l,p2,v,t), that two objects, p1 and p2, have a
relative velocity, v, at time t.

Quasi-Symmetry: rel-vel(X,Y,V,T) & inverse(V,V')
—> rel-vel(Y,X,V',T)
Quasi-Transitivity: rel-vel(X,Y,V1,T) & rel-vel(Y,Z,V2,T) & add(V1i,Vv2,V)
-=> rel-vel(X,Z,V,T)
Quasi~Reflexivity: rel-vel(X,X,zero,T)

Where zero is the vector with 0 magnitude, inverse calculates vector negation and
add is vector addition. Unlike the time argument of the sameplace predicate, the
velocity argument of rel-vel, is not a passive passenger, but has different values
in different occurrences of the rel-vel relation. The equivalence class mechanism
can be extended to handle such arguments by making the arguments label the arcs of
the trees, as pictured in figure 3-2.

destroyer cryiser
10 knots?ﬁ?\\\\y 5 knots N
battleship. ane
10 knots S 100 knots SE
port

Figure 3-2: Relative Velocity Similarity Tree

The predicates Reln, Rootof and Arc must be given an extra argument, called the
arc label argument. Axioms (iii) and (iv) must be modified to include additional
conditions to make the necessary arc label combining calculations. We call the
extended mechanism the similarity class mechanism.

The similarity mechanism can be used, for instance, to calculate the relative
velocity between the plane and the cruiser in figure 3-2. The shared root of each,
port, is found and the relative velocity of each to the port is calculated by vector
addition of the velocities labelling each atrc of the route. The relative velocity
of the cruiser to the port is then subtracted from the relative velocity of the
plane to the port to give the relative velocity of the plane to the cruiser,

In fact, the similarity class axioms are not a simple modification of the
equivealence class ones, since care has been taken to return the simplest possible
arc label combination (e.g. velocity vector). This is done in two ways: by trying to
preserve the Reln arc lsbels as Arc arc labels when building trees; and by finding
the shortest path between two nodes in a tree, rather than going to the root each
time. This latter modification makes the similarity class axioms rather complicaterd,
and for this reason we omit them here,

Our main difficulty with both the quasi-cquality and similarity class mechanisms
has been the question of how to introduce extra axioms, apart from the ones
described above, while maintaining the efficiecnt inference properties of these
mechansims, In practic¢e this has not been too much of a problem within Mecho, and
we have hoandled the few coses that arose using forward inference rules that penerate

additional facts from the extra axioms, which are then added to the class trees in
the usual way. However, we are aware that this area requires further investigation,
For more details of the equivalence and similarity class mechanisms see [Bundy 78].

4, Inference Involving Unary Predicates

Another place where conventionzl inference techniques can get into trouble
concerns axiomatisations involving unary predicates. Consider a situation where
there is a large number of axioms of the form:

particle(X) -~> physobj(X) (A)
particle(X) --> point shape(X) (B)
rod(X) --> physobj(X)™ Siby oo avg ()
man(X) --> particle(X) O minon il (D)
man(X) --> male(X) . , (E)
man{ john) : B

rod{rod1) TS

woman (mary)

s -
e s e . LR RN

and inference goals like
physobj(john)

When such a goal is encountered, there are two stendard possibilities., Inference
can proceed forwards from the axiom 'man(john)' (deriving 'particle(john)' and so on
until the goal is encountered). Or inference can proceed backwards from the goal
(generating subgoals ‘particle(john)' and so on until an axiom is encountered).
liowever we do it, there are two basic problems. First of all, the chains required
may be quite 1long (man-particle-physobj here, but longer chains are often
encountered). Secondly, there may be a choice at cach point which axiom to use. For
instance, going forwsrds, should we use (D) or (E)? If (D), should we then use (A)
or (B)? Because these choices are multiplied for each step of the chain, we have
quickly run into a combinatorial explosion.

Cur solution to this problem has been to devise &z special purpose inference
mechanism for unary predicates. Py suitably restricting the kinds of inference
goals that may be encountered and the kinds of general rule that may te expressed,
we have reduced the problem to one that is amenable to an efficient solution with no
search, We follow Hayes and Hendrix in viewing the well knewn notion of a type as
corresponding directly to the use of unary predicates in leogic. Thus, our special
inference mechanism is really Jjust & form of type checking, where the inference
rules express certein restricted reletions betueen types. The type checking is
implemented using the operation of unification of patterns representing types
(described below).

4,.1. Unary Predicates as Types

In Fecho, inference involving all unery predicates is handled by this special
type checking mechanism. All the objects in a problem are typed and these types sare
taken to apply over the whole problem, In our representation time arguments are
always explicit; any property that may only be valid for part of the time will be
represcnted by at least a binary predicate, and so we zre frec to assume that unary
predicates only express certezin kinds of constant property.

Given the identification of unary predicates with essentizl properties and types,
we have been able to restrict the kinds of general rules involving unary predicates.
As a result we did not need the full power of logicel inference; instead, a special
purpose mechanism was adequate. The following are our principle restrictions:

- Within our system there are cnly two kinds of infcrence goal that may
arise for unary prediceates. Firstly, one mey ask whether a perticular
object has a particuvlar type. Second, onc may ask whether there exisus an
clrject with & pgiven Lype or what objects are currently hknown to have a

given type. In fact, we have found goals of only the first type quite
adequate for most of our purposes. The second kind of goal might arise in
natural langauge understanding, where the referent of a phrase like Ythe
particle” is to be determined. However, given some way of enumerating the
objects in current "focus" [Grosz 77, Sidner 79], we can easily reduce the
problem to that of determining whether a particular object has the type.
Thus our implementation optimises type checking while 1leaving the
gencration of objects of z type comparatively expensive.

Since unary predicates represent essential properties, an inference rule
that enables one to prove that a type holds of an individual need not
involve any reference to other individuals or involve anything other than
other properties of the ssme individual.

MG Mi1Ly 2150 dIEKe, PR RLmPLATY LG 0SS PLd 0 Tun T or P T SERERR e kR L fiRE

exhzustively describes what kinc¢ of object it is. Of course, this does
not mean that ascertzining whether an arbitsry property holds will zlways
be trivizl. In section 4.3, we will sec that our type mechanism can
actually handle incompletely described objects as well.

These restrictions led us to consider an inference system of a restricted kind
as we now explain.

First of 2ll, the mzin kind of rule that needed to be cxpressed wss one that
expressed how the world breaks down into parts, and how those parts themselves
decompose. We chose a reserved predicate 'entity' to represent the property that
holds of =211 objects, znd disjoint unicn of sets as the primitive operation for
description. In the logic, this is treated by the use of a variadic connective
oneof, which asserts that exactly ore of a set of propositions is true. Thus one of
our rules is:

entity(X) <-=> oneof {male(X),female(X),neuter(X)}

This expresses one classification of the objects in the world. Another
independent classification is given by:

entity(X <--> oneof {zero d(X),onc_d(X),two_d(X),shapeless(X)

Given these rules, any object in the world can be fully described by two
properties, corresponding to its gender and its "dimensionality". If there were
rules describing how 'one_d' objects decomposed, the description would, of course,
have to include =a mention of how the object behaved relative to that
sub-clazssification. If we wanted to refer to some perticular combinstion of types
more briefly, we can do so by using another kind of rule invelving coiijunction. For
instance:

man(X) <--> zero d(X) & male(X)

might be appropriate for the idealised view of men tzken in most mechanics problems.
Predicates introduced in these conjunctive rules cazn themselves be further described
by 'oneof' rules, for instsnce:

men{X) <--> oneof {boy(X ,bachelor(X

To summarise, the type checking system incorporates a rescrved predicete 'entity!
end the possibility of rules of two types, &5 exemplified zbove. In addition we make
the extra stipulation that every unary predicate (except 'entity') appears exactly
once either on the "left hand siad" of an conjunctive rule or on the “right hand
side" of & 'oneof' rule, V¢ are hence dealing with.a considerably restricted subset
ol the unary Predicate Calculus, Indeed, it is in sowme sense even more restricted in
power than the Propositionzl Calculus. The tuo kinds of rules form the basis of an
efficicent special purpese inference mechanism. This wmechanism is capable of
ensvering guostions about whether pariiculesr objeots beve porticuler properties,

given arbitrary complete descriptions of the objects as conjunctions of simple type
assertions,

4,2, Representing Types as Logical Terms

The fundamental idea behind the implementation of this inference mechanism is
that of representing each type property by a pattern (a term of logic), such that
the intersection of two properties corresponds to the pattern which is the most
general unifier of the terms associated with the two properties. Moreover, two terms
will fail to unify iff the corresponding properties are incompatible. For instance,
assuming the inference rules given above, we might have the following property-term
associations:

entity - entity(_,) e
male - entity(male(),) R
female - entity(female,) 7
neuter - entity(neuter,) N
zero d - entity(,zero d) o
one d — entity(",one_d)

two d - entity(_ ,two_d)

shapeless _— entity(_,shapeless)

man _ entity(male(),zero d)

boy — entity(male(boy),zero_d)
bachelor - entity(male(bachelor),zero_d)

=
where the isolated underline symbols represent variables that only occur .once.
Given these basic patterns, we can construct new patterns for conjunctions, e.g.:

one_d female entity(female,one_d)

But not all combinations are possible. A "one d bachelor" will be disallowed
because

entity(_,one_d) and entity(male(bachelor),zero_d)

do not match.

The idea of representing types by logical terms has been used before in other
contexts, for instance in {[Dahl 77J]. One innovation here is the fact that we
automatically generate the logical terms 1in accordance with the supplied
relationships between the properties, i.e. the unary predicate axioms.

In addition to keeping a logical term for each property, it is also necessary to
keep a term for each known object. This expresses the total type knowledge about the
object. To determine whether an object has a given property, it is then only
necessary to see whether the type pattern of the object unifies with the the type
pattern of the property. This is an operation linear in the size of the patterns,
and the size of a type pattern is at worst a linear fumction of the number of
‘oneof' rules. Moreover, it involves no search.

4,3. Handling Incomplete Type Information

The inference system for unary predicates can handle situations where there is
incomplete information about the type of an object. When the type of an object is
not completely known, there are variables in the object's type pattern corresponding
to subelassifications where the object has not yet been placed. In this case,
checking unification of type patterns corresponds to checking that a type is
“compatible" with what is already known. .

In the natural language understanding part of Mecho, incomplete type informztion
can arise when the system is handling an unevaluated referent of a phrase, For
instance, one would like to perform certain operztions on the referent of a phrase
like "it" before making a decision about what it is. In fact, noun phrase referents
are treated Jjust as variables whose values are to be determined by (possibly
postponed) inferences (section 6). Thus the situation of incomplete type
information about referents merges into the generul situztion of incomplete type

10

information about variables during inference

In order to cope adequately with incompletely described objects, the type
checking system has to be extended, so that when an individual's type pattern is

unified with the pattern of the type being tested, the result of the unification is
stored as the new type pattern for the individual. This means that, having assumed
that the individual has the type for some purpose, it is not thereafter able to make
a conflicting assumption (except by backtracking to where the first assumption was
made). Also, it is useful to have a record of the types that the individual must
have in order for the current analysis to be valid. This capability is used in a
limited facility for handling unknown nouns and adjectives in Mecho, For instance,
in dealing with:

Two particles are connected by a flurgle.

Mecho initially assigns a default type 'entity' to the "flurgle". However, the
analysis of the verb "connect" involves making inferences about the object doing the
connecting. This results in the flurgle being represented as an object capable of
connecting things. In our representation of the Mecho world, the appropriate type is
a specialisation of 'physical object' that includes strings and springs.

5. Use of Negative Information

The inference systems 1in Mecho are principally used to derive positive
information from the problem specific information along with general facts and rules
about the domain. When, for example, the problem solver is trying to apply a
particular problem solving strategy, its goals will be questions about whether
certain objects exist in the right relationships, and if so, what:- properties
(masses, velocities etc) they have. We have regarded negative information as a way
of pruning the search space. That is to say, when & goal of the form P is set up,
checks can be made to see if not P can be derived. If the proof of not P succeeds
then obviously the goal P should fail, and no effort should be spent trying to
derive P. This stategy will only be effective if proving not P is a considerably
simpler task than proving P. In the general case it will be just as easy to get lost
in a combinatorial search while attempting to derive not P as P, It has therefore
been our intention to associate simple, special purpose, methods of deriving not P
with all of our predicates, Such special methods are guaranteed to terminate

quickly and can therefore be used as quick checks on the goals generated during
proofs.

In section 4 we described a proof mechanism for a restricted class of axioms in
unary predicate calculus. If we encode a complete type hierarchy (for the purposes
of the program) in this way then we have a decision procedure which allows us to say
for any two types whether or not they are compatible.

I.e. if we know solid(obj1) & one_d(obj1) & stretchable(objl)

then not particle(obj1)

This follows immediately, given the nature of our type axiomatisaton: being a
particle is not compatible with being one dimensional. If we were trying to prove
'particle(obj1)!' we would thus fail the goal. If our type information &bout an
object is complete, i.e. we know for every division of our universe into disjoint
types, exactly which type the object is; then proving the positive case becomes the
same as checking the negative case. For such objects all unary predicate goals are
fully decidable, However, it is more common to know only the type of an object
along some subset of all possible dimensions, and here there will be an intermediate
case that what we are trying to prove neither follows from, nor is contradictory
with, whet we already know. This is the often the case during the natural language
analysis where, as described above in section 4.2, the inference system will be
gradually improving its incomplete type information. Here the negstion check forms
part of the merging of type information: impcssible type merges being immediately
rejected, »

1"

This use of type information for pruning impossible goals, can extended to apply
to all predicates in our representation. It suffices only to have a record of the
type restrictions that the arguments of each predicate must satisfy, for instance an

axiom like:
velocity(X,V,T) —-> physobj(X) & velocity(Y) & time(T)

Whenever we are about to attempt a 'velocity' goal, we can then check that the
arguments satisfy the type restrictions ("coercing" incomplete type information as
necessary). The goal can be rejected if the type checking is unsuccessful.

These examples are unusual in that our tightly controlled use of unary predicate
axioms makes attempted proofs of not P very straight-forward. A more general
example concerns predicates which have uniqueness properties (ef section 2), which
means that goals involving that predicate are guaranteed to have unique solutions,
given that certain of the arguments to the gozl are known. We represent this
information with meta-facts such as:

unique(at(P,Place,Time), {P,Time})

which states that particles, P, can only be 'at' one Place at any given Time. This
fact justifies the inference rule:

at(P,Place,Tine)
—--> Y Other (Other $ Place --> not at(P,Other,Time))

Let us suppose that we have

Known (in database): at(p1l,startpoint,periodil)
~and
As a goal: Prove at(p1,endpoint,period1)

Given the above inference rule and what is already known about p1, it suffices to
know that startpoint and endpoint are different objects for us to immediately derive
not at(pl,endpoint,periodl) and thereby prune the goal. The .inequality of
startpoint and endpoint would be established by a use of a unique name assumption in
our current implementation. However other, more sophisticated, methods for proving
that two objects are different objects could also be used here.

The special method here thus applies to fully ground goals whose predicates have
uniqueness properties, and basically consists of checking that we don't already know
a fact that is immediately contradictory. Note that the proof of the subgoal
at(p1,Place,period1), where Place % endpoint, is deliberately limited to ensure that
this check is reasonably cheap. Simply trying to satisfy it by looking in the
database in a particularly tight limitation; more generally we can allow proof
methods which are known to be inexpensive - such as some of the special mechanisms
described in this paper. “ :

In & similar way we can incorporate various restrictions on the arguments of
predicates, such as stating that a2 predicate is aliorelative (which means that the
relation can never be used reflexively):

The meta-fact: aliorelative(support(A,B,Time), {A,B})

Justifies the rule: V¥V X not support(X,X,T

Given a goal such as support(blockl,blockl,period1), it is easy to see that we
can immediately derive its negation and thus prune the goal.

In this description, all these special methods have been applied to ground goals
(that is, goals that contain no variables). However, when solving general goals for
these predicates we can view these quick "negation" checks as constraints on the
final values of the variables involved, which can be associated with the goal and
checked whenever the appropriate varizbles become instsntiated. Such an approach has
been successfully used in parts of Mecho,

12

It is important, perhaps, to point out that "silly" goals continuously arise
within the problem solver and the natural language understander; for example, when
checking candidates for some problem solving method or trying to satisfy some
unsatisfied reference (see also section 6). It is essential that these cases are
handled quickly in a uniform manner.

6. Dynamic Ordering of Inference Goals

This section discusses, not so much a special purpose inference mechanlsm for a
class of predicates as an optimisation of standard inference that makes use of
certain properties of predicates. The optimisation concerns the order in which
inference goals are attempted, and is similar to techniques used by Pereira and
Porto [Pereira and Porto 801 in logic programming.

Consider the following inference rule expressing what it is to be stationary:
stationary(X,T) <--> velocity(X,Y,T) & magnitude(Y,Z) & mcasure(Z,0,ft/sec)

This says that X is stationary at time T precisely when it has a velocity vector
Y whose magnitude is Z and Z measurcs O ft/sec.* Say we need to find out whether
'particlel' is stationary at time 'moment1'. Using this rule, we have to find values
for Y and Z such that three propositions are true. We might then treat these three
as inference subgoals. The question is: in what order should we attack them? The
goals initially look like: ‘

velocity(particle1,Y,moment1)
magnitude(Y,Z)
measure(Z,0,ft/sec)

Looking at the third goal, we can possibly find many quantities Z that measure 0
ft/sec. Thereforc, tackling this subgoal first might introducc some 3earch zazmong
possible values for Z. Similarly, tackling the second goal first would involve
searching among all the quantities that have magnitudes - which may be a number of
possibilities. On the other hand, the first goal can only succeed in at most one
way. This is because a given object can only have at most one velocity at any given
time - something we kncw in general about the 'velocity' predicate. So it mszkes
sense to tzckle the first goal first. When it has succeeded, a value ('velocity1',
say) will have been obtained for Y, and the following subgoals will remain:

magnitude(velocity1,2)
measure(Z,0,ft/sec)

Ve can pick the next subgoal to be attempted by the same criteria. finy vector has
at most one magnitude, and hence the first of these can only succeed in one way. On
the other hand, the second gosl may be solvable in any number of irrelevant ways.

In Mecho, we have experimented successfully with a very simple mechanism for
dynamically determining the order in which inference subgoals should be attempted.
This mechanism involves considering the goals individually (rather than globslly)
postponing those goals that do not have guaranteed uniqueness properties. As we saw
in the above example, a goal thet is postponed can later obtain uniqueness
properties when a variable becomes instantiated by the solution of some other goal.
At this point it can be sensibly tackled, even though it was previously postponed.
Therefore postponed inference goals must be stored in association with their unbound
variables, in order that they can be reconsidered if a value suddenly becomes known.

" #In some parts of Mecho, we need to have symbols denoting beth the speed and the
velocity of an object (so that we can specify that either zre ‘'given' or to be
'sought'). We also nced to be able to talk about a quantity without knowing what it
measures. Hence the need for the predicates ‘megnitude' and ‘'measure'. It simply
would not be adequate to say 'velocity(X,0,ft/sec,T)'

13

There must also be a default strategy, for resolving the situation when all current
goals have been suspended because they all lack the appropriate properties,

ProfPEmmfRRY %N THRor&RP prs6168 L 1AM el TSNS FERBr MANYo rOLREEr 1FRPIRAANES s 18asLaeds
semantically significant (meta-level) properties of the predicates involved, and not
ad-hoc syntactic criteria.

In the above example, the order of goals would in fact always be the same
whenever the rule was used. This does not always happen. For instance, consider the
following rule about what it is to be a left thumb.

leftthumb(X,Y) <--> lefthand(X,Z) & finger(1,Z,Y)

which says that Y is the left thumb of person X if Z is the left hand of X and Y is
the first finger of Z. If we had the goal to find a W such that 'leftthumb(john,W)’'
then wuniqueness considerations would suggest tackling the goals in the order
written, On the other hand, given the goal to find a person W such that
'leftthumb(W,thumb29)', the other order would be most appropriate. So the dynemic
ordering of goals cannot entirely te replaced by adding explicit ordering
information to the rules at "compile time".

The selective postponement of non-unique gozals provides a kind of solution to the
problem of when to perform reference evaluation in natural language understanding.
In Mecho, we regard reference evaluation simply as the instantiation of variables
subject to constraints. For instance, the referent of the phrase:

the particle of mass 5 lbs

would be something 1like a variable X, which would eventually have to become
instantiated to a value such that:

EiY particle(X) & mass(X,Y) & measure(Y,5,1bs)
Similarly, the referent of the phrase
it

would initially be a variable, to later become instantiated to an object that has
been mentioned in the recent discourse context. As semantic interpretation proceeds,
extra constraints are placed apon the referents of phrases. For instance, by the
time the sentence:

It connects two particles of mass b and ¢

has been interpreted, the referent of "it" is also constrained to be something that
can connect two objects (a string or spring, say). What form do these constraints
take? In Mecho, they take the form of (possibly postponed) inference goals whose
solution would cause the instantiation of the appropriste variable, In this
context, the problem of when to perform reference evaluation, as discussed by
Ritchie [Ritchie 70] and Mellish [Mellish 81], amounts to the question: how many
constraints should have accumulated (inference goals been postponed) before a guess
is made as to what the referent is (the goals are finally tackled). Clearly, the
wrong guess may be made if the goals are tackled too soon. Using the uniqueness
properties of goals at least provides some criterion. In particular, Ritchie's
example of where too early reference evaluation would be foolish:

The President of US

can be easily handled. Ritchie's point is that, before’ the appropriate time is
established, the number of possible candidates is huge ond so evaluation should not
be attempted. In our system, such a phrase would give rise to sn inference gool:
find X and T such that

president(us,X,T)

vhere X is the "referent" and T is the "current timc". Ecfore T was :mown, the gool

14

would have no uniqueness properties and would be postponed. However, once T was
established (for instance by the reading of a phrase like "in 1962") the goal would
be tackled and the reference evaluated.

7. Meta Level Inference

The special inference mechanisms described in this paper are not simply a
collection of isolated methods. An important part of our work has been to integrate
2ll these methods into a general apprcach for inference control, which we outline in
this section (see also [Bundy et al 79]).

Central to this orgenisation is a meta-level datzbase (metabase) containing
assertions about the predicates used in the object-level representation (our
mechanics domain}, These assertions state that the predicates have the various
properties described in this paper, such as uniqueness or aliorelativity or being a
quasi-equality or similarity relation. Indeed, we regard the whole of the
object-level axiomatisation as a series of assertions in the metabase; thus treating
inference rules, about mechanics and so on, as meta-level facts that we know apply
to the predicate involved. 1Inference rules themselves can be classified according
to the sort of task we wish them tc¢ perform; treditionally forward and backward
rules are distinguished and we have made use of these as well as normal form rules,
prediction rules and others (these are not described in this paper). Such different
kinds of rule are stored as meta-level assertions under. different meta-level
predicates. Thus for each object-level predicate the metabase will contains a range
of assertions such as:

function(Pred,How)
exists(Pred,llow)
unique(Pred,How)
aliorelative(Pred,How)
type_rule(Pred,Rule)

object level rule(Pred,Rule)
normal form(Pred,Rule)

These meta-predicates provide us with a vocabulary with which we can describe our
object~level axiomatisation. Controlling search at the object-level involves taking
advantage of the properties which this vocabulary highlights - by applying special
purpose mechanisms, such as we have discussed in this paper, where they are
applicable. Ve implement this as a set of rules which examine goals and decide
which properties hold and which methods are applicable. Not only do these rules
describe how goals should be solved, but the manipulations brought about by running
these rules actually constitute the object-level proof. I.e. our inference
mechanism consists of a meta-level axiomatisation over goals; predicztes and their
properties; proof plans and methods. Our use of meta-rules differs from that of
[Davis et al 77] and others, in that we do not just regard them as prefercnce
criteria over a separate object-level search space; but rather we use meta-rules to
completely specify the whole structure of the search space.

This appreoach to inference control is a key element in all our work (e.g. [Bundy
and Sterling 81]). The use of a declarative meta-level provides a uniform framework
within which a2ll the special mechanisms we have introduced cen be described and
implemented.

8. Conclusion

In this peper we have described several special purpose, but domain indepencant
inference mechanisms, Each mechenism handles a limited class of infercnces;
exploiting the special, logical, properties of the predicates involved in order to
puide scarch during inference, and to avoid the normal explosive nature of certain
kinds of axioms. The mechanisms described are: '

- Controlled term creation: which eavoids the erxplosive wnoture of the
uncontrolled introduction cf new terms during unificetion by icolating the

15

existence properties of functions in a controllable rule of inference

Equivalence and similarity classes: which avoid the explosive nature of

quasi-symmetry and quasi-transitivity, by building these properties into
the quasi-equality testing and recording mechanisms,

-~ Type handling: which avoids the possibly explosive nature of type
heirarchies by restricting the type axioms allowed so that an efficient
inheritance testing mechanism can be used to satisfy all goals involving
unary predicates.

Simple negation checking: which prunes the search space by quickly
discarding obviously silly goals, making use of properties such as typing,
uniqueness and aliorelativity.

—~ Goal Ordering: which improves the search behaviour through 1limiting
unnecessary backtracking by dynamically ordering subgozls according to
whether their instantiation state gives them uniqueness propertics.

Although each of these mechanisms handles only a limited set of the inferences
that must be made, taken together they cover a wide range of them. We do not know
to what extent these results will extend to other domains, but expect that
additional special purpose mechanisms may be required, We hope that these
additional mechanisms can also be made domzin independent, &nd that the process of
designing new mechanisms will eventually produce a morc powerful and complete
catalogue of inference mechanisms, that are widely applicable in many domains.

REFERENCES

[Bundy and Sterling 81]
Bundy, A. and Sterling L.S.
Meta~level Inference in flgebra,
Research Paper 1064, Dept. of Artificial Intelligence, Edinburgh.
September, 1961.
Presented &t the workshop on logic progremming for intelligent
systems, Los Angeles, 1981.

[Bundy et al 79]
Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R. and Palmer, M,
Solving Mechanics Problems Using Meta-Level Inference,
In Procs of the sixth. IJCAI, Tokyo, 1979.
Also availeble from Edinburgh as DAI Research Paper No. 112.

[Bundy 73]
Bundy, A.
Doing Arithmetic with diagrams.
In Nilsson, HN., editor, procecdings of IJCAI-3, pages pp 130-138.
Stanford, 1973.
[Bundy
Pundy, A.
Exploiting the properties of functions to control search.
Research Report 45, Dept. of Artificia) Intelligence, Edinburgh,
1977.
{Bundy 78]
Bundy, A.
Similerity Classes.
Working Paper 25, Dept. of Artificial Intelligence, Edinburgh, 1978.
[Dehl 771

Dshl, V.

Un Systeme Deductif d'Interrogection de Banques de Donnes en Espagnol.

Teehnical Report, broupc d'InLclJ15cnce irtificielle, Lnlverqlty of
‘arseille-~Luminy, 1977.

16

[Davis et al 77]

[Gelernter 63]

[{Grosz 7T7]

[Huet 77]

[Mellish 811

[Ngvins 751

Davis, R. and Buchanan, B.G.
Meta-level knowleage: overview and applications.
In Reddy, R., editor, procs of 5th, pages 920-927. IJCAI, 1977

Gelernter, M.

f““Jl?ﬂy}QH E_ a Geeonelry theorem-provin
MeGraw Hill, 15803, papes 134-52.
Grosz, B.J.

The Representation and Use of Focus in Dialogue Understanding.

Technical Kote 151, SRI Internatlonul 1677

Huet, G.
Confluent reductions: Abstract properties and applications to term

rewriting systems,]
Rappoert de Recherche 250, Laboratcire de Recherche en Informatique et
Automatique, IRIA, France, August, 1977.

Mellish, C.S.
Coping with uncertainty: Noun phrase interpretstion and early

semantic cnalysis.
PhD thesis, Dept of Artificial Intelligence, University of Edinburgh
1981.

Nevins, A.
Plzne Geometry theorem-proving using forward chaining.
Artificial Intelligence €:pp 1-23, 19765.

[Pereira and Porto 80]

{Ritchie 706]

[Sidner 79)

[Wos et al 65]

Pereira, L.M. and Porto, A,

Intelligent Backtracking and Sidetrazcking in Horn Clause Programs
implementation.

In Proceedings of the Logic Progremming Workshop, Debrecen. , 191

Ritchie, G.D.

Problems in Locel Semantic Processing.

In Prady, M., editor, Proccedings of the AISB Conference, Edinburgh,
AISB, 1976. ,

Sidner, C.L.
Towards a Computational Theory of Definite Anaphora Comprehension in
English Discourse.

PLD thesis, Dept of Electrical Englneerlng and Computer Science, MIT
1979. '

YWos, L., Robinson, G. and Carson, D.F.
The automatic generation of proofs in the langusge of Mathematics.
In IFIP Congress 65. IFIP, 1965.

