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Abstract

We survey five mathematical discovery programs by looking in detail
at the discovery processes they illustrate and the success they’ve had. We
focus on how they estimate the interestingness of concepts and conjectures
and extract some common notions about interestingness in automated
mathematical discovery. We detail how empirical evidence is used to give
plausibility to conjectures, and the different ways in which a result can be
thought of as novel. We also look at the ways in which the programs assess
how surprising and complex a conjecture statement is, and the different
ways in which the applicability of a concept or conjecture is used. Finally,
we note how a user can set tasks for the program to achieve and how this
affects the calculation of interestingness. We conclude with some hints
on the use of interestingness measures for future developers of discovery
programs in mathematics.

1 Introduction

There has been some recent progress in surveying and extracting general prin-
ciples of machine discovery in science, for example [18] and [37]. We aim to
add to this by surveying five programs developed to perform discovery in math-
ematics. We restrict our discussion to programs whose main objective is to
invent concept definitions and make conjectures in pure mathematics. This
leaves out automated theorem provers (which discover proofs), and programs
which discover mathematical results in other domains, such as the very import-
ant BACON programs, [19]. To compare and contrast the discovery programs,
we detail what the aims of the project were, how the program worked and what
contributions the programs made to mathematics and the understanding of
mathematical discovery. We pay particular attention to the measures employed
to estimate how interesting a concept or conjecture is.

Deciding whether something is interesting or not is of central importance
in automated mathematical discovery, as it helps determine both the search
space and search strategy for finding and evaluating concepts and conjectures.
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Best-first searches using assessments of interestingness are often needed to ef-
fectively traverse large search spaces. When it becomes clearer what results are
interesting, instead of just ignoring or discarding dull concepts and conjectures,
the search space can be tailored to avoid some of them completely. Estimating
interestingness is difficult because often it has to be done immediately after a
concept or conjecture has been introduced, whereas the true interestingness of
results and definitions in mathematics may only come to light much later.

In §4, we identify six reasons why a concept or conjecture might be considered
interesting. We detail how the programs use empirical evidence to cut down on
the number of false conjectures made. We show how the novelty of a conjecture
can be determined by whether it, or an isomorphic conjecture, has been seen
before, or whether it follows as an obvious corollary to a previous conjecture, and
we detail the different ways in which a concept can be thought of as novel. We
note that being surprising is a desirable property of conjectures and concepts and
we show how programs will avoid making conjectures which are just instances
of tautologies, and how they can assess the surprisingness of a conjecture or
concept. We define the applicability of concepts and conjectures to be the subset
of models to which they bear some relevance, and show that this measure can
be used in a variety of ways. We also detail how programs can assess complexity
and tailor their search strategies to find the most comprehensible results first.
Finally, we look at how a user can set a program a particular task to achieve
and how interestingness can be measured with respect to that task. By looking
in detail at five discovery programs and extracting some common ways by which
the interestingness of concepts and conjectures is estimated, we will be able to
suggest possible ways for future programs to measure interestingness. We first
discuss the scope of this paper and give some mathematical background.

1.1 Scope of the Paper

We approach the problem of interestingness in automated mathematical discov-
ery pragmatically, by surveying five important programs which perform discov-
ery tasks and extracting commonalities in how they estimate interestingness.
It is not, therefore, in the scope of this paper to give psychological validation
to the points we raise. Indeed, interestingness in automated mathematics is
distinct in many ways to interestingness in mainstream mathematics, not least
because an immediate assessment often has to be made in automated discovery,
which is not usually the case in mainstream mathematics.

Measures of interestingness are used in many ways to facilitate machine
creativity. In particular, we note that estimates of the worth of a concept or
conjecture play a part in both the discovery aspects of machine creativity, as
measures are used to drive heuristic searches, and the justification aspects, as
measures are used to evaluate results after they have been produced. While we
employ the notions of discovery and justification to help classify the measures
used, it is not the aim of this paper to add to the philosophical discussion of
these issues, and we suggest [17] or [29] for such a discussion. However, we will
comment on the application of this study in automated mathematical discovery
to the broader question of interestingness in automated scientific discovery. In
particular, we will note in §6.1 that the measures set out in [37] by which
humans can assess the output from scientific discovery programs are similar to
the internal measures by which the programs assess interestingness.
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1.2 Mathematical Background

Mathematical concepts include both the objects of interest in mathematics, for
example even numbers, and the ways of describing those objects, for example
being divisible by seven. The same concept can often be given as either an object
or a description, the choice being dependent on the context. For example, in one
context, someone might say that ‘ten is an even number’, whereas in another
context it might be better to say that ‘ten is even’. Usually, concepts have
one or more definitions. For example, prime numbers are sometimes defined as:
‘integers greater than 1 which are divisible by only 1 and themselves’, and other
times as: ‘integers with exactly two divisors’. Often the definition will allow
a test for membership, and sometimes the definition will enable examples (or
models) of the concept to be generated. For example, the definition of prime
numbers makes it possible to test whether a given number is prime, but gives
no clue as to how to generate them, other than the generate and test method.
Sometimes, it is difficult to find examples of a concept, and it is only possible
to say that one exists, and other times, it is not even possible to do that. For
example, it is not known whether there are any odd perfect numbers.1

Mathematical conjectures are statements about some concepts of interest.
If an unrefuted argument is given which shows that the statement is true, the
conjecture is referred to as a theorem, and the argument is called the proof
of the theorem. However, if the truth of the statement remains in dispute,
the statement is usually referred to as an open conjecture.2 There are three
common formats for conjectures discussed in this note. Firstly, it is often non-
trivial to show that two definitions for a concept are actually equivalent, which
gives rise to an if-and-only-if conjecture stating that an example satisfies the
first definition if, and only if, it satisfies the second definition. Implication
conjectures state that all objects of one type are also of another type and non-
existence conjectures state that there are no examples of a particular concept.

A very brief overview of four domains, namely number theory, plane geo-
metry, graph theory, and group theory, will suffice to appreciate how the pro-
grams discussed in this note work. Elementary number theory involves, amongst
other things, the study of properties of numbers, relations between numbers and
sequences of numbers. An important concept discussed here is the number of
divisors of an integer, and the τ function calculates this value for a given in-
teger. Plane geometry is the study of diagrams drawn on a flat surface involving
points, lines, circles and other constructions. Important notions include lines
being parallel if, no matter how far you extend them, they never cross, and a
line being a tangent to a circle if it touches but doesn’t cross the circle.

A simple graph is a set of nodes joined by undirected edges (see figure 1).
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Figure 1: Four example graphs

1A perfect number is such that the sum of its divisors is twice the number itself.
2An exception to this rule was Fermat’s last theorem, [34], which was called a theorem for

over 350 years, even though no correct proof had been provided.
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In elementary graph theory, two nodes are adjacent if connected by an edge,
and the degree of a node is the number of edges the node is on. The graph theory
concepts discussed here are (a) types of graph, such as complete graphs (where
all nodes are joined by an edge as in graph A and B above), and (b) numerical
values, for example the number of nodes or the maximum degree. An important
area involves colouring the nodes of a graph. The chromatic number of a graph
is the number of colours required to give it a ‘proper’ colouring, where no pair of
adjacent nodes have the same colour. Paths are also important in graph theory,
and the radius and diameter of a graph are related to the lengths of paths.

Finite algebras detail ways to take a pair of elements, a and b, from a finite
set, and assign a third element, usually written a∗b, to the pair. Each algebra has
a different set of constraints, or axioms, which the assignments must satisfy. In
finite group theory, there are three constraints, called the associativity, identity
and inverse axioms, the details of which are not important here, apart from the
fact that in groups there is always an identity element, id, for which ∀a, a∗ id =
id ∗ a = a. The assignment of a ∗ b is called multiplying a and b and groups
are often presented with multiplication tables. For instance, figure 2 shows the
multiplication tables for two groups with four elements.

aa b c d
b c d a
c d a b
d a b c

a
b
c
d

a b c d
a
bb

c
d

c
d

a
b
a
d
c

c
d

d
c

b c d

ba
ab

Figure 2: Multiplication tables for two groups of order 4

Elementary group theory concepts include relations between two elements,
such as commutativity, where two elements a and b commute if a ∗ b = b ∗ a.
Subgroups are subsets of elements which also form a group, and subgroup con-
structions are common, for example, taking the set of elements which commute
with all the other elements gives a subgroup known as the centre of the group.
Other elementary concepts include types of group, for example, if all pairs of
elements in a group commute then the group is called Abelian.

A key notion in mathematics is isomorphism, where the same object can
be represented in two or more ways. For example, in figure 3, graph X can
easily be redrawn to look like Y. Graph theorists say that say that X and Y
are isomorphic, ie. they are essentially the same. Similarly, group theorists say
that groups A and B in figure 3 are isomorphic because swapping a and b in the
body of table A gives table B. Often it is difficult to show that two objects are
isomorphic, so properties are sought, called invariants, which are the same for
any representation of the object. These can be used to show that two objects
are not isomorphic, and various techniques, such as the one described in [27],
can be employed to show that two objects are isomorphic.
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Figure 3: Isomorphic graphs and groups
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2 Machine Discovery Programs

The five programs we discuss in detail are the AM program which worked in
elementary set and number theory, the GT program which worked in graph
theory, the Graffiti program which is used in graph theory, the plane geometry
system from Bagai et al, and the HR program which works in finite domains such
as finite algebras, graph theory and number theory. For each one, we detail (i)
the initial information given, (ii) the way in which concepts are represented, (iii)
the techniques employed for inventing concepts, (iv) the techniques employed
for spotting conjectures and (v) the successes of the project. The remainder of
the discussions are designed to pay particular attention to the way in which the
interestingness of concepts and conjectures is estimated by the program.

Other programs which performed discovery tasks in mathematics include
Sim’s IL program, [33], which invented operators on number types such as com-
plex numbers. Also, Lenat’s Eurisko program, [22], Haase’s Cyrano programs,
[13], Morales’ DC program, [28], and Shen’s ARE system, [32], all reconstructed
or extended Lenat’s original work on the AM system. The very recent SCOT
program, [30], builds on the work of the ARE, Cyrano, GT and HR programs
to perform specialised theory formation in graph theory. More specialised pro-
cedures have also been implemented by mathematicians for specific discovery
tasks. For example, the Otter theorem prover has been used to discover new
axiomatisations in algebra, [25], and the PSLQ algorithm, [2], has been used to
identify a remarkably simple new formula for π:

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

2.1 The AM Program

The AM program, written by Douglas Lenat, performed concept formation and
conjecture making in elementary set and number theory, as described in [7]
and [21]. Starting with 115 elementary concepts such as sets and bags, AM
would re-invent set theory concepts like subsets and disjoint sets, and number
theory concepts such as prime numbers and highly composite numbers (with
more divisors than any smaller integer). AM would also spot some well known
conjectures, such as the fundamental theorem of arithmetic and Goldbach’s
conjecture - that every even number greater than 2 is the sum of two primes.

Concepts were given a frame representation with 25 facets to each frame,
and none, one or multiple entries for each facet. Some of the facets were: (i) a
definition for the concept (ii) an algorithm for the concept (iii) examples of the
concept (iv) which other concepts it was a generalisation/specialisation of, and
(v) conjectures involving the concept. AM repeatedly performed the task at the
top of an agenda ordered in terms of the interestingness of the tasks. Each task
involved performing an action on a facet of a concept. Usually the action was to
fill in the facet, for example, find some other concepts which are specialisations
of the concept or find some conjectures about the concept, but the action could
also be to check the facet, eg. check that a conjecture was empirically true.

To perform a task, AM would look through its database of 242 heurist-
ics, choose those which were appropriate to the task and perform each of the
sub-tasks suggested by the chosen heuristics. Some sub-tasks detailed how to
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perform the overall task at hand, but they were not limited to that. Some sub-
tasks put new tasks on the agenda (which was how the agenda was increased).
Some of the new tasks were to invent new concepts. When these were added
to the agenda, AM would immediately create the frame for the new concept as
knowledge present at the time was needed to fill in some of the facets of the
concept. AM only filled in the information at this stage which took little com-
putation, such as a definition and examples, and a task was put on the agenda
to fill in each of the other facets of the newly formed concept.

Among the new concepts AM would suggest were: (i) specialisations, eg.
a new function which was a previous one specialised to have equal inputs, (ii)
generalisations (iii) extracted from the domain/range of a function, eg. those
integers output by a function (iv) inverses of functions (v) compositions of two
functions. Some tasks on the agenda were to find conjectures about a concept,
including finding that (a) one concept was a specialisation of another (b) the
domain/range of a concept was limited to a particular type of object or (c) no
objects of a particular type existed.

Because there could be as many as 4000 tasks on the agenda at any one
time, AM spent a lot of its time deciding which it should do first. Concepts,
individual facets of the concepts and actions on the concepts were assigned
numerical values indicating their worth. Whenever a heuristic added a task
to the agenda, it would supply reasons, accompanied by appropriate numerical
values why the action, concept or facet of the task was interesting. AM then
employed a formula involving the number of reasons and a fixed weighted sum
of the numerical values to calculate an overall worth for the task. The weighted
sum gave more emphasis to the reasons why the concept was interesting than
the reasons why the facet or action were interesting. When a heuristic was
working out how interesting a concept was, it would collate and use another set
of heuristics for the task. The heuristics used to measure the interestingness of
any concept were recorded as heuristics 9 to 20 in [7], and included:

[9] A concept is interesting if there are some interesting conjectures about it.

[13] A concept is dull if, after several attempts, few examples have been found.

[15] A concept is interesting if all examples satisfy a rarely-satisfied predicate.

[20] A concept is more interesting if it has been derived in more than one way.

(Note that these have been paraphrased from Lenat’s originals). AM also had
ways to assess the interestingness of concepts formed in a particular way, for
example the interestingness of concepts formed by composing two previous con-
cepts could be measured by heuristics 179 to 189, one of which was:

[180] A composition F = GoH is interesting if F has an interesting property
not possessed by either G or H.

AM would also measure the interestingness of conjectures, so that it could cor-
rectly assess tasks relating to the conjectures facets of concepts. Heuristics 65
to 68 seem to be the only heuristics which do this, for example:

[66] Non-existence conjectures are interesting.
At any stage during a session, the user could interrupt AM to tell it that a

particular concept was interesting by giving it a name. Lenat says in [7] that
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users could “kick AM in one direction or another”, and “the very best examples
of AM in action were brought to full fruition only by a human developer”. Many
of AM’s heuristics were designed to focus on chosen concepts, by spreading
around the interest the user had shown in them. For example, these heuristics
keep the attention on concepts and conjectures related to interesting concepts:

[16] A concept is interesting if it is closely related to a very interesting concept.

[65] A conjecture about concept X is interesting if X is very interesting.

In fact, AM could make a little interestingness go a long way: of the 43 heuristics
designed to assess the interestingness of a concept, 33 of them involve passing
on interestingness derived elsewhere. Therefore, if a user expressed an interest
in a concept, the theory would develop around that concept.

There has been much debate about the AM program. In [31], Hanna and
Ritchie were particularly critical of the methods AM used and the accuracy of
Lenat’s description of his work, and in [23], Lenat replied to this criticism. The
main contribution of Lenat’s work is an inspiration for how computers could do
mathematics, ie. by creating concepts and conjectures of many different types
and using heuristic methods such as analogy and symmetry to explore a domain.

2.2 The GT Program

The GT program by Susan Epstein performed concept formation, conjecture
making and theorem proving in graph theory, as described in [9] and more fully
in [10]. Given just the concept of a graph, GT would re-invent graph properties,
such as being acyclic, connected, a star or a tree, (as shown in figure 4).
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Figure 4: Graph properties re-invented by GT

Alternatively, given a set of user-defined and invented concepts describing graph
properties, GT would make conjectures such as:

• A graph is a tree if and only if it is acyclic and connected.

GT successfully illustrated a possible mechanism for automated discovery in
mathematics involving both deductive and inductive reasoning. This was pos-
sible because GT represented graph properties in a carefully thought out way
developed in Epstein’s PhD thesis, [8]. This representation was crucial as it
allowed example generation, theorem proving and concept formation.

Each graph property was represented as a triple, < f, S, σ >, consisting of a
set of base cases, S, a constructor, f , and a set of constraints for the constructor,
σ, which together detailed the recursive construction of graphs from the base
cases. For example, to define the star property above, the base cases would be
just the trivial graph (with one vertex, no edges) and the constructor would
add one vertex and an edge between the new vertex and an old vertex, subject
to the single constraint that the old vertex must be on more edges than any
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other vertex. Epstein was able to prove that 42 classically interesting graph
theory concepts, including cycles, Eulerian graphs and k-coloured graphs, could
be represented in this manner in a sound and complete way.

This representation could be used to generate examples of a concept (Epstein
called this ‘doodling’) by starting with the base cases and repeatedly applying
the constructor, subject to the constraints. Conjecture making and deduction
was possible by spotting and proving that one graph property subsumed another
(see [10]), or by showing that no graphs could have two particular properties.
Concept formation was possible by: (a) specialising a previous concept by re-
moving base cases, restricting the constructor, or strengthening the constraints,
(b) generalising a previous concept by adding base cases, expanding the con-
structor, or by relaxing the constraints, or (c) merging properties A and B, for
example creating a new graph property with A’s base cases and constructor,
but the constraints of both A and B, [subject to some conditions].

GT worked by repeatedly completing one of six types of project: (i) generate
examples of graphs with certain properties, (ii) see if one property subsumed
another (iii) see if two properties were equivalent, (iv) see if a merger between
two properties would fail, (v) generalise a concept and (vi) specialise a concept.
Each project was placed on an agenda following various rules:

• If a property has few examples in the database, then immediately generate
more examples for it by ‘doodling’.

• Two properties, P and Q, are better candidates for projects (ii) or (iii) above
if the set of base cases for P and Q are similar. Two sets are most similar
if they are equal, less similar if one is a subset of the other and less similar
still if they only have a non-trivial intersection.

• Only perform specialisation or generalisation projects with a concept before
doing conjecture-making projects if the concept is a ‘focus’ (see below).

As an overview, if a conjecture project was at the top of the agenda, before
trying to prove the conjecture, GT would first see if there was empirical evidence
against the conjecture, using the generated examples of the graphs [note that
a conjecture was suggested only using the base cases]. If the project was to
check a merger conjecture, then the merge step would take place, and only if
no graphs of the merged type could be produced would an attempt be made
to prove the conjecture. If a generalisation or specialisation project was at the
top of the agenda, it would be carried out and some effort expended to generate
examples of the new concept.

Focus concepts could be specified by the user if they were particularly inter-
ested in them, and, as well as restricting concept formation only to generalising,
specialising and merging the focus concepts, GT would only make conjectures
involving the focus concepts. If a concept was a generalisation of a focus concept,
but no example graphs could be produced which were not examples of the focus
concept, the new concept was discarded. Also, if only a few graphs could be
generated with a newly formed property, the new concept was discarded.

By identifying the routine of ordering which conjectures to look at first, at-
tempting to make and prove the conjectures, and performing concept formation
only with the most interesting concepts, Epstein’s implemented model of discov-
ery successfully produced theories containing different kinds of conjecture and
their proofs and concepts and graphs not present at the start of the session.
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2.3 The Graffiti Program

The Graffiti program written by Siemion Fajtlowicz, makes conjectures of a nu-
merical nature, mainly in graph theory, as described in [11], and more recently
in [20]. Given a set of well known, interesting graph theory invariants, such as
the diameter, independence number, rank or chromatic number, Graffiti uses a
database of graphs to empirically check whether one sum of invariants is less
than another sum of invariants. If a conjecture passes the empirical test and
Fajtlowicz cannot prove it easily, it is recorded in the “writing on the wall”
document, some of which is publicly available, [12]. Fajtlowicz also forwards
promising conjectures to interested graph theorists. These types of conjecture
are of substantial interest to graph theorists because (a) they often provide a
significant challenge to resolve and (b) calculating invariants is often computa-
tionally expensive, so any bounds on their values are useful. As an example,
the 18th conjecture in the writing on the wall states that, for any graph, G:

chromatic number(G) max degree(G)
+ ≤ +

radius(G) frequency of max degree(G)

Note that the only concept formation Graffiti undertakes is to add together two
or more invariants, and the concepts are represented as fragments of executable
code. The empirical check is time consuming, so Graffiti employs two techniques,
called the beagle and dalmation heuristics, to discard certain trivial or weak
conjectures before the empirical test:

The beagle heuristic discards many trivially obvious theorems, including those
of the form i(G) ≤ i(G)+1. (Note that invariants which are a previous invariant
with the addition of a constant are used to make stronger bounds). The beagle
heuristic uses a semantic tree of concepts to measure how close the left hand
and right hand terms are in a conjecture, and rejects those where the sides are
semantically very similar.

The dalmation heuristic checks that a conjecture says something more than
those made by Graffiti previously. To use the dalmation test for a conjecture of
the form p(G) ≤ q(G), Graffiti first collates all the conjectures it has ever made
of the form p(G) ≤ ri(G). Then, to pass the dalmation test, there must be at
least one graph, G0, in Graffiti’s database which for all the ri, q(G0) ≤ ri(G0).
This means that, for at least one graph, q(G) gives a stronger bound for p(G)
than any invariant suggested by a previous conjecture, so the present conjecture
does indeed say something new about Graffiti’s graphs.

Another efficiency improving technique employed by Graffiti is to restrict
the database of graphs to only those which are a counterexample to a previous
conjecture. A third efficiency technique is to remove by hand any previous
conjectures which are subsumed by a new conjecture. For example, Fajtlowicz
would move the old conjecture i(G) ≤ j(G) + k(G) to a secondary database,
if the conjecture i(G) ≤ j(G) was made. However, if the latter conjecture was
subsequently disproved, the former conjecture would be restored.

As Fajtlowicz adds concepts to Graffiti’s database, the writing on the wall
reflects the new input, eg. conjectures 73 to 90 involve the coordinates of a
graph. Fajtlowicz can also direct Graffiti’s search by specifying a particular
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type of graph he is interested in. For example, conjectures 43 to 62 are about
regular graphs. To enable this kind of direction, Fajtlowicz informs Graffiti
of the classification of its graphs, into, say, regular and non-regular graphs.
Then, if Graffiti bases its conjectures on only the empirical evidence supplied
by the regular graphs, the conjectures will only be about those graphs. To
stop Graffiti re-making all of its previous conjectures, the echo heuristic uses
semantic information about which graph types are a subset of which others,
and rejects conjectures about the chosen type of graph if there is a superset of
graphs for which the conjecture is also true.

In terms of adding to mathematical knowledge, the Graffiti program has
been extremely successful. Its conjectures have attracted the attention of scores
of mathematicians, including many luminaries from the world of graph theory.
There are over 60 graph theory papers which investigate Graffiti’s conjectures.
While Graffiti owes some of its success to the fact that the inequality conjectures
it makes are of a difficult and important type, this should not detract from the
simplicity and applicability of the methods and heuristics it uses.

2.4 Bagai et al’s System

The discovery program developed by Rajiv Bagai et al, described in [1], worked
in plane geometry by constructing idealised diagrams and proving theorems
stating that certain diagrams could not be drawn. Each concept consisted of
a set of first order statements representing a diagram in plane geometry. The
diagrams involved points and lines and relations between the points and lines,
such as a point being on a line or two lines being parallel. For example, a
parallelogram and its diagonals, as in figure 5 below (taken from [1]), could be
described by stating that there were four ingredient points, A,B, C and D, six
lines (one between each pair of distinct points) and two relations, namely that
lines AB and CD were parallel and that lines AC and BD were parallel.

D

BA

C

Ingredient points: A,B,C,D
Relationships: parallel(line(A,B),line(C,D))

parallel(line(A,C),line(B,D))

Figure 5: A parallelogram and diagonals, and its representation

The system required no initial information, and starting with an empty set,
concepts like the parallelogram were made by adding new ingredient points and
new relations to a previous concept. Each time a new relation was added, a
conjecture was made that the resulting concept was inconsistent, ie. that it was
not possible to draw the diagram. To prove the conjecture, the concept was
turned into a collection of polynomials and inequalities which were passed to an
efficient theorem prover, [4]. If the theorem was proved, then the concept was
discarded, and the theorem was recorded and output. If the theorem was not
proved, the concept was kept and used to build new concepts from.

Many methods were employed to reduce the number of times the system
used the theorem prover. Firstly, as previously stated, only consistent concepts
were built upon, as a concept which was an extension of an inconsistent concept
would itself be inconsistent. By also restricting to only adding one relation at a
time, if the concept produced was inconsistent, the additional relation must have
caused the inconsistency. This enabled better presentation of the theorems. For
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example, if the relationship: parallel(line(A,D),line(B,C)) was added to
the parallelogram concept above, this would produce an inconsistent concept.
As the inconsistency was caused by the new relation, instead of just stating
that parallelograms with parallel diagonals cannot be drawn, the system could
state that: “Given a parallelogram, the diagonals cannot be parallel.” (Noting
that we’ve substituted the word parallelogram for the first order description
involving parallel lines).

Another way to reduce the time spent using the theorem prover was to avoid
proving the inconsistency of a concept which was isomorphic to a previous one.
Two concepts were isomorphic if a permutation of the ingredient points of the
first produced the second. To get around this problem, whenever a concept was
introduced, all of its isomorphic concepts were also built, so that they could
be recognised and ignored if re-constructed by a different route later on. Also,
to cut down on the occurrences of later theorems which implied earlier ones, a
breadth first search was used where a step could only be the addition of either
a single ingredient point or a single new relation. This meant that the most
general diagrams were constructed before the more specific ones and therefore
the most general versions of theorems were produced first. Not only could the
program re-discover well known results such as Euclid’s 5th postulate, it also
provides a very clear and concise theory for the automatic production of a subset
of plane geometry concepts and a set of theorems about the non-existence of
models for certain concepts.

2.5 The HR Program

The HR program by Colton et al, as described in [6], was originally developed
to perform concept formation in finite group theory, but the methods applied
to many finite domains, and HR has been used in many different finite algebras,
as well as number theory and graph theory. Starting with just the axioms of
group theory, HR can re-invent classically interesting concepts such as centres
of groups, Abelian and cyclic groups and orders of elements. HR works directly
with the models of concepts (stored as data-tables), and constructs new concepts
by taking the data-tables of old concepts and manipulating them using one of
ten production rules to produce a new data-table. The production rules include
ways to specialise and generalise tables, and ways to combine tables and find the
compliments of tables (ie. the data which is not in the table). From information
about how a concept was constructed, HR can generate a definition for the
concept whenever one is needed.

HR encounters a combinatorial explosion because a single concept can often
be transformed into around 20 new ones, and any pair of concepts can be com-
bined into a third. A heuristic search is used which chooses the best concept
to use in each concept formation step. HR has a variety of ways to measure
concepts and a weighted sum of measures is taken to indicate an overall level
of interestingness for the concept. The weights are set by the user and depend
on the nature of the concepts they are looking for. One way to use HR is to
supply a ‘gold standard’ categorisation of the groups it has, and ask HR to find
a function, the output of which will categorise the groups correctly (groups with
the same output are put in the same category). HR can then measure how close
each concept gets to the gold standard. For example, given the isomorphic clas-
sification of the groups up to order 6 (see §1.2) HR found this function which
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achieves the correct categorisation:

f(G) = |{(a, b, c) ∈ G3 : a ∗ b = c & b ∗ c = a}|.
If the user has no particular task in mind, they can ask HR to explore the do-

main. HR has certain measures which indicate desirable properties of a concept,
and users can stress some of these if they wish. The parsimony measure of a
concept is inversely proportional to the size of the data-table for the concept.
The data in a table corresponding to a particular group can be used to describe
that group, and so a small table is advantageous as this means more parsimoni-
ous descriptions. HR can also assess the novelty of a concept, which is inversely
proportional to the number of times the categorisation produced by the concept
has been seen already, (with more unusual categorisations being more interest-
ing). Finally, HR can measure the complexity of a concept which is inversely
proportional to the number of old concepts appearing in its construction path.
This gives a rough indication of how complicated the definition of the concept
will be, and more concise definitions are desirable.

HR can make if-and-only-if conjectures by spotting that the data-table of a
newly formed concept is exactly the same as a previous concept, and conjectur-
ing that the concepts are equivalent. When this happens, definitions for each
concept are generated and used to write the conjecture in a way acceptable to
the Otter theorem prover, [24], which HR asks to prove the conjecture. For
example, when HR invents the concept of elements, a, for which a ∗ a = a, it
spots that the new data-table is the same as the one it has for the concept of
the identity element, id, and the following conjecture is generated:

∀a, (a = id ⇐⇒ a ∗ a = a).

This is broken into (a = id −→ a ∗ a = a) and (a ∗ a = a −→ a = id), which are
both passed to and easily proved by Otter. Before passing a conjecture to Otter,
HR uses some simple deductive techniques to check whether the conjecture
follows easily from those already proved. HR can also make implication and
non-existence conjectures using the empirical evidence from the data-tables.

HR has a set of ‘sleeping concepts’, such as the trivial group, and when a
concept is conjectured to be the same as these, the conjecture is flagged so that
the user can pay special attention to it (or choose to ignore it). Conjectures are
assessed in two ways. Firstly, the surprisingness of a conjecture measures how
different the two (possibly) equivalent concepts are, by evaluating the proportion
of concepts which appear in the construction path of one but not both of the
concepts. This gives some indication of how different looking the definitions of
the equivalent concepts are going to be. Secondly, if a conjecture is proved, Otter
will provide a proof length measure in its output, which gives some indication
of the difficulty of the proof. A cycle of mathematical activity is closed by HR
because it uses the assessments of conjectures to assess the concepts discussed
in the conjectures, thus advancing the concept formation.

If the equivalence of two definitions is proved, HR uses this fact to re-
assess the concepts involved, and keeps only the least complex definition for
the concept. If Otter cannot prove a conjecture, HR passes it to the MACE
model generator, [26], which is asked to find a single counterexample to the
conjecture. If MACE is successful, the counterexample is added to HR’s data-
base and all previous concepts and measures are re-calculated, giving HR a
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better idea of the theory it is exploring. All future conjectures will be based on
the additional data provided by the new example.

HR’s biggest success so far has come in number theory, where it has identified
14 interesting sequences missing from the encyclopedia of integer sequences.3

One of these sequences was originally defined as recently as 1990, [15], but
the others are believed to be new to mathematics. HR has also found some
interesting theorems about these sequences, [5], for example, if the sum of the
divisors of an integer is prime, then the number of divisors must be prime.

3 A Comparison of the Programs

A detailed comparison of the measures of interestingness used by the programs
is given in §4, and we restrict ourselves here to a comparison of some logistical
aspects of the programs. We first focus on the role of the user and follow this
with a table for comparing the programs.

3.1 The Role of the User

It is important to determine what role the user played in guiding the search for
concepts and conjectures in these programs, as this had an impact on how the
program measured interestingness. Firstly, in many cases, the user could set
tasks for the concepts/conjectures to achieve. We discuss this fully in §4.6, as
it is more appropriate to think of achieving tasks as a measure of the interest-
ingness of a concept or conjecture.

With the reporting of AM following Lenat’s thesis, it is easy to forget that
AM was designed to be interactive. With each concept stored as a frame con-
taining much information, and because AM started with 115 concepts, it was
only possible to invent around 170 concepts. In order to find interesting con-
cepts with such a short search, AM relied heavily on input from the user, who
could stop AM at any time and express an interest in a concept by giving it
a name. The heuristics were designed so that a sizeable amount of the search
would revolve around the chosen concept. Hence, if Lenat expressed an interest
in, say, the division concept, this greatly increased the chances of AM finding
the τ function (number of divisors), prime numbers (exactly two divisors), and
so on. Thus the user played a large part in shaping AM’s search.

The user could also have an impact on the searches made by the GT program.
By identifying a focus concept, the search would centre around that concept.
However, GT functioned perfectly well with no user intervention. Perhaps the
biggest role of the user in the Graffiti program is to supply the many interesting
graph theory concepts that it uses to make conjectures. Also, Fajtlowicz main-
tains the database of previous conjectures by pruning any which are subsumed
by more general ones, and any which are trivial to prove. Finally, as in the GT
program, the user can restrict Graffiti’s search to only involve certain concepts,
thus focusing the search around those concepts. The user seemed to play no
part in the search undertaken by the Bagai et al program, except perhaps to
tell it how many theorems were required. Finally, the user can set certain para-
meters before running HR, in an attempt to guide the search in advance. Once
a session has started, the user will not interrupt or alter the search in any way.

3See http://www.research.att.com/~njas/sequences.
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The output of discovery programs is usually intended for a human audience,
so enabling the user to guide the search in some way is a good idea. The impact
of the user on the theory produced can depend on the size of the search space
and various limitations of the program. Note that only the Graffiti and HR
projects are current, and only these have added to mathematics, with Graffiti
providing many conjectures in graph theory, and HR contributing to number
theory. Only Graffiti was developed and used by mathematicians, with the
others developed as artificial intelligence projects designed to illuminate and
model aspects of discovery in mathematics, rather than as collaborators with
mathematicians, an important distinction highlighted in [37].

3.2 Comparison Table

This table is provided for quick comparison of the programs, and details in the
table can be expanded by reference to the relevant subsection of §2.

Program Year Domains Representation Initial
of concepts information

AM 1976 set, number frames 115 concepts

GT 1987 graph base case, constructor a few concepts
and constraints

Graffiti 1988 graph, number, code fragments many interesting
geometry concepts

Bagai 1993 geometry first order nothing
et al statements

HR 1997 finite algebras, data-tables axioms (eg. 3 in
number, graph group theory)

Program Concept Conjecture Inference Addition to
Formation Types Mechanisms Mathematics
Techniques

AM generalise, if-and-only-if, induction, -
specialise, implies, model generation
compose non-exists

GT generalise, if-and-only-if, induction, -
specialise, implies, deduction,
compose non-exists model generation

Graffiti addition of inequalities induction, new graph
invariants theory

theorems

Bagai adding non-exists induction, -
et al relations deduction

and objects

HR generalise, if-and-only-if, induction, new number
specialise, implies, deduction, theory
compose, non-exists model generation concepts and

compliment conjectures

Perhaps the most striking difference between these programs is the different
representations for concepts used in each program. The choice may be because
it facilitates the production of models (GT, Graffiti) or the proving of theorems
(GT, Bagai et al) or for efficiency reasons (HR).
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4 Assessing Interestingness

We cannot discuss measures of interestingness without addressing how the meas-
ures are used. For example, one program might say that the concept of even
prime numbers is interesting because a conjecture can be made that 2 is the only
one, whereas another program might say that they are dull because it can only
find one example. Here, the same measure has been used (see §4.4 below), but
different conclusions have been drawn. Therefore we have to clearly separate the
measures for interestingness from their uses. One common use of interestingness
is to improve the efficiency of the programs. To save time checking and proving
conjectures, some of them are discarded before even checking them empirically,
and the reason to perform an empirical check is, of course, to cut down on the
time spent trying to prove false conjectures.

Another common use of interestingness is to improve the appeal of the out-
put. It is not possible to avoid all uninteresting concepts or conjectures when
constructing a theory and interestingness measures can be used to filter the out-
put depending on the user’s needs. Also, measures of interestingness can guide
the search so that the program can make informed progress into the space and
find interesting concepts that it might take a longer time to find with an ex-
haustive search. A more specific use of interestingness measures is to predict in
advance how difficult a conjecture will be to prove, which, in all but some trivial
circumstances is not easy to do. Finally, interestingness measures can be used
to steer the concept formation towards a particular concept which performs a
user-defined task. Having identified some uses for interestingness, we can detail
certain general types of measures and look at how each one is used.

4.1 Empirical Plausibility of Conjectures

A conjecture is likely to be uninteresting if the empirical evidence a program
has provides counterexamples. This does not mean that false conjectures in
general are uninteresting, as the production of counterexamples is a worthwhile
pursuit. However, if a counterexample is found using the data a program has,
the conjecture cannot provide this pursuit. Only the system developed by Bagai
et al makes conjectures which have not been first verified by some empirical
evidence. In this case, the efficiency and power of the theorem prover and the
nature of the idealised geometrical domain make it unproductive to look for
counterexamples. The AM program is the only one which doesn’t immediately
discard a conjecture proved false by empirical evidence. In this case, an attempt
is made to alter the conjecture to make it fit the data. One way to do this is
to exclude what Lenat calls ‘boundary’ integers, so for example, the conjecture
‘all primes are odd’ becomes the conjecture ‘all primes except 2 are odd’.

HR and Graffiti use all of their data at once. HR uses its data to spot a
conjecture, so by the time the conjecture has been made, the empirical check
has been completely performed. Similarly, once a conjecture has been suggested
to Graffiti, all the empirical evidence is used to check it. Note that both these
programs keep the amount of empirical data down to a minimum because they
only store models which have been generated as counterexamples to previous
conjectures. GT employs a more efficient system because a conjecture is sug-
gested by the small amount of empirical evidence in the set of base cases, and
only those conjectures passing this test are checked against all the examples for
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the concepts. Similarly, AM will make a conjecture based on a little empirical
evidence, then try to generate more models to disprove the conjecture.

4.2 Novelty

Because of the redundancy often inherent in searches for concepts and conjec-
tures, it is important to be able to spot when a repetition has occurred. Each
program either tailors its search to reduce repetitions, or can spot them when
they occur. Thus they measure the novelty of a concept or conjecture statement,
and reject those which have been seen already. The Graffiti program goes to
the length of storing conjectures between sessions. Another issue of novelty in
programs searching for conjectures is whether a theorem follows as an obvious
corollary to a stronger theorem, in which case the weaker result does not say
anything particularly new. Graffiti works hard to show that a new conjecture
says something more than the previous ones, by checking that there is at least
one graph for which the inequality in the conjecture is stronger than all the
previous ones (the dalmation heuristic), and by checking that the conjecture
is not implied by previous ones (the echo heuristic). Spotting the implication
of one conjecture by another is also used in Graffiti to improve efficiency: if a
later conjecture turns out to be stronger than a previous one, the earlier one is
removed, hence saving Graffiti time when looking through old conjectures.

The HR program deals with the implication of one conjecture by previous
ones by attempting to prove all stronger conjectures than the one it is consid-
ering. For example, if interested in the conjecture P & R → Q, HR first uses
some simple deductive techniques to see if it follows as a corollary to its previ-
ously proved results. If not, HR tries to prove P → Q, and R → Q and if either
turns out to be true, the original conjecture is discarded and the stronger result
is kept. The most efficient way to deal with one conjecture implying another is
to tailor the search to produce the most general conjectures first, reducing the
chance that later conjectures will imply earlier ones. This technique is used in
the system from Bagai et al, but they point out in [1] that it is still possible to
produce a conjecture which implies an earlier one.

A concept can be shown to be novel with empirical evidence. For example,
if a function produces some output for a given input that no other function
produces, it must be novel. Given only a limited amount of data though, it can
be difficult to tell whether two concepts are different. Bagai et al’s system (which
uses no data at all) tackles this by generating all possible isomorphic concepts
whenever a new concept is introduced, so that if an isomorphic concept to the
new one is reached by another route, the system will spot this. HR’s conjecture
making abilities rely on the fact that a proof is often needed to tell that two
concept definitions are in fact equivalent, and, like AM, HR assesses a concept as
more interesting if it has multiple definitions. If a concept isn’t the same as one
already in the theory, it is possible to assess how much it differs from the others,
using certain properties of it. AM, for example, gave extra interestingness to
newly formed concepts, ie. those with the novel property of being recently
invented. The HR program assesses the novelty of a concept by the novelty of
the categorisation of groups it gives. It is important to make the distinction
between one concept having two properties (eg. two definitions), which is often
interesting, and two concepts sharing the same property (eg. a categorisation),
which often detracts from the interestingness of both.
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4.3 Surprisingness

As portrayed in [12], when asked what makes a good conjecture, the mathem-
atician John Conway said without any hesitation: “it should be outrageous”.
This is good advice, and in some cases, an assessment of how surprising a con-
jecture is can be made automatically. The least surprising conjectures are those
which are just instances of tautologies. For example, given objects of any type,
A, and a predicate of any nature, p, the conjecture

∀A, not(not(p(A))) ⇐⇒ p(A)

is always going to be true, and conjecture finding programs should avoid making
these and similar conjectures.

To avoid making tautologies of a particular type, GT did not attempt sub-
sumption conjectures where one of the concepts was a specialisation of the
other. The HR program avoids certain tautologies by forbidding particular
series of concept formation steps, eg. not allowing two negation steps in suc-
cession. Graffiti uses a semantic tree to measure how much invariants i and
j differ in the conjecture: ∀ graphs G, i(G) ≤ j(G), and the beagle heuristic
discards many tautology conjectures which involve very similar concepts, such
as i(G) ≤ i(G)+ 1. Whereas Graffiti uses surprisingness only to discard conjec-
tures, when the HR program makes a conjecture that two concept definitions
are equivalent, it has semantic information about those concepts, so can tell
how different they are, giving an indication of how surprising the conjecture
is. HR uses the heuristic that concepts appearing in surprising conjectures are
more interesting, which helps drive a best first search. While HR and Graffiti
can estimate the surprisingness of conjectures, only AM measured the surpris-
ingness of a concept: it gave extra interestingness to concepts which possessed
a property not possessed by its parents (see heuristic 180 in [7], for example).

4.4 Applicability

The applicability of a predicate can be defined as the proportion of models in a
program’s database which satisfy the predicate. Similarly, the applicability of
a function can be defined as the proportion of models in a program’s database
which are in the domain of the function. This measure is somewhat analogous
to the empirical plausibility of conjectures, but can itself be extended to cover
conjectures: the applicability of a conjecture can be defined as the proportion
of models in a program’s database which satisfy the conjecture’s preconditions.
These measures are used in a variety of ways as follows.

In AM and GT, if a newly formed concept had low applicability (ie. few
examples), a task was put on the agenda to generate some more models that
it applied to. If a concerted effort to generate examples still resulted in a low
applicability, GT would discard the concept as uninteresting, and AM would give
it a low interestingness score. In the special case where the applicability was
zero, (ie. no examples were found), both GT and AM would make the conjecture
that none exist. The HR program makes similar non-existence conjectures, and
other conjectures about the applicability of a concept, for example, that it is
restricted to the trivial group. In Bagai et al’s system, the whole point was to
prove that certain concepts have no models (ie. the diagrams cannot be drawn),
which is equivalent to showing that the applicability of a concept is zero. So we
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see that concepts with little or no applicability are often thought of as dull, but
the conjecture that this is true is interesting.

Furthermore, in GT, if a generalisation step produced a concept with no
greater applicability than the one it generalised, or if a specialisation step pro-
duced a new concept with a greater applicability than the one it was supposed
to specialise, the new concept was discarded. In Graffiti, if the user has specified
an interest in a particular set of graphs (ie. those with a particular quality),
then if a conjecture is output which is applicable to a superset of that set, it is
discarded as being too general (the echo heuristic). Also, in HR, the parsimony
measure prefers concepts with small data-tables, and hence small applicability.
This gives an emphasis to specialisation procedures and can be useful in con-
trolling the search. Finally, the AM program used ‘rarely satisfied predicates’ -
those with low applicability - to assess other concepts. For example, heuristic
15 from [7] gave more interestingness to functions whose output always satisfied
one of the rarely satisfied predicates that AM had come across. We see that
applicability is a common measure, but how it is used is determined by the
context in which the discovery task is attempted.

4.5 Comprehensibility and Complexity

As the programs are intended to produce output for a user to read, more com-
prehensible concepts and conjectures are usually of more interest. The GT and
Bagai et al programs constructed concepts incrementally so that the most com-
prehensible ones were introduced first. The HR program employs the complexity
measure which prefers concepts with smaller construction paths (which roughly
relates to how complicated their definition will be). HR’s best first search is not
guaranteed to produce the least complex concepts first, so, if two concepts are
proved to be equivalent, the least complex definition of the two is kept. Also
in HR, concepts are used to describe objects in the theory, and the parsimony
measure prefers concepts giving more concise descriptions. Also, by naming
AM’s concepts, the user helped make the theory more understandable.

The comprehensibility of concepts gives one, albeit shallow, indication of
their complexity, and usually simpler concepts are desirable as these are often
more understandable, as discussed in [16]. An alternative way to assess the
complexity of a concept is to evaluate how much is known about it. AM counts
how many conjectures there are involving a concept and uses this as a measure
of the interestingness of the concept. The HR program goes one stage further
and assesses not only the conjectures but also the proofs of them, and uses this
to measure the interestingness of the concepts involved in the conjectures.

Novelty and surprisingness measures often prune trivial conjectures, as tau-
tologies, conjectures following as obvious corollaries to previous theorems and
those which are unsurprising have a greater likelihood of being easy to prove.
Removing these conjectures should increase the average difficulty to prove the
conjectures remaining. However, this is separate from the issue of how difficult a
conjecture is to understand. Preferring conjectures about less complex concepts
will increase the overall comprehensibility of the theory, and choosing a simple
format for conjectures can also help. For example, as noted in [37], it is easy to
understand Graffiti’s inequality conjectures. Further, the program from Bagai
et al presents its theorems not as unsatisfiability results, but as relations which
cannot occur once a diagram has been set up, a more understandable format.
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4.6 Utility

There are ways by which the user can explicitly express interest in particular
concepts or conjectures. This is clear in the AM program which was designed
as an interactive program where the user can interrupt the session at any time
and express an interest in particular concepts. AM’s heuristics were set up to
pay particular attention to these concepts, and the limited number of concepts
AM could produce in a session were heavily biased by the user’s choice. Here we
see that the user wanted AM’s concepts and conjectures to perform a particular
task, namely to discuss the concept chosen by the user. This was taken a stage
further in the GT and Graffiti programs, where the user could specify a ‘focus’
concept, indicating that only conjectures involving the chosen concept were to
be produced. In GT’s case, this also meant that concept formation was to be
limited to specialising and generalising focus concepts.

In the Graffiti program, all the proved conjectures give a bound for an invari-
ant (which may save computation time), so the search space has been designed
with a task in mind. Also, by giving a ‘gold standard’ classification of groups to
HR, users are expressing an interest in concepts which achieve that categorisa-
tion. By giving concepts and conjectures particular tasks to achieve, a program
can measure how close each comes to completing the tasks and use this to es-
timate interestingness, which will hopefully drive the best-first search towards
something which achieves the task.

5 Classifying Interestingness Measures

A natural progression for a measure of interestingness is to turn from a justi-
fication measure to a discovery measure as a discovery program evolves. For
example, the complexity measure employed by HR was initially used to prune
the output, so the user only saw the more comprehensible results. Later ver-
sions of HR incorporated the measure into the heuristic search, so that only the
comprehensible results found during the search were built on to produce more
results. At present, the complexity measure is more often used to tailor the
search space, in effect making the search depth limited and guaranteeing that
only comprehensible concepts are produced.

Prune the
Output

Define the
Search Space

-Justification Discovery

....................................................

....................................................

Direct the
Heuristic Search

Figure 6: Possible progression of an interestingness measure

We see that an interestingness measure can be classified as either pruning,
directing or defining the search space. It is often the case that pruning and
directing measures are those which are difficult to turn into defining measures.
For example, it is difficult to tailor the search to produce only surprising conjec-
tures, so HR uses surprisingness only as a pruning measure. Other examples of
pruning measures include the way in which the AM, GT and Graffiti programs
discard conjectures which fail empirical tests, and the way in which GT discards
newly formed concepts which did not achieve the desired specialisation or gen-
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eralisation. Examples of directing measures include the utility measure in AM
(ie. the user intervening to point to the interesting concepts), the parsimony
measure in HR, and GT’s choice for concepts to try in subsumption and equi-
valence tasks. Examples of defining measures include HR’s complexity measure,
the setting of focus concepts in GT and Graffiti and the way the Bagai et al
system only built on consistent concepts. Also, the representation of concepts
in the GT program was influenced by the fact that interesting graph types can
be expressed by base cases, constructors and constraints.

Another way in which we can describe an interestingness measure is as im-
mediate or evolving. Immediate measures perform a calculation involving some
aspects of the concept or conjecture and produce a value which is assigned to
the concept and never changes. Examples of immediate measures include the
surprisingness and complexity measures in HR and the beagle and echo heurist-
ics in Graffiti. While immediate measures are necessary to give some initial idea
of the worth of concepts and conjectures, such snapshot evaluations can often
be fairly blunt. Evolving measures, in contrast, are constantly updated as the
theory expands. This expansion might be in terms of new models introduced
into the theory. For example, HR’s parsimony, novelty, invariance and discrim-
ination measures are all re-calculated when a new example is introduced as a
counterexample to a conjecture. Likewise, when new models were introduced to
AM and GT, all the applicability measures were re-calculated. The expansion
of the theory can also be in terms of the concepts and conjectures added. For
example, categorisations in HR become less novel as more concepts producing
that categorisation are added, so novelty is an evolving measure. Similarly, if
a new conjecture is spotted by AM or HR, the interestingness of the concepts
involved in the conjecture is increased.

6 Conclusions

Assessing the interestingness of a concept or conjecture automatically is difficult
because a program must try to predict how much useful mathematics will result
from an investigation of the concept or the attempts to prove the conjecture.
Fermat’s last theorem, for example, could easily have been relegated to the
appendix of a number theory text if it had not been so difficult to prove. Also,
as in discovery of any kind, it is often necessary to have expert knowledge to
decide whether an invention has any far reaching implications or applications,
as pointed out in [18]. By comparing and contrasting five machine discovery
programs, all of which guide their search towards more interesting results by
making decisions about the possible interestingness of those results, we have
noted that the programs use plausibility, novelty, surprisingness, applicability,
comprehensibility and utility to estimate the interestingness of the concepts and
conjectures they produce. We summarise these methods in §6.2 and §6.3 in the
form of hints for future developers of mathematical discovery programs.

6.1 Interestingness in Other Sciences

The abstract nature of the objects discussed in pure mathematics domains lends
itself to automated discovery. Because the objects are abstract, they are often
straightforward to represent in a program. This allows no room for experimental
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error, and so a conjecture is usually not interesting if it is false in a few cases.
This means that, as for all the programs mentioned here, no statistical measures
are needed to assess the worth or plausibility of a conjecture. So, whereas a
result in the physical sciences which was true for 90% of the data would be
noteworthy, it would probably be uninteresting in pure mathematics. For this
reason, and because the measures employed in scientific discovery programs such
as ARROWSMITH, [35] and MECHEM, [36], are often quite domain specific,
it is difficult to assess the measures in the terms discussed here. Indeed, in
genetic approaches to automated scientific discovery, such as that discussed in
[3], a fitness function is developed for each individual problem addressed, and
the interestingness of possible solutions is measured against that function.

As discussed recently in [14] and [38], the question of interestingness is a key
issue in machine learning and in particular knowledge discovery in databases.
It is clear that the general methods highlighted here for mathematical discovery
programs to assess their results can be applied to other scientific domains. For
example, in the MECHEM program, as with some of the systems discussed
above, simplicity is a defining measure of interestingness, as the search is carried
out in stages which minimise the length of the solution produced (which in
MECHEM’s case is a reaction mechanism in chemistry).

Finally, we note that the four measures Valdés-Pérez suggests in [37] for
assessing the output of a discovery program are novelty, plausibility, intelligib-
ility and interestingness. The first three of these are identified here as internal
measures used by some of the above programs, and the fourth is the subject
of this paper. It should come as no surprise that internal measures for the
interestingness of results often follow the same general principles as the meas-
ures used to assess the output from discovery programs. It is clearly a good
strategy to identify which interesting initial results are output from a program
and implement measures to increase the yield of such concepts.

6.2 The Interestingness of Conjectures

In summary, it is often a good idea to prescribe a definite task for a concept or
conjecture to achieve, and design measures of interestingness around this. If this
is not possible, and an estimate of the interestingness of a conjecture is going
to be made, some of the following points could be taken into consideration:

• The conjecture should be empirically true.

This can be achieved by only making conjectures backed up by all available
data, or suggesting a conjecture by some other means and then using all the
data to discard the conjecture if necessary, or altering a conjecture so that any
data which disproves it is no longer applicable.

• The conjecture should be novel with respect to previous ones.

This can be achieved by understanding and checking how two conjectures can
be equal or isomorphic in the domain of interest. Also, conjectures which are
implied by previous, stronger conjectures, should either be avoided by tailoring
the search space, or rejected when found.

• The conjecture should be surprising in some way.
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This can be achieved by avoiding or discarding well known tautologies, and by
using information about the concepts discussed in the conjecture to estimate
how unlikely the suggested relation between them is.

• The conjecture should discuss some non-trivial models.

This can be achieved by discarding conjectures where the set of models satisfying
the preconditions is trivial or uninteresting. Note that in certain circumstances,
this kind of highly specialised conjecture may actually be of interest to the user.

• The conjecture should be understandable, but non-trivial to prove.

This can be achieved by assessing the quantity and diversity of concepts involved
in a conjecture and removing overly complicated conjectures, or by fixing the
search strategy to output the simplest conjectures first. Making conjectures in
a well known format will help understandability. If the conjecture has been
proved, the proof could be used to estimate how difficult the theorem was.

6.3 The Interestingness of Concepts

If an estimate of the interestingness of a concept is going to be made, some of
the following points could be taken into consideration:

• The concept should have models.

This can be achieved by checking available data for models which satisfy a
predicate or are in the domain of a function. If no models exist, an effort should
be made to generate some. It may be necessary to prove that no models exist,
and discard the concept (but keep the theorem).

• The concept should be novel with respect to previous ones.

To achieve this, the search should ensure that no two obviously isomorphic
definitions can be made, and avoid paths which will ultimately lead to the same
concepts. Then, if the models of one concept are the same as another, the
concepts are possibly equivalent, which should lead to a proof of this fact. If
a concept is indeed semantically different to all the others, then the novelty of
various properties (such as the way it categorises models) could be assessed.

• There should be some possibly true conjectures made about the concept.

By the qualification of possibly true conjectures, we note that while false conjec-
tures about the nature of a concept are usually of no interest, an open conjecture
can often be more interesting than a proved theorem.

• The concept should be understandable.

This can be achieved by designing the search to construct concepts with the
simplest definitions first, and by keeping the simplest definition when it has
been proved that two definitions for a concept are equivalent.

• The concept should have a surprising property.

A surprising property may be something that isn’t true of the parent concepts.
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Building on the techniques for automated discovery that have been developed
in artificial intelligence and cognitive science, and learning from the results of
programs developed in mathematics, an effort can be made to write more pro-
grams which act as collaborators with working mathematicians. The production
of intelligently suggested conjectures and concepts plays an integral and import-
ant part in developing a mathematical theory. Automating these processes is a
worthy area for research which is beginning to be recognised by the automated
deduction community, [39]. How programs estimate the interestingness of the
concepts and conjectures they produce is central to building intelligent discov-
ery programs, and we hope that the notions of interestingness derived here will
be of some help to future developers.
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