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Session 6 Theorem Proving and 
Logic: I I 

DOING ARITHMETIC WITH DIAGRAMS 

by 

Alan Bundy 
Department of Computational Logic, 

Univers i ty of Edinburgh, 
Edinburgh, Scot land. 

ABSTRACT • 

A theorem prover f o r part of ar i thmet ic in described 
which proves theorems by represent ing them in the form 
of a diagram or network. The nodes of t h i s network 
represent ' i d e a l i n t e g e r s ' , i . e . objects which have a l l 
the propert ies of in tegers , without being any p a r t i 
cular in toger . The l i nks in the network represent 
re la t ionsh ips between ' i dea l i n t e g e r s ' . The proced
ures which draw these diagrams make elementary deduct
ions based on t h e i r b u i l t - i n knowledge of the funct ions 
and predicates of a r i thmet i c . This theorem prover is 
intended as a model of some kinds of human problem-
so lv ing behaviour. 

DESCRIPTIVE TERMS. 

Theorem Proving, Heur is t i c Method, Representation, 
Psychological Model l ing, Semantic Network, Ar i thmet ic , 
Ideal In teger , Logic, Semantic: Tableaux. 

0. MOTIVATION. 

The object ive of t h i s work is to inves t iga te human 
problem-solving behaviour by t r y i n g to simulate it on a 
machine. The main source of in format ion about human 
behaviour is s t i l l se l f -observat ion and so the author 
has de l ibe ra te ly chosen a domain in which he has some 
experience, ar i thmet ic (see 1). Ar i thmet ic hus the 
add i t i ona l advantage that as one of the oldest branches 
of mathematics i t is r i c h in proof techniques and 
eas i ly stated but d i f f i c u l t theorems ( e . g . Format's 
Last Theorem). Also an e f f i c i e n t ar i thmet ic theorem 
prover is l i k e l y to f i nd appl icat ions in Program 
Correctness Proof3. 

1. INTRODUCTION. 

This is a repor t of work in progress. It describes 
what i s , to the best of the author 's knowledge, a new 
kind of automatic theorem prover, ca l led SUMS (a System 
which Understands Mathematical Symbols). SUMS does 
not e x p l i c i t l y use axioms or ru les of inference to 
prove theorems. Instead it represents the candidate 
theorem as a network (or diagram) in which the nodes 
are the property l i s t s of a r i thmet ic terms and the 
l i nks describe re la t ionsh ips ( e . g . = <, | ) between 
them. Statements are asserted by adding new l i n k s and 
proved by accessing the diagram. Knowledge about 
a r i t h m e t i c i s b u i l t i n t o the procedures t h a t draw the 
diagram so that when l i nks are added to i t , elementary 
deductions are made (and more l i n k s added) automat
i c a l l y . 

The domain of SUMS is the Elementary Theory of Natural 
Numbers ( i . e . the ar i thmet ic of the non-negative 
in tegers ) . At present i t can only handle the classes 
of terms and formulae defined below; 

(a) An a r b i t r a r y skolem constant or na tu ra l 
number is a term. 

(b) If A and B are terms then SUC(A) ; Pre(A) ; 
A + B; A - B and A x. B are terms. 
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F i g . 5. 

F i g . 7. 

means that A = B. These l i nks are not needed in t h i s 
example but are included fo r completeness. They occur 
because assert ing B < A involves asser t ing both B < A 
and B / A. "" 

3. THE REPRESENTATION OF THE DIAGRAM. 

The diagrams are represented using l i s t s and POF-2 
records. We f ind records convenient, but they could , 
if necessary, be replaced by L i s t s or arrays. 

Each diagram is a record with 6 components (or s lo ts ) 
in which information is recorded. These s lo ts are 
ca l led and conta in: 

(a) T i t l e : a formula in l i s t notat ion which says 
which case the diagram represents, e .g . [LESS A B ] . 

(b) Contra: a 1 or 0 according as the diagram 
has or has not been found contrad ic tor ; ' . 

(c) Network: a l i s t of the ent r ies (defined 
below) in the diagram. 

(d) Nought and Uni ty : 2 redundant s lo ts po in t ing 
to the, f requent ly used, ent r ies f o r 0 and 1 
respec t i ve ly . 

(e) F i l e : a l i s t of terms which were not 
represented in the diagram when wanted, but which SUMS 
may decide to represent l a t e r . 

Every term is represented, in the diagram, by a unique 
record wi th 3 s l o t s , cal led an ent ry . These s l o t s 
are cal led and conta in: 

(a) Label: The name of the term being represented 
in l i s t no ta t ion , e .g . [ADD A [DIFF B A]] 

(b) P r o p l i s t : A record of type 'node' which 
contains a l l the l i nks to the other e n t r i e s . When two 
terms are made equal a l l the informat ion from the f i r s t 
term's ' p r o p l i s t ' (property l i s t ) is put in to the 
second term's ' p r o p l i s t ' , which then replaces the f i r s t 
wherever it appears. Thus equal terms share ' p r o p l i s t s ' 
which j u s t i f i e s the adoption of the name 'nodes' f o r the 
' p r o p l i s t ' rather than the en t r i es . This method of 
deal ing wi th equal i ty is more convenient than using 
equa l i t y l i n k s , because: i t makes checking fo r 
equa l i ty more e f f i c i e n t ( the ' p r o p l i s t s ' must be EQ) ; 
the equa l i ty axioms are automatical ly incorporated, 
and a l l the information about a s ing le node is kept in 
one place. 

(c) Replace: A s lo t used in the copying of 
diagrams. 
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Each node is a record wi th 6 s lo ts cal led and cont 
a in ing : 

(a) Smaller: A l i s t of pai rs of en t r i es . The 
f r o n t of each p a i r represents a term smaller than the 
present one; the back represents the distance between 
them. 

(b) Bigger: S imi la r to (a) except that the f ron t 
of each pa i r is the entry of a term bigger than the 
present one. 

{c) Unequal: A l i s t of en t r ies representing terms 
known to be unequal to the present one. 

(d) Factor: S imi lar to (a) except thnt the f ron t 
of each pai r is the entry of a term which exactly 
d iv ides the present one, and the back is the entry 
represent ing the quotient produced. 

(e) M u l t i p l e : S imi la r to (d) except that the f ron t 
of each p a i r is the entry of a term which the present 
term exact ly d iv ides . 

( f ) Mark; A s lo t used f o r markers when measure
ments are being made in the diagram. 

4. THE PROGRAM. 

In order to d is t ingu ish funct ions in SUMS from 
funct ions in Ar i thmet ic , we w i l l c a l l the former 
procedures. 

There arc four classes of top leve l procedures 
arranged roughly in a h ierarchy. They are: 

(a) Logical Procedures: which analyse the 
o r i g i n a l formula and decide which atomic formulae to 
assert and which to prove. 

(b) Drawing Procedures: which analyse the terms 
in the formulae, draw them in the diagram and assert 
re la t ionsh ips between them. 

(c) Assert ing Procedures: which make re la t ionsh ips 
between terms hold in the diagram by adding l i n k s . 

(d) In te r roga t ing Procedures: which discover 
whether re la t ionsh ips between terms hold by accessing 
the diagram. 

( i ) The Logical Procedures. 

A f te r the i n i t i a l diagram has been created a l l 
negations are el iminated from the candidate tliooreni by 
passing them down to , and absorbing them .into, the 
atomic formulae. i . e . each negated atomic formula 
-S(x1 , . . . xn ) is replaced by #(x1 xn) . The 
candidate, P, is then passed to the procedure 'Prove' 
whose descr ip t ion fo l lows . 

To prove P: 

(a) If P is a conjunct ion of atomic formulae, i t s 
terms are drawn in the diagram, which is then i n t e r r o -
gated to see i f P is t rue . 

(b) If P is of the form Q & R then a copy of the 
diagram is made. Q is proved in the f i r s t diagram 
and R in the second. 

(c) If P is of the form Q v R (or Q - E) then we 
assert -Q (Q) in the diagram and prove R. 

(d) I f P is o f the form QR then a copy of the 
diagram is made. In the f i r s t diagram, Q is asserted 
and R is proved; in the second R is asserted and ft 

proved. 

To assert a formula in the diagram the fo l l ow ing 
procedure is ca l l ed . 

To assert P: 

(a) If P is already true in the diagram then the 
procedure is ex i ted . 

(b) I f P is already fa l se the diagram is closed, 
by making it cont rad ic tory , and the procedure ex i t ed . 

(c) If F is atomic, i t s subterms are drawn, and 
it i-. made true in the diagram by c a l l i n g an approp
r i a t e assert ing procedure. 

(d) If P is of the form Q & R then both Q and R 
are asserted. 

(e) If P is of the form Q v R, (Q - R) then: 

I f Q is fa lse (Q is t rue ) , R is asserted; 
I f R is false, Q is asserted [-Q is asserted); 

Otherwise a copy of the diagram is made and Q is 
asserted (- Q is aver ted) in the f i r s t diagram and R 
in the second, 

( f ) If P is of the form Q <--> R then: 

If Q is t rue, R is asserted; 
I f R is t rue, Q is asserted; 
] f Q is fa l se , - R is asserted; 
I f R is fa l se , - Q is asserted; 

Otherwise a copy of the diagram is made and Q and R 
are asserted in the first diagram and -Q and -R am 
asserted in the second. 

The referee has pointed out the s i m i l a r i t y of these 
procedures to Beth's Semantic Tab]eaux (see '). The 
main dif ference;; are tha t : 

(a) SUMS cannot yet handle a rb i t r a r y q u a n t i f i 
ca t i on . Semantic Tableaux provides some valuable 
clues as to how to correct th is defect . 

(b) in SUMS the l e f t ( va l i d ) and r i gh t ( i nva l i d ) 
columns of Beth's tableaux have been combined in u 
single diagram, making a neater and more powerful 
procedure. 

(c) At present SUMS does not assert the negation 
of the theorem to be proved, a pract ice which would 
ce r ta in l y lead to an increase in power. 

(d) Before d i v id ing in to 2 cases SUMS checks the 
present diagram to see if e i ther of the new diagrams 
would be contradictory (see the checks in (e) and ( f ) 
above, and in the drawing procedure f o r - below). 
This l i m i t s the number of cases to be considered, but 
is not per fect , and unnecessary cases are sometimes 
considered. 

(e) Most important ly , the assert ion of an atomic 
formula, in SUMS, is not j us t the passive add i t ion of 
the formula to a l i s t , but an act which may have wide 
repercussions w i th in the diagram. 

(ii) The Drawing Proceduren. 

Between them the drawing and assert ing procedures are 
mainly responsible fo r drawing the diagram. The i r 
general philosophy is to l i m i t the number of nodes in 
the diagram to those representing terms mentioned in 
the candidate theorem, but to draw as many l i n ks 
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between these nodes as possib le. Thus the diagram is 
prevented from exploding, since only a f i n i t e number of 
l i n k s is possible between a f i n i t e number of nodes, but 
qu i te sophist icated re la t ionsh ips are deduced between 
the nodes that are represented. This kind of heu r i 
s t i c is qu i te common in mathematics f o r instance as 
advice to students proving theorems in Euclidean 
geometry, to deduce as much as possible about a diagram 
without const ruct ing any fu r the r points (e f . 3 ) , The 
only exceptions to t h i s ru le are; 

(a) the creat ion of nodes f o r 0 and 1, of ten 
needed because they are the i d e n t i t y elements fo r 
add i t ion and m u l t i p l i c a t i o n . 

(b) the l im i ted creat ion of nodes needed to label 
l i nks between ex i s t i ng nodes, e .g . if a b is one of 
the premises of the candidate theorem and b - a is not 
already represented, then we represent i t . 

(c) the c rea t ion of new nodes as part of a proof 
strategy (sec Sect ion 6 ) . 

(d) the suppression of those clauses of l inks 
which do not appear to be necessary to prove the 
theorem, e .g . m u l t i p l i c a t i v e l i nks in a theorem only 
invo lv ing add i t i on . This has not yet been implemented. 

(a) and (b) only produce a s t r i c t l y l im i ted number of 
ex t ra nodes. 

We now tu rn to a descr ip t ion of the procedures them
selves. A formula is drawn in the diagram by 
c rea t ing ent r ies f o r each of i t s subterms which do not 
already have them, from the bottom up, and then passing 
these en t r ies to procedures which ext ract information 
from the term's func t ion symbols. There is one of 
these drawing procedures for each ar i thmet ic funct ion 
symbol, and the procedure receives every term beginning 
wi th t h i s symbol. I t assumes that the term's argu
ments have already been represented. If necessary i t 
can use the in te r roga t ion procedures to discover the 
state of the diagram before using i t s knowledge of 
ar i thmet ic to assert re la t ionsh ips w i t h the assert ing 
procedures. 

As an example we describe the procedure fo r terms of 
the form A - B: 

These drawing procedures are s u f f i c i e n t l y close to the 
o r i g i n a l func t ion d e f i n i t i o n s to make one fee l optim
i s t i c about having the machine ' l ea rn ' a new funct ion 
by const ruc t ing i t s drawing procedure from i t s 
d e f i n i t i o n . The creat ion of an ent ry f o r a term 
involves const ruct ing a new ent ry , i n se r t i ng the term 
in i t s ' l a b e l ' s l o t and a new node in i t s ' p r o p l i s t ' 
s l o t and adding t h i s ent ry to the diagram's 'network' 
s l o t . The property l i s t is then f i l l e d wi th as much 
in format ion as poss ib le . For ins tance, a l l terms are 

made bigger than 0 and d i v i s i b l e by 1. In addi t ion if 
the term is a natural number we compute and record, 
subject to the normal l i m i t a t i o n s , i t s re la t ionsh ips to 
a l l previously created natura l numbers. e .g . 2 is 
made bigger than 1 by an amount 1 and unequal to 0 and 
1 e tc . This is s t i l l non-explosive i f the number of 
nodes is s t r i c t l y con t ro l l ed , and ensures that a l l 
nodes relevant in a pa r t i cu la r s i t ua t ion can be 
conveniently recovered. 

( i i i ) The Assort ing Procedures. 

There is an assert ing procedure fo r each predicate 
symbol. These procedures update the property l i s t s of 
the en t r ies in the diagram thus creat ing new l inks in 
the network. Before and a f te r these l i nks are created 
various 'antecedent' procedures ( c f . 4) are ca l l ed , 
which examine the local s ta te of the diagram to see 
whether any fu r ther fac ts can be deduced. In p a r t i -
cular a cont rad ic t ion may be detected in some diagram 
and then regis tered by assigning 1 to the diagram's 
' cont ra ' s l o t . 

These antecedent procedures contain a pood deal of the 
ar i thmet ic knowledge which is b u i l t in to the theorem 
prover. They are constant ly evolving as new i n f o r 
mation is included or neater ways. of achieving the 
same e f fec t are discovered, und so it. would be mis
leading to over-emphasise t h e i r present s tate by 
describing one in d e t a i l . However, wo can give some 
examples of t h e i r ac t ion . 

Suppose that an asserting procedure is making A div ide 
C with quot ient B ( i . e . A x B = C). Let A, B and C 
be represented in the diagram by the en t r ies Ae, Be 
and Ce respect ive ly , and in general if X is a term, 
l e t Xe be the entry representing i t . Before adding any 
new l i nks between Ae, Be and Cc, SUMS compares,for 
instance, Ce and Be with each of the pa i rs , (Ee.I)e) , in 
the ' m u l t i p l e ' s l o t of Ae. We i l l u s t r a t e t h i s s i t u 
a t ion in the fo l lowing diagram, in which the double 
arrows ind ica te that the l i nks are m u l t i p l i c a t i v e . 

The redundancy of th i s method of l i nk storage ia 
j u s t i f i e d by the convenience of having a l l the 
in format ion about a pa r t i cu l a r node stored in that 
node. 

A f te r the l inks have been added, f o r instance, Ce and 
Be are again compared wi th each of the pa i rs (Ee.De) 
in the ' m u l t i p l e ' s l o t of Ae. I f , say, A is known to 
be unequal to 0 and C exact ly d iv ides E w i th quot ient 
P.. then B is made to d iv ide D exact ly wi th quotient F. 
Because: 
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Again i f , say, B ia smaller than D by an amount P and 
there ia a term, G, equal to A x F represented in the 
diagram then D is made less than E by an amount C. 
Because: 

Formulae l i k e ( 3 ) , (4) and (5) are the mainstay of the 
antecedent procedures. Although apparently a r b i t r a r y , 
they of ten have a simple geometric i n t e r p r e t a t i o n and 
t u rn out to be su rp r i s i ng l y powerful in antecedent 
mode. In general the asser t ing and antecedent proc
edures f a l l i n t o the f o l l ow ing pat tern : 

(a) Check whether the re l a t i onsh ip already ho lds . 
I f so, ex i t wi thout adding any more l i n k s . 

(b) Check whether the opposite re la t i onsh ip already 
ho lds. I f so, declare a con t rad ic t ion and e x i t . 

(c) Otherwise add a l l new l i n k s . 

(d) Now do a l o t of very cheap ( i n time and space) 
checks to discover the current l o c a l state of the 
diagram. Deduce and asser t as many new fac t s as 
possible wi thout c rea t ing any new nodes in the diagram. 

( i v ) The In te r roga t i ng Procedures. 

There is an i n t e r r oga t i ng procedure fo r each predicate 
symbol. They are used to s e t t l e a l l questions about 
the re la t ionsh ips between terms and they do t h i 3 by 
accessing the diagram. Because they are used so 
f requent ly the present procedures are designed, f o r 
e f f i c i e n c y , to do very l i t t l e searching. For instance, 
the procedure which asks whether A is equal to B 
returns true if and only if A and B have the same node 
stored in t h e i r ' p r o p l i s t s ' . The procedure which asks 
whether A is less than B s ta r ts at A and climbs up 
through the ' b igge r ' s l o t s , marking i t s passage, u n t i l 
e i t he r i t comes to B and returns t rue or i t exhausts 
a l l p o s s i b i l i t i e s and returns f a l s e . I t would be 
possible to design procedures which t r i e d a l o t harder 
than t h i s , but t h e i r use would have to be se l ec t i ve . 

There is a subclass of the i n te r roga t i ng procedures, 
ca l led the measuring procedures, and there are measuring 
procedures corresponding to most of the func t ion symbols. 
For instance, the measuring procedure fo r + takes as 
arguments two en t r i es , Ae and Be, (say) represent ing 
the terms, A and B, and returns t rue i f and only i f i t 
f i nds an entry f o r a term equal to A + B, in which 
case i t also returns t h i s en t ry . I t does t h i s by 
look ing in the 'b igger ' s lo t of Ae fo r a pa i r whose 
back is equal to Be and re tu rns the corresponding f r o n t 
if successful . This procedure may wel l succeed even 
if A + B is not represented. e . g . B + A may be 
represented or in a diagram where a b, A is a and 
B is b - a we may re tu rn the en t ry f o r b. If the 

procedure does not succeed the term A + B is stored in 
the diagram's ' f i l e ' s l o t where it may be used at a 
l a t e r date as grounds f o r cons t ruc t ing a node f o r A + B. 

5. RESULTS. 

74 of the 86 theorems which have been attempted so f a r 
were drawn from , which contains about 700 formal 
theorems. The remaining 12 were invented to tes t SUMS' 
a b i l i t y to deal w i th p a r t i c u l a r numbers (see numbers 
14 15 and 20 below). SUMS can now prove 64 of them 
w i th times ranging from 0.125 sees, of C.P.U. time 
(number 13) to 45.94 secs. of C.P.U. time (number 12) . 
There fo l lows a se lec t ion of 15 of these 64 successfu l ly 

Most o f t hese theorems a r e q u i t e d i f f i c u l t t o p rove 
f rom t h e Peano axioms o f a r i t h m e t i c . F o r i n s t a n c e , 
t he normal p r o o f o f number 1 i n v o l v e s two i n d u c t i o n 
s t e p s . A l t h o u g h n o r m a l i z a t i o n a l g o r i t h m s might b e 
used t o p rove some o f t hem, i t i s e x t r e m e l y d i f f i c u l t 
to see how such a method would d e a l w i t h number 4, 
number 7 or number 12 . 

6. GOALS. 

In o r d e r to p rove the r e m a i n i n g 636 theorems in , SUMS 
r e q u i r e s a b i l i t i e s o u t s i d e i t s p r e s e n t s c o p e . P l a n s 
f o r add ing some o f t hese a b i l i t i e s are w e l l advanced 
and o n l y a w a i t i m p l e m e n t a t i o n ; o t h e r s are f u r t h e r i n 
t he f u t u r e . A d e s c r i p t i o n o f t hese p lans f o l l o w s . 

( i ) F u r t h e r A r i t h m e t i c . 

I n o r d e r t o t a c k l e more s o p h i s t i c a t e d a r i t h m e t i c 
f o r m u l a e , SUMS needs to be a b l e to d e a l w i t h t he 
q u o t i e n t ; r e m a i n d e r ; e x p o n e n t i a l ; n t h odd p r i m e ; 
g r e a t e s t common d i v i s o r ; i s - a - p r i m e and o t h e r f u n c t i o n s 
and p r e d i c a t e s . A l l t hese a b i l i t i e s r e q u i r e a d r a w i n g 
p r o c e d u r e f o r each new f u n c t i o n , an a s s e r t i n g and an 
i n t e r r o g a t i n g p rocedure f o r each new p r e d i c a t e and i t s 
n e g a t i o n , and new s l o t s i n t he p r o p e r t y l i s t s . These 
w i l l b e added s o o n . 

( i i ) Q u a n t i f i c a t i o n . 

A t p r e s e n t SUMS i s n o t capab le o f d e a l i n g w i t h any 
f o r m u l a t h a t w o u l d c o n t a i n e x i s t e n t i a l q u a n t i f i e r s i f 
i t were w r i t t e n i n Prenex no rma l f o r m . B e t h ' s 
Semant ic T a b l e a u x 2 and R o b i n s o n ' s R e s o l u t i o n 5 bo th 
p r o v i d e v a l u a b l e c l u e s a s t o how t o c o r r e c t t h i s 
d e f i c i e n c y . There f o l l o w s a p roposed s o l u t i o n . 

F i r s t l y , r e p l a c e any c a l l o f t h e p rocedure 'To p rove P 1 , 
d e s c r i b e d i n S e c t i o n 4 , by a c a l l o f ' To a s s e r t -P ' and 

136 



then the theorem is proved when a l l the diagrams 
become con t rad ic to ry . Non-contradictory diagrams w i l l 
be used to suggest counter-examples or w i l l be cand i 
dates f o r more strenuous proof s t ra teg ies (see next 
sub-sect ion) . 

Secondly, update the ' t o assert P' procedure by 
adding: 

(g) If P is of the form V x Q(x) then an entry of 
type ' v a r i a b l e ' is created f o r x. x is added to a 
loca l va r iab le l i s t ' va rs ' and Q.(x) is asserted. 

(h) If P is of the form 3x Q(x) then an ent ry of 
type 'skolem func t i on 1 is created f o r x. x is made 
dependent on a l l the var iab les :in the current value 
of ' v a r s ' and Q(x) is asserted. 

T h i r d l y , dur ing the course of the proof we may 
' s u b s t i t u t e 1 f o r a va r iab le x, any term A, which is 
not dependent on x. This involves making a copy of 
any en t ry contain ing x, replac ing each occurrence of x 
in each copy by the term A and making equal any terms 
wi th the same l a b e l . The a b i l i t y to subs t i tu te needs 
to be handled wi th the same circumspection as the 
other proof s t ra teg ies mentioned in the next sub
s e c t i o n . 

( i i i ) Proof S t ra teg ies . 

With the addi t ions mentioned above, SUMS should be able 
to prove a wide class of s t ra igh t fo rward theorems. 
However, it performs no search and always terminates 
wit!) or without a so lu t i on a f t e r i t has represented 
the candidate theorem. To prove more sophis t icated 
theorems SUMS needs to have and to know how to use, a 
store of proof s t ra teg ies (PLANNER consequent 
theorems4). 

For ins tance, i t may decide to t r y mathematical 
i nduc t i on , to construct some new terms, to make a 
s u b s t i t u t i o n , to d iv ide i n to cases, to use some 
prev iously proved theorem or to set up some i n t e r 
mediate sub-goals. A l l these a b i l i t i e s are 
r e l a t i v e l y s t ra igh t fo rward to apply once a decis ion 
about how to use them has been made, but deciding on 
what to use and how is d i f f i c u l t . Our i n t e n t i o n , 
t he re fo re , is to implement t h i s stage in two par ts . 
The f i r s t task w i l l be to make SUMS i n t e r a c t i v e . 
Procedures w i l l be w r i t t e n to correspond to the 
mathematical use of such i ns t ruc t i ons as: Try 
induct ion o n . . . ; Consider the t e r m . . . ; S u b s t i t u t e . . . 
f o r . . . ; Consider the c a s e s . . . ; U s e . . . ; F i r s t 
p r o v e . . . : e t c . Then SUMS w i l l be led through the 
proofs of some moderate]y d i f f i c u l t theorems in 
Number Theory. The second task is to use t h i s 
experience to evolve a language f o r c l a s s i f y i n g 
candidate theorems and se lec t ing and apply ing 
su i tab le proof s t r a t e g i e s . 

Some progress has now been made on the f i r s t task. If 
SUMS f a i l s to prove a theorem it asks f o r help in 
const ruc t ing new terms and o f fe rs the contents of the 
diagram's ' f i l e ' s l o t as evidence. The user may then 
t e l l SUMS to construct some terms before cont inuing 
w i th the proof . For ins tance, a f t e r represent ing 
a < b & c < d -» a + c < b + d (number 16 in 
Sect ion 5) in the diagram, and f a i l i n g to prove i t , 
SUMS asks f o r help and suggests the const ruct ions: 
a + d ; c + b; (d - c) + b and (b - a) + d . 
If the user orders a + d or c + b to be constructed 
a proof is immediate. I f instead he chooses 
(d - c) + b or (b - a) + d, help is requested again. 
On the i n i t i a l t r i a l run through the 22 previous 
f a i l u r e s (see Section 5 ) , 16 were proved using t h i s 
method - 7 on the basis of the pro f fered evidence 
a lone. Of the remaining 6 theorems 3 were abandoned 

and 3 produced stack overflow because the length of 
deductions got too deep. 

7. CONCLUSION. 

This theorem prover uses an analogical representat ion 
of a r i thmet ic and l e t s t h i s representat ion do a l l the 
work. In the t r a d i t i o n a l representat ions of mathe
mat ical theor ies , e . g . a set of axioms in a reso lu t i on 
theorem prover , i t is qu i te easy to assert a con t ra 
d i c to ry set o f formulae wi thout t h i s s i t u a t i o n being 
read i l y detected. In the present representat ion 
assert ions once made are r e a d i l y accessible and any 
new asser t ion causes a l l sor ts of conclusions to be 
drawn and asserted so that cont rad ic t ions are usual ly 
Spotted q u i c k l y . 

In 3 Gelernter achieved a s im i l a r e f fec t by usi.ng two 
representat ions: a syntact ic one f o r proving theorems 
w i th ru les and axioms, and a diagram to guide t h i s 
proof . His 'syntax computer' discovered groups of 
sub-goals which would imply the present goa l , and h is 
'diagram computer' vetted those sub-goals, r e j e c t i n g 
those that were fa l se in the diagram. The diagram 
was also used to prove c e r t a i n very basic sub-goals 
{see 3 p. 42 No. 7) but t h i s is a r i sky process, 
because although precautions were taken to prevent 
spurious coincidences en ter ing i n to the diagram, there 
were s t i l l statements, t rue in the diagram, hut not 
provable from the hypothesis of the candidate theorem. 
The analogue of Ce lern ter 's diagrams in ar i thmet ic 
would be to subs t i tu te p a r t i c u l a r numbers f o r the 
var iab les in some subgoal, and then compute the t r u t h 
or f a l s i t y of the r e s u l t i n g formula. 

SUMS arose from an attempt to represent in the machine 
the concept, f a i r l y common among mathematicians (see 
f o r instance 2) , of an ' i d e a l (or typ ica l ) i n t e g e r ' , 
i . e . an object w i th a l l the propert ies of an in teger 
( e . g . being equal t o , less than, not equal to or a 
d i v i so r of some other i n te re r ) but which is not any 
p a r t i c u l a r in teger ( e . g . 3, 13 or 53) . In a 'diagram' 
composed of ' i d e a l in tegers ' no spurious coincidences 
a r i s e , so that anything t rue in the diagram is provable 
from the hypothesis of the theorem and anything fa l se 
is not provable. So t h i s diagram can be l eg i t ima te l y 
used f o r r e j e c t i n g and proving sub-goals. Of course 
something may be ne i ther t rue nor fa l se in the diagram. 

Does SUMS prove theorems or does it check t h e i r 
v a l i d i t y ? I t c e r t a i n l y does not produce proofs in a 
formal l o g i c a l system, but nei ther does i t exhaust ively 
tes t the candidate theorem in some model. Nor, of 
course, does the p rac t i s i ng mathematician confine him
s e l f to c i t h e r of these techniques. Rather he is 
prepared to use a v a r i e t y of methods to achieve h is 
ends (sec 6). To convince h imsel f , and others, of the 
soundness of h is f i n a l proof, he produces a p r o t o c o l . 
Formal l o g i c a l systems were introduced to analyse and 
j u s t i f y t h i s procedure, and not to replace it as a 
method of d iscovery. SUMS is designed to simulate the 
behaviour of mathematicians. During the course of a 
proof i t 'proves ' many fac ts ( i . e . convinces i t s e l f o f 
t h e i r t ru th ) and records these as t r u e ; i t also 
produces a protocol which is intended to convince 
others o f t h e i r t r u t h ( i . e . a p r o o f ) . 

It is the author 's hope that the method of theorem 
proving ou t l ined in t h i s paper w i l l prove app l icab le 
not j us t to a r i t hmet i c , but to a l l mathematical 
theor ies , espec ia l l y c l ass i ca l systems w i t h a s ing le 
standard model, l i k e ana lys i s , geometry and set theory . 
In fac t s im i l a r systems f o r geometry and set theory are 
now being b u i l t by Aaron Sloman and Mike L iardet 
respec t i ve l y . 

The author also hopes that t h i s representat ion may make 
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some c o n t r i b u t i o n t o the s t u d y o f P s y c h o l o g i c a l 
M o d e l l i n g . I n p a r t i c u l a r , maybe i t sheds some l i g h t 
on t h e c u r i o u s b l a c k b o a r d d iaerams wh ich ma thema t i c i ans 
use t o h e l p them ' u n d e r s t a n d ' p r o b l e m s . 
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