

Edinburgh Research Explorer

Doing arithmetic with diagrams

Citation for published version:
Bundy, A 1973, 'Doing arithmetic with diagrams'. in Proceedings of IJCAI-3.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Proceedings of IJCAI-3

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/doing-arithmetic-with-diagrams(60ec99e5-c377-4134-a1db-34e6077a0e98).html

Session 6 Theorem Proving and
Logic: I I

DOING ARITHMETIC WITH DIAGRAMS

by

Alan Bundy
Department of Computational Logic,

Univers i ty of Edinburgh,
Edinburgh, Scot land.

ABSTRACT •

A theorem prover f o r part of ar i thmet ic in described
which proves theorems by represent ing them in the form
of a diagram or network. The nodes of t h i s network
represent ' i d e a l i n t e g e r s ' , i . e . objects which have a l l
the propert ies of in tegers , without being any p a r t i
cular in toger . The l i nks in the network represent
re la t ionsh ips between ' i dea l i n t e g e r s ' . The proced
ures which draw these diagrams make elementary deduct
ions based on t h e i r b u i l t - i n knowledge of the funct ions
and predicates of a r i thmet i c . This theorem prover is
intended as a model of some kinds of human problem-
so lv ing behaviour.

DESCRIPTIVE TERMS.

Theorem Proving, Heur is t i c Method, Representation,
Psychological Model l ing, Semantic Network, Ar i thmet ic ,
Ideal In teger , Logic, Semantic: Tableaux.

0. MOTIVATION.

The object ive of t h i s work is to inves t iga te human
problem-solving behaviour by t r y i n g to simulate it on a
machine. The main source of in format ion about human
behaviour is s t i l l se l f -observat ion and so the author
has de l ibe ra te ly chosen a domain in which he has some
experience, ar i thmet ic (see 1). Ar i thmet ic hus the
add i t i ona l advantage that as one of the oldest branches
of mathematics i t is r i c h in proof techniques and
eas i ly stated but d i f f i c u l t theorems (e . g . Format's
Last Theorem). Also an e f f i c i e n t ar i thmet ic theorem
prover is l i k e l y to f i nd appl icat ions in Program
Correctness Proof3.

1. INTRODUCTION.

This is a repor t of work in progress. It describes
what i s , to the best of the author 's knowledge, a new
kind of automatic theorem prover, ca l led SUMS (a System
which Understands Mathematical Symbols). SUMS does
not e x p l i c i t l y use axioms or ru les of inference to
prove theorems. Instead it represents the candidate
theorem as a network (or diagram) in which the nodes
are the property l i s t s of a r i thmet ic terms and the
l i nks describe re la t ionsh ips (e . g . = <, |) between
them. Statements are asserted by adding new l i n k s and
proved by accessing the diagram. Knowledge about
a r i t h m e t i c i s b u i l t i n t o the procedures t h a t draw the
diagram so that when l i nks are added to i t , elementary
deductions are made (and more l i n k s added) automat
i c a l l y .

The domain of SUMS is the Elementary Theory of Natural
Numbers (i . e . the ar i thmet ic of the non-negative
in tegers) . At present i t can only handle the classes
of terms and formulae defined below;

(a) An a r b i t r a r y skolem constant or na tu ra l
number is a term.

(b) If A and B are terms then SUC(A) ; Pre(A) ;
A + B; A - B and A x. B are terms.

130

F i g . 5.

F i g . 7.

means that A = B. These l i nks are not needed in t h i s
example but are included fo r completeness. They occur
because assert ing B < A involves asser t ing both B < A
and B / A. ""

3. THE REPRESENTATION OF THE DIAGRAM.

The diagrams are represented using l i s t s and POF-2
records. We f ind records convenient, but they could ,
if necessary, be replaced by L i s t s or arrays.

Each diagram is a record with 6 components (or s lo ts)
in which information is recorded. These s lo ts are
ca l led and conta in:

(a) T i t l e : a formula in l i s t notat ion which says
which case the diagram represents, e .g . [LESS A B] .

(b) Contra: a 1 or 0 according as the diagram
has or has not been found contrad ic tor ; ' .

(c) Network: a l i s t of the ent r ies (defined
below) in the diagram.

(d) Nought and Uni ty : 2 redundant s lo ts po in t ing
to the, f requent ly used, ent r ies f o r 0 and 1
respec t i ve ly .

(e) F i l e : a l i s t of terms which were not
represented in the diagram when wanted, but which SUMS
may decide to represent l a t e r .

Every term is represented, in the diagram, by a unique
record wi th 3 s l o t s , cal led an ent ry . These s l o t s
are cal led and conta in:

(a) Label: The name of the term being represented
in l i s t no ta t ion , e .g . [ADD A [DIFF B A]]

(b) P r o p l i s t : A record of type 'node' which
contains a l l the l i nks to the other e n t r i e s . When two
terms are made equal a l l the informat ion from the f i r s t
term's ' p r o p l i s t ' (property l i s t) is put in to the
second term's ' p r o p l i s t ' , which then replaces the f i r s t
wherever it appears. Thus equal terms share ' p r o p l i s t s '
which j u s t i f i e s the adoption of the name 'nodes' f o r the
' p r o p l i s t ' rather than the en t r i es . This method of
deal ing wi th equal i ty is more convenient than using
equa l i t y l i n k s , because: i t makes checking fo r
equa l i ty more e f f i c i e n t (the ' p r o p l i s t s ' must be EQ) ;
the equa l i ty axioms are automatical ly incorporated,
and a l l the information about a s ing le node is kept in
one place.

(c) Replace: A s lo t used in the copying of
diagrams.

131

Each node is a record wi th 6 s lo ts cal led and cont
a in ing :

(a) Smaller: A l i s t of pai rs of en t r i es . The
f r o n t of each p a i r represents a term smaller than the
present one; the back represents the distance between
them.

(b) Bigger: S imi la r to (a) except that the f ron t
of each pa i r is the entry of a term bigger than the
present one.

{c) Unequal: A l i s t of en t r ies representing terms
known to be unequal to the present one.

(d) Factor: S imi lar to (a) except thnt the f ron t
of each pai r is the entry of a term which exactly
d iv ides the present one, and the back is the entry
represent ing the quotient produced.

(e) M u l t i p l e : S imi la r to (d) except that the f ron t
of each p a i r is the entry of a term which the present
term exact ly d iv ides .

(f) Mark; A s lo t used f o r markers when measure
ments are being made in the diagram.

4. THE PROGRAM.

In order to d is t ingu ish funct ions in SUMS from
funct ions in Ar i thmet ic , we w i l l c a l l the former
procedures.

There arc four classes of top leve l procedures
arranged roughly in a h ierarchy. They are:

(a) Logical Procedures: which analyse the
o r i g i n a l formula and decide which atomic formulae to
assert and which to prove.

(b) Drawing Procedures: which analyse the terms
in the formulae, draw them in the diagram and assert
re la t ionsh ips between them.

(c) Assert ing Procedures: which make re la t ionsh ips
between terms hold in the diagram by adding l i n k s .

(d) In te r roga t ing Procedures: which discover
whether re la t ionsh ips between terms hold by accessing
the diagram.

(i) The Logical Procedures.

A f te r the i n i t i a l diagram has been created a l l
negations are el iminated from the candidate tliooreni by
passing them down to , and absorbing them .into, the
atomic formulae. i . e . each negated atomic formula
-S(x1 , . . . xn) is replaced by #(x1 xn) . The
candidate, P, is then passed to the procedure 'Prove'
whose descr ip t ion fo l lows .

To prove P:

(a) If P is a conjunct ion of atomic formulae, i t s
terms are drawn in the diagram, which is then i n t e r r o -
gated to see i f P is t rue .

(b) If P is of the form Q & R then a copy of the
diagram is made. Q is proved in the f i r s t diagram
and R in the second.

(c) If P is of the form Q v R (or Q - E) then we
assert -Q (Q) in the diagram and prove R.

(d) I f P is o f the form QR then a copy of the
diagram is made. In the f i r s t diagram, Q is asserted
and R is proved; in the second R is asserted and ft

proved.

To assert a formula in the diagram the fo l l ow ing
procedure is ca l l ed .

To assert P:

(a) If P is already true in the diagram then the
procedure is ex i ted .

(b) I f P is already fa l se the diagram is closed,
by making it cont rad ic tory , and the procedure ex i t ed .

(c) If F is atomic, i t s subterms are drawn, and
it i-. made true in the diagram by c a l l i n g an approp
r i a t e assert ing procedure.

(d) If P is of the form Q & R then both Q and R
are asserted.

(e) If P is of the form Q v R, (Q - R) then:

I f Q is fa lse (Q is t rue) , R is asserted;
I f R is false, Q is asserted [-Q is asserted);

Otherwise a copy of the diagram is made and Q is
asserted (- Q is aver ted) in the f i r s t diagram and R
in the second,

(f) If P is of the form Q <--> R then:

If Q is t rue, R is asserted;
I f R is t rue, Q is asserted;
] f Q is fa l se , - R is asserted;
I f R is fa l se , - Q is asserted;

Otherwise a copy of the diagram is made and Q and R
are asserted in the first diagram and -Q and -R am
asserted in the second.

The referee has pointed out the s i m i l a r i t y of these
procedures to Beth's Semantic Tab]eaux (see '). The
main dif ference;; are tha t :

(a) SUMS cannot yet handle a rb i t r a r y q u a n t i f i
ca t i on . Semantic Tableaux provides some valuable
clues as to how to correct th is defect .

(b) in SUMS the l e f t (va l i d) and r i gh t (i nva l i d)
columns of Beth's tableaux have been combined in u
single diagram, making a neater and more powerful
procedure.

(c) At present SUMS does not assert the negation
of the theorem to be proved, a pract ice which would
ce r ta in l y lead to an increase in power.

(d) Before d i v id ing in to 2 cases SUMS checks the
present diagram to see if e i ther of the new diagrams
would be contradictory (see the checks in (e) and (f)
above, and in the drawing procedure f o r - below).
This l i m i t s the number of cases to be considered, but
is not per fect , and unnecessary cases are sometimes
considered.

(e) Most important ly , the assert ion of an atomic
formula, in SUMS, is not j us t the passive add i t ion of
the formula to a l i s t , but an act which may have wide
repercussions w i th in the diagram.

(ii) The Drawing Proceduren.

Between them the drawing and assert ing procedures are
mainly responsible fo r drawing the diagram. The i r
general philosophy is to l i m i t the number of nodes in
the diagram to those representing terms mentioned in
the candidate theorem, but to draw as many l i n ks

133

between these nodes as possib le. Thus the diagram is
prevented from exploding, since only a f i n i t e number of
l i n k s is possible between a f i n i t e number of nodes, but
qu i te sophist icated re la t ionsh ips are deduced between
the nodes that are represented. This kind of heu r i
s t i c is qu i te common in mathematics f o r instance as
advice to students proving theorems in Euclidean
geometry, to deduce as much as possible about a diagram
without const ruct ing any fu r the r points (e f . 3) , The
only exceptions to t h i s ru le are;

(a) the creat ion of nodes f o r 0 and 1, of ten
needed because they are the i d e n t i t y elements fo r
add i t ion and m u l t i p l i c a t i o n .

(b) the l im i ted creat ion of nodes needed to label
l i nks between ex i s t i ng nodes, e .g . if a b is one of
the premises of the candidate theorem and b - a is not
already represented, then we represent i t .

(c) the c rea t ion of new nodes as part of a proof
strategy (sec Sect ion 6) .

(d) the suppression of those clauses of l inks
which do not appear to be necessary to prove the
theorem, e .g . m u l t i p l i c a t i v e l i nks in a theorem only
invo lv ing add i t i on . This has not yet been implemented.

(a) and (b) only produce a s t r i c t l y l im i ted number of
ex t ra nodes.

We now tu rn to a descr ip t ion of the procedures them
selves. A formula is drawn in the diagram by
c rea t ing ent r ies f o r each of i t s subterms which do not
already have them, from the bottom up, and then passing
these en t r ies to procedures which ext ract information
from the term's func t ion symbols. There is one of
these drawing procedures for each ar i thmet ic funct ion
symbol, and the procedure receives every term beginning
wi th t h i s symbol. I t assumes that the term's argu
ments have already been represented. If necessary i t
can use the in te r roga t ion procedures to discover the
state of the diagram before using i t s knowledge of
ar i thmet ic to assert re la t ionsh ips w i t h the assert ing
procedures.

As an example we describe the procedure fo r terms of
the form A - B:

These drawing procedures are s u f f i c i e n t l y close to the
o r i g i n a l func t ion d e f i n i t i o n s to make one fee l optim
i s t i c about having the machine ' l ea rn ' a new funct ion
by const ruc t ing i t s drawing procedure from i t s
d e f i n i t i o n . The creat ion of an ent ry f o r a term
involves const ruct ing a new ent ry , i n se r t i ng the term
in i t s ' l a b e l ' s l o t and a new node in i t s ' p r o p l i s t '
s l o t and adding t h i s ent ry to the diagram's 'network'
s l o t . The property l i s t is then f i l l e d wi th as much
in format ion as poss ib le . For ins tance, a l l terms are

made bigger than 0 and d i v i s i b l e by 1. In addi t ion if
the term is a natural number we compute and record,
subject to the normal l i m i t a t i o n s , i t s re la t ionsh ips to
a l l previously created natura l numbers. e .g . 2 is
made bigger than 1 by an amount 1 and unequal to 0 and
1 e tc . This is s t i l l non-explosive i f the number of
nodes is s t r i c t l y con t ro l l ed , and ensures that a l l
nodes relevant in a pa r t i cu la r s i t ua t ion can be
conveniently recovered.

(i i i) The Assort ing Procedures.

There is an assert ing procedure fo r each predicate
symbol. These procedures update the property l i s t s of
the en t r ies in the diagram thus creat ing new l inks in
the network. Before and a f te r these l i nks are created
various 'antecedent' procedures (c f . 4) are ca l l ed ,
which examine the local s ta te of the diagram to see
whether any fu r ther fac ts can be deduced. In p a r t i -
cular a cont rad ic t ion may be detected in some diagram
and then regis tered by assigning 1 to the diagram's
' cont ra ' s l o t .

These antecedent procedures contain a pood deal of the
ar i thmet ic knowledge which is b u i l t in to the theorem
prover. They are constant ly evolving as new i n f o r
mation is included or neater ways. of achieving the
same e f fec t are discovered, und so it. would be mis
leading to over-emphasise t h e i r present s tate by
describing one in d e t a i l . However, wo can give some
examples of t h e i r ac t ion .

Suppose that an asserting procedure is making A div ide
C with quot ient B (i . e . A x B = C). Let A, B and C
be represented in the diagram by the en t r ies Ae, Be
and Ce respect ive ly , and in general if X is a term,
l e t Xe be the entry representing i t . Before adding any
new l i nks between Ae, Be and Cc, SUMS compares,for
instance, Ce and Be with each of the pa i rs , (Ee.I)e) , in
the ' m u l t i p l e ' s l o t of Ae. We i l l u s t r a t e t h i s s i t u
a t ion in the fo l lowing diagram, in which the double
arrows ind ica te that the l i nks are m u l t i p l i c a t i v e .

The redundancy of th i s method of l i nk storage ia
j u s t i f i e d by the convenience of having a l l the
in format ion about a pa r t i cu l a r node stored in that
node.

A f te r the l inks have been added, f o r instance, Ce and
Be are again compared wi th each of the pa i rs (Ee.De)
in the ' m u l t i p l e ' s l o t of Ae. I f , say, A is known to
be unequal to 0 and C exact ly d iv ides E w i th quot ient
P.. then B is made to d iv ide D exact ly wi th quotient F.
Because:

135

Again i f , say, B ia smaller than D by an amount P and
there ia a term, G, equal to A x F represented in the
diagram then D is made less than E by an amount C.
Because:

Formulae l i k e (3) , (4) and (5) are the mainstay of the
antecedent procedures. Although apparently a r b i t r a r y ,
they of ten have a simple geometric i n t e r p r e t a t i o n and
t u rn out to be su rp r i s i ng l y powerful in antecedent
mode. In general the asser t ing and antecedent proc
edures f a l l i n t o the f o l l ow ing pat tern :

(a) Check whether the re l a t i onsh ip already ho lds .
I f so, ex i t wi thout adding any more l i n k s .

(b) Check whether the opposite re la t i onsh ip already
ho lds. I f so, declare a con t rad ic t ion and e x i t .

(c) Otherwise add a l l new l i n k s .

(d) Now do a l o t of very cheap (i n time and space)
checks to discover the current l o c a l state of the
diagram. Deduce and asser t as many new fac t s as
possible wi thout c rea t ing any new nodes in the diagram.

(i v) The In te r roga t i ng Procedures.

There is an i n t e r r oga t i ng procedure fo r each predicate
symbol. They are used to s e t t l e a l l questions about
the re la t ionsh ips between terms and they do t h i 3 by
accessing the diagram. Because they are used so
f requent ly the present procedures are designed, f o r
e f f i c i e n c y , to do very l i t t l e searching. For instance,
the procedure which asks whether A is equal to B
returns true if and only if A and B have the same node
stored in t h e i r ' p r o p l i s t s ' . The procedure which asks
whether A is less than B s ta r ts at A and climbs up
through the ' b igge r ' s l o t s , marking i t s passage, u n t i l
e i t he r i t comes to B and returns t rue or i t exhausts
a l l p o s s i b i l i t i e s and returns f a l s e . I t would be
possible to design procedures which t r i e d a l o t harder
than t h i s , but t h e i r use would have to be se l ec t i ve .

There is a subclass of the i n te r roga t i ng procedures,
ca l led the measuring procedures, and there are measuring
procedures corresponding to most of the func t ion symbols.
For instance, the measuring procedure fo r + takes as
arguments two en t r i es , Ae and Be, (say) represent ing
the terms, A and B, and returns t rue i f and only i f i t
f i nds an entry f o r a term equal to A + B, in which
case i t also returns t h i s en t ry . I t does t h i s by
look ing in the 'b igger ' s lo t of Ae fo r a pa i r whose
back is equal to Be and re tu rns the corresponding f r o n t
if successful . This procedure may wel l succeed even
if A + B is not represented. e . g . B + A may be
represented or in a diagram where a b, A is a and
B is b - a we may re tu rn the en t ry f o r b. If the

procedure does not succeed the term A + B is stored in
the diagram's ' f i l e ' s l o t where it may be used at a
l a t e r date as grounds f o r cons t ruc t ing a node f o r A + B.

5. RESULTS.

74 of the 86 theorems which have been attempted so f a r
were drawn from , which contains about 700 formal
theorems. The remaining 12 were invented to tes t SUMS'
a b i l i t y to deal w i th p a r t i c u l a r numbers (see numbers
14 15 and 20 below). SUMS can now prove 64 of them
w i th times ranging from 0.125 sees, of C.P.U. time
(number 13) to 45.94 secs. of C.P.U. time (number 12) .
There fo l lows a se lec t ion of 15 of these 64 successfu l ly

Most o f t hese theorems a r e q u i t e d i f f i c u l t t o p rove
f rom t h e Peano axioms o f a r i t h m e t i c . F o r i n s t a n c e ,
t he normal p r o o f o f number 1 i n v o l v e s two i n d u c t i o n
s t e p s . A l t h o u g h n o r m a l i z a t i o n a l g o r i t h m s might b e
used t o p rove some o f t hem, i t i s e x t r e m e l y d i f f i c u l t
to see how such a method would d e a l w i t h number 4,
number 7 or number 12 .

6. GOALS.

In o r d e r to p rove the r e m a i n i n g 636 theorems in , SUMS
r e q u i r e s a b i l i t i e s o u t s i d e i t s p r e s e n t s c o p e . P l a n s
f o r add ing some o f t hese a b i l i t i e s are w e l l advanced
and o n l y a w a i t i m p l e m e n t a t i o n ; o t h e r s are f u r t h e r i n
t he f u t u r e . A d e s c r i p t i o n o f t hese p lans f o l l o w s .

(i) F u r t h e r A r i t h m e t i c .

I n o r d e r t o t a c k l e more s o p h i s t i c a t e d a r i t h m e t i c
f o r m u l a e , SUMS needs to be a b l e to d e a l w i t h t he
q u o t i e n t ; r e m a i n d e r ; e x p o n e n t i a l ; n t h odd p r i m e ;
g r e a t e s t common d i v i s o r ; i s - a - p r i m e and o t h e r f u n c t i o n s
and p r e d i c a t e s . A l l t hese a b i l i t i e s r e q u i r e a d r a w i n g
p r o c e d u r e f o r each new f u n c t i o n , an a s s e r t i n g and an
i n t e r r o g a t i n g p rocedure f o r each new p r e d i c a t e and i t s
n e g a t i o n , and new s l o t s i n t he p r o p e r t y l i s t s . These
w i l l b e added s o o n .

(i i) Q u a n t i f i c a t i o n .

A t p r e s e n t SUMS i s n o t capab le o f d e a l i n g w i t h any
f o r m u l a t h a t w o u l d c o n t a i n e x i s t e n t i a l q u a n t i f i e r s i f
i t were w r i t t e n i n Prenex no rma l f o r m . B e t h ' s
Semant ic T a b l e a u x 2 and R o b i n s o n ' s R e s o l u t i o n 5 bo th
p r o v i d e v a l u a b l e c l u e s a s t o how t o c o r r e c t t h i s
d e f i c i e n c y . There f o l l o w s a p roposed s o l u t i o n .

F i r s t l y , r e p l a c e any c a l l o f t h e p rocedure 'To p rove P 1 ,
d e s c r i b e d i n S e c t i o n 4 , by a c a l l o f ' To a s s e r t -P ' and

136

then the theorem is proved when a l l the diagrams
become con t rad ic to ry . Non-contradictory diagrams w i l l
be used to suggest counter-examples or w i l l be cand i
dates f o r more strenuous proof s t ra teg ies (see next
sub-sect ion) .

Secondly, update the ' t o assert P' procedure by
adding:

(g) If P is of the form V x Q(x) then an entry of
type ' v a r i a b l e ' is created f o r x. x is added to a
loca l va r iab le l i s t ' va rs ' and Q.(x) is asserted.

(h) If P is of the form 3x Q(x) then an ent ry of
type 'skolem func t i on 1 is created f o r x. x is made
dependent on a l l the var iab les :in the current value
of ' v a r s ' and Q(x) is asserted.

T h i r d l y , dur ing the course of the proof we may
' s u b s t i t u t e 1 f o r a va r iab le x, any term A, which is
not dependent on x. This involves making a copy of
any en t ry contain ing x, replac ing each occurrence of x
in each copy by the term A and making equal any terms
wi th the same l a b e l . The a b i l i t y to subs t i tu te needs
to be handled wi th the same circumspection as the
other proof s t ra teg ies mentioned in the next sub
s e c t i o n .

(i i i) Proof S t ra teg ies .

With the addi t ions mentioned above, SUMS should be able
to prove a wide class of s t ra igh t fo rward theorems.
However, it performs no search and always terminates
wit!) or without a so lu t i on a f t e r i t has represented
the candidate theorem. To prove more sophis t icated
theorems SUMS needs to have and to know how to use, a
store of proof s t ra teg ies (PLANNER consequent
theorems4).

For ins tance, i t may decide to t r y mathematical
i nduc t i on , to construct some new terms, to make a
s u b s t i t u t i o n , to d iv ide i n to cases, to use some
prev iously proved theorem or to set up some i n t e r
mediate sub-goals. A l l these a b i l i t i e s are
r e l a t i v e l y s t ra igh t fo rward to apply once a decis ion
about how to use them has been made, but deciding on
what to use and how is d i f f i c u l t . Our i n t e n t i o n ,
t he re fo re , is to implement t h i s stage in two par ts .
The f i r s t task w i l l be to make SUMS i n t e r a c t i v e .
Procedures w i l l be w r i t t e n to correspond to the
mathematical use of such i ns t ruc t i ons as: Try
induct ion o n . . . ; Consider the t e r m . . . ; S u b s t i t u t e . . .
f o r . . . ; Consider the c a s e s . . . ; U s e . . . ; F i r s t
p r o v e . . . : e t c . Then SUMS w i l l be led through the
proofs of some moderate]y d i f f i c u l t theorems in
Number Theory. The second task is to use t h i s
experience to evolve a language f o r c l a s s i f y i n g
candidate theorems and se lec t ing and apply ing
su i tab le proof s t r a t e g i e s .

Some progress has now been made on the f i r s t task. If
SUMS f a i l s to prove a theorem it asks f o r help in
const ruc t ing new terms and o f fe rs the contents of the
diagram's ' f i l e ' s l o t as evidence. The user may then
t e l l SUMS to construct some terms before cont inuing
w i th the proof . For ins tance, a f t e r represent ing
a < b & c < d -» a + c < b + d (number 16 in
Sect ion 5) in the diagram, and f a i l i n g to prove i t ,
SUMS asks f o r help and suggests the const ruct ions:
a + d ; c + b; (d - c) + b and (b - a) + d .
If the user orders a + d or c + b to be constructed
a proof is immediate. I f instead he chooses
(d - c) + b or (b - a) + d, help is requested again.
On the i n i t i a l t r i a l run through the 22 previous
f a i l u r e s (see Section 5) , 16 were proved using t h i s
method - 7 on the basis of the pro f fered evidence
a lone. Of the remaining 6 theorems 3 were abandoned

and 3 produced stack overflow because the length of
deductions got too deep.

7. CONCLUSION.

This theorem prover uses an analogical representat ion
of a r i thmet ic and l e t s t h i s representat ion do a l l the
work. In the t r a d i t i o n a l representat ions of mathe
mat ical theor ies , e . g . a set of axioms in a reso lu t i on
theorem prover , i t is qu i te easy to assert a con t ra
d i c to ry set o f formulae wi thout t h i s s i t u a t i o n being
read i l y detected. In the present representat ion
assert ions once made are r e a d i l y accessible and any
new asser t ion causes a l l sor ts of conclusions to be
drawn and asserted so that cont rad ic t ions are usual ly
Spotted q u i c k l y .

In 3 Gelernter achieved a s im i l a r e f fec t by usi.ng two
representat ions: a syntact ic one f o r proving theorems
w i th ru les and axioms, and a diagram to guide t h i s
proof . His 'syntax computer' discovered groups of
sub-goals which would imply the present goa l , and h is
'diagram computer' vetted those sub-goals, r e j e c t i n g
those that were fa l se in the diagram. The diagram
was also used to prove c e r t a i n very basic sub-goals
{see 3 p. 42 No. 7) but t h i s is a r i sky process,
because although precautions were taken to prevent
spurious coincidences en ter ing i n to the diagram, there
were s t i l l statements, t rue in the diagram, hut not
provable from the hypothesis of the candidate theorem.
The analogue of Ce lern ter 's diagrams in ar i thmet ic
would be to subs t i tu te p a r t i c u l a r numbers f o r the
var iab les in some subgoal, and then compute the t r u t h
or f a l s i t y of the r e s u l t i n g formula.

SUMS arose from an attempt to represent in the machine
the concept, f a i r l y common among mathematicians (see
f o r instance 2) , of an ' i d e a l (or typ ica l) i n t e g e r ' ,
i . e . an object w i th a l l the propert ies of an in teger
(e . g . being equal t o , less than, not equal to or a
d i v i so r of some other i n te re r) but which is not any
p a r t i c u l a r in teger (e . g . 3, 13 or 53) . In a 'diagram'
composed of ' i d e a l in tegers ' no spurious coincidences
a r i s e , so that anything t rue in the diagram is provable
from the hypothesis of the theorem and anything fa l se
is not provable. So t h i s diagram can be l eg i t ima te l y
used f o r r e j e c t i n g and proving sub-goals. Of course
something may be ne i ther t rue nor fa l se in the diagram.

Does SUMS prove theorems or does it check t h e i r
v a l i d i t y ? I t c e r t a i n l y does not produce proofs in a
formal l o g i c a l system, but nei ther does i t exhaust ively
tes t the candidate theorem in some model. Nor, of
course, does the p rac t i s i ng mathematician confine him
s e l f to c i t h e r of these techniques. Rather he is
prepared to use a v a r i e t y of methods to achieve h is
ends (sec 6). To convince h imsel f , and others, of the
soundness of h is f i n a l proof, he produces a p r o t o c o l .
Formal l o g i c a l systems were introduced to analyse and
j u s t i f y t h i s procedure, and not to replace it as a
method of d iscovery. SUMS is designed to simulate the
behaviour of mathematicians. During the course of a
proof i t 'proves ' many fac ts (i . e . convinces i t s e l f o f
t h e i r t ru th) and records these as t r u e ; i t also
produces a protocol which is intended to convince
others o f t h e i r t r u t h (i . e . a p r o o f) .

It is the author 's hope that the method of theorem
proving ou t l ined in t h i s paper w i l l prove app l icab le
not j us t to a r i t hmet i c , but to a l l mathematical
theor ies , espec ia l l y c l ass i ca l systems w i t h a s ing le
standard model, l i k e ana lys i s , geometry and set theory .
In fac t s im i l a r systems f o r geometry and set theory are
now being b u i l t by Aaron Sloman and Mike L iardet
respec t i ve l y .

The author also hopes that t h i s representat ion may make

137

some c o n t r i b u t i o n t o the s t u d y o f P s y c h o l o g i c a l
M o d e l l i n g . I n p a r t i c u l a r , maybe i t sheds some l i g h t
on t h e c u r i o u s b l a c k b o a r d d iaerams wh ich ma thema t i c i ans
use t o h e l p them ' u n d e r s t a n d ' p r o b l e m s .

ACKNOWLEDGEMENTS.
7

M y debt t o t h e M . I . T . P r o g r e s s Repo r t w i l l b e
o b v i o u s . Not q u i t e a s o b v i o u s , b u t e q u a l l y i m p o r t a n t ,
a r e the c o n v e r s a t i o n s w i t h my c o l l e a g u e s - Aaron
S loman, Bo'b B o y e r , J Moore, Mike L i a r d e t and numerous
o t h e r s .

REFERENCES.

Bundy, A . ' The M e t a t h e o r y o f t h e E lemen ta r y
E q u a t i o n C a l c u l u s ' . P h . D . T h e s i s . U n i v e r s i t y
o f L e i c e s t e r , E n g l a n d . 1 9 7 1 .

B e t h , E . S . 'Semant i c E n t a i l m e n t and Fo rma l
D e r i v a b i l i t y ' . Medede l ingen de r Ron . Med.
A k a d . v . Wet . New S e r i e s , V o l . 18 N o . 13 ,
Amsterdam, 1955.

G e l e r n t e r , H . 'A Geometry Theorem P r o v i n g M a c h i n e ' ,
Computers and Thought p p . 134 -52 , McGraw H i l l ,
1963.

H e w i t t , C . 'PLANNER: A Language f o r M a n i p u l a t i n g
Models and P r o v i n g Theorems in a R o b o t ' .
P roceed ings o f 1st I J C A I . Wash ing ton D . C . , 1969.

R o b i n s o n , J . A . 'A Machine O r i e n t e d L o g i c based
o n t h e R e s o l u t i o n P r i n c i p l e 1 . J .Assoc .Compu t .
Mach. 12 . p p . 2 3 - 4 1 , 1965 .

S loman, A . ' I n t e r a c t i o n s between P h i l o s o p h y and
A r t i f i c i a l I n t e l l i g e n c e r The Ro le o f
I n t u i t i o n and N o n - L o g i c a l Reason ing i n
I n t e l l i g e n c e ' . P roceed ings o f 2nd I J C A I , p p .
2 7 0 - 6 , The B r i t i s h Computer S o c i e t y , 1971 , a l so
A r t i f i c i a l I n t e l l i g e n c e 2 , pp . 209 -25* N o r t h
H o l l a n d P u b l i s h i n g C o . , 1 9 7 1 .

M i n s k y , M . and P a p e r t , S . ' P r o j e c t M.A.C. P r o c e s s
R e p o r t ' , p p . 129-244 , M . I . T . , 1 9 7 1 .

138

