

Edinburgh Research Explorer

An Overview of Prolog Debugging Tools

Citation for published version:
Brna, P, Brayshaw, M, Bundy, A, Elsom-Cook, M, Fung, P & Dodd, T 1991, 'An Overview of Prolog
Debugging Tools' Instructional Science, vol. 20.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Instructional Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/an-overview-of-prolog-debugging-tools(b04cbebf-05d6-4d6e-bf13-225ea414d674).html

AN OVERVIEW OF
PROLOC DEBUGGING TOOLS

* 	Paul Brna
** Mike Brayshaw
* 	Alan Bundy
*** Mark Elsom-Cook

Pat Fung
**** Tony Dodd

DAI RESI :ARcH PAPER NO. 398

Submitted to the special issue of Instructional Science on
Learning Prolog: Tools and Related Issues.

* 	Department of Artificial Intelligence, University of Edinburgh
** 	Human Cognition Research Laboratory, The Open University

Institute of Educational Technology, The Open University
**** 	Expert Systemá International, Oxford

Copyright (c) Brna, Brayshaw, Bundy, Elsom-Cook, Fung & Dodd, 1988.

An Overview of Prolog Debugging Tools

Paul Bmat 	Mike Brayshaw5 	Alan Bundyt 	Mark Elsom-Cook

Pat Fung 	Tony Dodd1

Abstract

In this paper we present an overview of the advances in debugging standard Prolog

programs. The analysis offered is in terms of a classification of tools that provide

different degrees of activity in the debugging process. Other possible dimensions of

analysis are also outlined.

1 Introduction

In addition to being a relatively new programming language, Prolog has characteristics

that are not present in more purely procedural languages such as BASIC or FORTRAN.

The unification and backtracking processes in Prolog give rise to the possibility of an

increased confusion about the location of errors. Further, programs can be difficult to

comprehend at a functional level because the language does not have the more obvious

syntactic markers that are found in, for example, Pascal or LISP. Programs can also be

difficult to debug because of semantic errors: because of the logical nature èf Prolog,

no syntactically correct program would have any error messages associated with it at all

except for the need for some of the built-in predicates to impose (non-logical) limitations

on the ways in which predicates are used. These aspects must be catered for in debugging

systems designed for Prolog.

tDepartment of Artificial Intelligence, University of Edinburgh

1 lluman Cognition Research Laboratory, The Open University

tjnstitu te of Educational Technology, The Open University

1 Expert Systems International

1

- 	In general, debugging is the process by which errors in the program code are detected

and fixed. This simple description does not reveal the full complexity of the debugging

process. Even though we restrict our attention to standard Prolog, debugging Prolog

programs is a complex and composite skill. In describing the skills that programmers need

we make use of the descriptive framework developed by Erna et al (Brna et a!, 1987). This

provides four levels at which bugs can be classified: the symptom, program misbehaviour,

program code error and misconception levels:

Symptom Description If a programmer believes that something has gone wrong dur-

ing the execution of some Prolog program then there are a limited number of ways

of directly describing such evidence.

Program Misbehaviour Description The explanation that is offered for a symptom.

The language used is in terms of the flow of control and relates, therefore, to run-

time behaviour.

Program Code Error Description The explanation offered in terms of the code it-

self. Such a description may suggest what fix might cure the program misbehaviour.

Underlying Misconception Description The fundamental misunderstandings and

false beliefs that the programmer may have to overcome in order to come to terms

with specific features of the language.

For further details, see the paper cited above.

Very briefly, programmers need to:

- 	
. Have a thorough grasp of the program's intended semantics.

. Know the various facilities that.the programming environment provides.

. Know how to detect the gross symptoms of a program code error.

• Be able to refine the description of the error's effects in terms of the program's

execution —this is the program misbehaviour description.

• Be able to abduce sensible program code error descriptions from the program mis-

behaviour description.

• Be able to eliminate plausible program code errors through sensible selection of

discriminatory test cases and through the use of the facilities provided by the pro-

gramming environment.

Occasionally, they may find it possible to go further and account for certain program code

errors in terms of various misconceptions. 	 -

It has been stated that debugging is more akin to an art than a science. We review

some aspects of debugging which try to improve the situation in a number of ways.

Improved Monitoring: First, we can seek to improve the facilities for monitoring the

execution of a Prolog program. This produces indirect benefits for debugging. In-

direct, because the ability to inspect the execution of a program at some level of

detail enables programmers to apply their debugging skills. The benefits of im-

proved monitoring facilities might include a decrease in the programmer's memory

load, finer grained examination of execution (e.g. watching the resolution process

at work as in Plummer's Coda (Plummer, 1987) and Rajan's APT (Rajan, 1985)),

the ability to focus attention in more efficient ways and the use of different forms

of presentation (e.g. 2 dimensional forms such as AND/OR trees, Ferguson dia-

grams (Dewar & Cleary, 1986) and so on). See (Pain & Bundy, 1987) for a review

of a number of different ways of presenting the account of how Prolog interprets a

program. These accounts are termed Prolog Stories.

Automated Search: Next, we can seek to automate the search for specific events in the

execution history. This might be done, for example, by augmenting the monitoring

tools. For instance, Eisenstadt's PTP system provided the means for searching for

suspicious symptom clusters (Eisenstadt, 1984).

Annotated Programs: We can also provide the programmer with the means of spec-

ifying various pieces of information about a program at edit-time. For example,

the programmer might want to declare that certain predicates are intended to be

3

deterministic. That is, if they succeed at all then they can never be resatisfied.

This kind of annotation can provide extra leverage on the debugging process and

help with automated search.

Guided Debugging: We can also seek to impose a dialogue upon the debugging task.

The programmer and the system cooperate in the tracking down of errors —the

role of the system is to ask the programmer questions in order to guide the search

- for program code errors. Generally speaking, the initiative for the dialogue is taken

over by the system.

Automatic Debugging and Program Verification: The idea of a completely auto-

matic method of detecting the program code errors (and possibly fixing them) is

attractive but critically depends on the system effectively knowing the program

specification. Where the complete specification is 'transformed' into a correspond-

ing program then there is a need to debug the program by appealing to the speci-

fication. Here, we are

Automatic Debugging and Tutoring Systems: There is also an application in the

area of intelligent tutoring systems (ITS) where the goal is to teach novice pro-

grarnmers to write correct programs. In this context, the system can set problems

for which there are known solutions. The automatic detection mechanism can be

used to point out the errors in the code and check that the correct fixes have been

applied. This is not a direct approach to teaching programmers how to debug —if

it does teach debugging then there has to be some presentation of the reasoning

involved. Systems like PROUST report program code errors in syntactically cor-

_rctj)ascal programs but do not_give any explanation of the debugging process

(Johnson & Soloway, 1985).

Teaching Debugging Skills: Finally, and somewhat unrelated to the above approaches,

we can try to educate programmers in the various debugging skills.

One last comment is needed about the most seductive approach of all: preventing pro-

gram code errors from arising in the first-place. It is often stated that Prolog programs

4

can be seen as executable specifications. Consequently, if the programmer can get the

specification right then there will be no program code errors. Unfortunately, it is not

so simple to get the specification right. Even if the specification is correct, Prolog will

execute the 'specification' in a way that takes into account information that is not strictly

part of the specification. For example, clause ordering, the cut (!) and so on. This is a

further factor in the creation of program code errors. The need for debugging tools and

skills will not ga away so quickly.

The above description (excluding the reference to teaching debugging skills) of debug-

ging has been loosely organised in terms of increasing control by the debugging system

—ranging from no control to complete control over the debugging process. There are

other aspects which should be noted as significant. In addition to the degree of au-

tomation, these include: the extent to which the systems require a knowledge of the

programmer's intentions, the mode of display, whether the debugging system is active

before, during or after program execution, the reliability of the diagnosis of a program

code error, to what extent the programmer can override the debugging system and who

drives the dialogue between programmer and system.

It is therefore possible to identify a series of important dimensions along which we

may view current debugging tools. Existing approaches have varied both in terms of

debugging strategies applied, in the role of the user in this process, in flexibility, and in

their accuracy.

In the next section we will attempt to deal in some detail with examples of existing

systems following the above scheme. The rest of this section features an overview of

current trends and contrasts in the area and identifies a number of themes, outlining

their relative importance.

There are desirable repercussions of a system that might automatically infer bugs by

itself. However, in practice, most systems either require user responses to specific queries

(guided debugging) or give the user a powerful tool with which the user may rapidly

locate and correct their program errors (automated search and monitoring). Only a few

systems operate without interventions from the programmer. Those that do are mainly

annotated program systems that try to carry out some form of static analysis prior to

5

execution - these provide a form of bug prevention.

The systems that require user responses typically try and debug the program whileit. 	-- - -

is executing. The program typically asks for information about the desired behaviour of

a particular goal orwhether a particular result is correct. Such user querying allows the

debugging program to infer intended program behaviour and thereby makes the task of

program debugging for the mechanical program much easier. Such an approach requires

much more of the user as this may involve answering difficult questions. The task is

- - —difficult-because the user often findsit hard, to infer the context in which the question - -- -. - -

is being asked by the system. Further, certain systems do not allow the users to change

their mind and thus, if an incorrect answer or inputting mistake occurs, the program

may well come to the wrong conclusion. The guided search approach also requires user

participation and this is often associated with post-mortem debugging. A history of

program execution is collected and a series of tools provided with which to examine

the observed behaviour. Clearly, for the guided search approach, more information is

--

Providing that the debugger is given correct information most current guided debug-

ging systems, if they claim to have detected a bug, are almost certain to have correctly

identified the error. Different systems, however, may provide diagnoses of varying preci-

sion and, for example, the discovery that a predicate has its arguments the wrong way

round may be due to a program code error that lies elsewhere.

Most such systems also have a large computational overhead. This means that they

take time and, to be effective, require a large machine. One possible alternative approach,

which might prove a source of relief to this problem, is for systems to employ heuristic

methods in the hope of providing a series of good guesses as to the cause of the problem

- fl. iTi. ihefáre àuton-iated search systems Typically this might -involve -suspicious -

symptom detectors which try to advise on possible bugs, e.g. failure due to wrong arity

or no definition. The system identifies things that it thinks may prove to be the source

of the error - it is thus fallible.

Such systems by their nature are merely advisory. They do not insist that they have

arrived at the correct answer, and that there is no other; at the other end of this dimension

are the systems that, once they believe that they have detected a bug are emphatic about

it, and will not let the user proceed unless the bug the system thinks it sees is removed.

Such insistency we term prescriptive insistency. A second type of insistency we refer to

as dialectic insistency whereby the system is emphatic in its interactions with the user

and doesn't allow the user to influence the course of the debugging session.

Another dimension along which systems vary relates to the type and number of bugs

which they attempt to catch. Indeed the type of bug is further restricted in some sys-

tems which can only cope with a subset of the language - for example, excluding the

metalogical extensions to Prolog.

A final dimension in which we may view the system is in terms of the cognitive load

which it places upOn the user. This problem is increased when the user is a novice faced

with learning a new language. If the debugging tools also require a large amount of

effort to learn, then the system may adversely affect program language learning. There

is also a need for extra formalisms to enrich the descriptive language within which terms

we describe the system. Such formalisms might provide a richer account both of the

program's behaviour and about the process of understanding and debugging the program.

Inevitably, there is a trade-off between the potential power of a debugging system and

the amount of mental effort it takes to learn the system well enough to use it efficiently

and effectively.

Improved monitoring methods can pay better dividends than guided (and automated)

debugging methods. Certain of the guided debugging methods, particulai1y those that

do a lot of work in order to locate a bug, come up against the problem of computational

expense when finding a possible program code error. Given large programs produced

by the professional Prolog programmer the cost of finding an erroneous clause may thus

become prohibitively expensive. In contrast, although not without its own overheads,

tracing can be much more efficient. The argument for tracing would be something like

the following "You don't need a program that takes a long time to locate a bug if you

can instantly spot the bug from a trace on the screen". However the intelligence in this

case is very largely that of the user - deciphering the output of some trace packages is

sometimes a job requiring considerable skill in its own right.

7

There is another use for tracers: that oLprogram comprehension. You can view

program debugging as a sub-field of program comprehension, but a program trace can

often tell the programmer far more about a program than just a bug's location. This

extra understanding, not only about the operational semantics of the program under

inspection, but also about the nature and context of a possible error, may, for example,

result in the programmer not touching the piece of code associated with the program

-- - - misbehaviour but, instead, altering some other piece of code in order to flop the program

getting into the erroneous state again.

2 Improved Monitoring

Plummer (Plummer, 1987) and Eisenstadt (Eisenstadt, 1984; Eisenstadt, 1985) have in-

dependently enhanced the traditional box model tracer (Byrd, 1980) to show details of

individual_clause head matching. In the normal debugger no information is available

about which clauses have unified with the current goal and which have failed. Plum-

mer produced an extension to this traditional model which showed individual clauses as

they are attempted or retried on backtracking. Eisenstadt also showed individual clauses

being tried, and additionally indicated seven types of clause failure. The technique of

retrospective zooming allowed the user selectively to probe the trace, zooming in on

suspicious-looking parts of the goal tree. In order to assist the user in spotting these sus-

picious symptoms, a knowledge-base of symptom clusters could identify candidate bugs.

Rajan presented novices with a detailed account of Prolog execution, highlighting

unification, backtracking, and variable instantiation (Rajan, 1986; Rajan, 1987). The

- - 	association between the novice's code and its behaviour was shown in his single-step

tracer, by highlighting salient parts of the database at appropriate moments, and by 	- - - - -

showing instantiations in situ for the code being traced. Rajan showed that novices'

performance improved after they were shown demonstrations using his single-stepper

compared with a control group.

Dewar and Cleary (Dewar & Cleary, 1986) present a graphical tracer for Prolog based

on Ferguson diagrams (see (van Emden, 1984)). Their system, DEWLAP, nicely shows

clause head selection. However the displays rapidly become very complex as all potential

matching clause heads are drawn up individually and separately. Although goal-parent

relationships are clearly shown, the overall trace sacrifices the unifying structure that an

AND/OR tree captures. No distinction is made for system primitives, nor is the 'cut'

dealt with explicitly. Lastly, in order to trace even fairly small programs, information

away from the centre of focus is physically reduced, thus it is not possible to get a higher

level perspective or different conceptual views of the program - only close-up views of

small parts of it.

The development of the Transparent Prolog Machine (TPM) by Eisenstadt and

Brayshaw (Eisenstadt & Brayshaw, 1986; Eisenstadt & Brayshaw, 1987) can be seen to

incorporate many desirable monitoring facilities. The importance of clear and consistent

models of program execution are well known both in terms of program language teaching

and program debugging(e.g. DuBoulay et al, 1981; Rich and Waters, 1986). The use of

AND/OR trees as the most effective way of capturing the execution of Prolog in persua-

sively argued by Bundy et al. (Bundy et al, 1985; Pain & Bundy, 1987). Applying these

principles to Prolog, the Transparent Prolog Machine was introduced as a medium for

visual presentation and animation of Prolog programs.

TPM was conceived as a tool for use by novice and expert Prolog programmers alike

(Eisenstadt & Brayshaw, 1988). TPM provides a faithful representation of the inner

workings of the Prolog interpreter. The system gives details about clause head matching

and variable renaming and deals correctly with the 'cut'. Other meta-logical features

like setof/5 and declarative clause grammars (DCGs) are also supported. The current

implementation serves as the uniform basis for textbook diagrams (Eisenstadt, 1988),

video animations, and a graphics workstation (Eisenstadt & Brayshaw, 1987).

The workstation implementation has a replay facility with buttons for single step

forward, single step backward, rewind, and normal play so that code may be observed

either 'live', as the program executes, or in 'post-mortem', at the end of execution. A

selective highlight option allows the user to home in on troublesome code specified in a

context-sensitive way. Traditional box model debuggers (Byrd, 1980) are also provided

and the implementation is currently being extended to incorporate graphical guided de-

cJ

bugging techniques (see section 5). Unlike earlier attempts to provide graphical tracing

-- - facilities for Prolog, TPM-can deal with extremely large search spaces by viewing the

program at different levels of detail. The close-up view, called the AORTA (And/Or Tree

Augmented) contains information down to the level of individual variable unificationand

clause head matching. At a coarser-grained level the user can see the program just in

terms of goal outcome. Large traces can be greatly condensed by compressing parts of

the trace into user defined 'black-boxes'. Finally the user can define high-level abstract

- -- -- -- views.ottheprograms&that the trace can be viewed ata level that conforms more closely

to the users' plans and intentions. 	 - -

TPM is about to be evaluated for use both by novices and experts. One of the

interesting questions that such a study addresses, aside from the obvious one as to the

effectiveness of the environment as a whole, is what parts of the trace are critically

important to the debugging process. By manipulating the traces themselves, and omitting

features like variable re-naming, or detailed views of clause head matching, it may be

-

	

	ibIit6ideitifythosethitigsthat-appear-to-have the-greatesteffecttonieanirg4 	_____

debuggIng. Until such times as an empirical evaluation is complete, it is not possible

to provide a formal evaluation of TPM's effectiveness compared with other debugging

approaches.

3 Automated Search

Current Prolog tracers give power to the user to step or leap back and forward through

the search tree tracking a bug symptom through its causal chain to the source of the

problem. The standard on which most such tracers are modelled is the DEC-10 tracer

- - - - whichisbasedon the Byrd-box model of Prolog program execution —see (Byrd, 1980;

Bowen, 1981). 	 - -

There is little or no automated assistance with this tracking process, but an analysis

of Prolog bugs by Brna et at (Brna a at, 1987) suggests automated assistance that would

be helpful. For instance:

1. An automated search for nested identical goals or, more generally, subsumption;

10

2. The automated location of the last binding or introduction of a named variable;

3. The automated location of where an error messageor side-effect were generated;

A further useful requirement is that such systems provide for the ability to re-enter the

execution tree for terminated programs.

Item 1 would be useful for finding the cause of apparent non-termination. Item 2 would

be useful for finding from where an answer variable got the wrong value. Such automated

assistance often requires user input, e.g. to request a particular kind of assistance and

to name the variable in item 2 or identify the side-effect in item 31 Thereafter, the

process would be automatic and would take place during the program run. This user

input constitutes a very simple model of the users' expectations e.g. that a different

value for a variable was expected. Diagnosis would be certain, but the user would be free

to react to it as s/he felt appropriate. Assisted tracing could improve the efficiency with

which a wide variety of symptom level bugs can be located.

Some progress towards these goals has been achieved in Eisenstadt and Brayshaw's

Transparent Prolog Machine. TPM has a selective highlight facility which allows the user

to highlight those nodes in the graphical trace which have been picked out as being of

special interest. Those places where goals with user-specified parents and/or arguments

are called may be rapidly located. Particular bindings of variables may be sought out

(assisting with item 2 above) or the place where an error message or side-effect occurred

easily located (item 3).

The whole process is time sensitive so that the user can either globally view these

events or return to a particular moment in the program execution when they occurred.

Once at that particular point the user can use the standard TPM replay facility to

investigate further. The selective highlight facility identifies features that have happened

in the program, thus it can be used both at the end of program execution (thus reinforcing

the need for the ability to re-enter the execution tree after program termination) or when

live execution of the trace has been temporarily halted.

Current work with TPM includes the development of a powerful built-in debugger,

'SimpU'ing the task of the user in providing such information is an interesting, but doable, HCI task.

'II

initially based on that of Pereira (Pereira, 1986) (see section 5 for a brief description),

but with the intention of extending it with extra heuristic knowledge, so that it can

semi-automate the task of bug location. Various bugs may already be picked up by a

cliché analyser based on Eisenstadt's work to detect suspicious symptom clusters in a

post-mortem analysis of an extended trace output (Eisenstadt, 1985).

4 Annotated Programs

We break this discussion into two parts. The first introduces the idea of gathering various

kinds of information about the program's intended behaviour into a database. These

intentions are supplied explicitly by the programmer at edit-time. The database is known

as a meta-database because it is a database of facts about the program and its execution.

The second section introduces the idea of a programming technique and the ways in which

the meta-database approach can be extended.

4.1 The Meta-Database Approach

An approach now being investigated is the maintenance of a meta-database of facts about

the program. This may be illustrated as follows:

The user edits a program and includes declarations about predicates, e.g.:

• Input modes and types of arguments

• Output modes and types of arguments

• Whether the predicate is deterministic

12

. Whether the predicate is guaranteed to succeed

The static analyser infers extra declarations and adds them to the meta-database.

This can, in turn, be examined by the user and by other parts of the the system including

the debugger. It can be used to compile more effective code.

The debugger (which can be the Byrd-box debugger mentioned in section 3, the

Transparent Prolog Machine (TPM) mentioned in section 2 or almost any debugger)

then monitors these declarations and stops with a message if any of them are violated.

For example:

process..row(I,MaxI) :-

repeat(K),

process...elt(I,K),

K>= MaxJ.

process..array(MaxJ, MaxI) :-

repeat(K),.

process..row(K,MaxI),

K=Max.J.

contains a bug. The programmers intention is inconsistent with the declaration.

- deterministic(process...row/2).

and the debugger will detect that this has been violated when process_row12 resatisfies.

In terms of our earlier analysis of debugging tools:

Meta-database techniques are semi-automatic. They can function with very little

volunteered information but cannot infer large scale plans, at least not as presently

implemented.

Meta-database techniques are independent of display mode

13

• Meta-database techniques require pre-analysis and dynamic testing but no post-

analysis.

Meta-database techniques use very limited knowledge of programmer intentions.

With new kinds of declaration, say of use of specific techniques (see section 4.2),

they may use more.

• Meta-database techniques detect errors with complete certainty.

Meta-database techniques are highly insistent in the prescriptive sense (especially

if the compiler produces code relying on the violated declaration).

Meta-database techniques (usually) deal with predicate-level bugs rather than

program-wide ones.

Meta-database techniques add a small cost to the development cycle if some static

checking (such as a style check) is already done.

4.2 Technique-Oriented Debugging Tools

The formal definition of Prolog programming techniques (see (Erna et al, 1988)) offers

the possibility of debugging tools based on these techniques. Such a tool would check

a program to see that the technique was correctly implemented. For instance, a formal

definition of the use of accumulators for constructing recursive datastructures would

enable the building of a tool which would identify the recursive, accumulator and results

arguments of a procedure and check that, among other things, the result was defined in

terms of the accumulator in the base clause (see figure 1).. If this check failed then the

tool would report an error to the user.

Technique-oriented tools require knowledge of which technique the user intended to

use, e.g. the user would have to explicitly request that a program be tested as realising a

technique. The bug report would be limited to all and only the violations of the technique

- wider intentions would not be taken into account. The cause of such a violation would

normally be evident from the report given about the bug detected. The analysis process

would be static and would take place before the program runs. It would be totally

14

mode(double,+, +, -)
	

% from this, the accumulator and result

% arguments can be identified

double([J, Acc, Acc). 	 % the result is defined

% in terms of the accumulator

double(JH1IT1], Acc, Res):-

H2 is 2*111,

double(Tl, [112IAccl, Res).

Figure 1: An example of using the accumulator technique

automatic. The computation cost would vary according to the complexity of the analysis

to be made and would vary from trivial to arbitrarily expensive. Technique-oriented

debugging tools fit well into the framework of the meta-database (see section 4.1); with

the user's intended techniques stored as meta-facts and the analysis being merged with

the inferences being drawn from other meta-facts.

5 Guided Debugging

Here, we consider the style of debugging derived from the work of Shapiro (Shapiro, 1983).

This approach depends crucially on the concept of an (infallible) source of knowledge

about both whether a goal should succeed and which variable instantiations should be

obtained 2 . This source is known as the oracle. The system uses this information to guide

the programmer to the program code error.

The guided debugging approach requires, for some terminating query, that the pro-

grammer identify whether the result is the expected one. If not, the programmer submits

2 The original work by Shapiro on algorithmic debugging also described an approach to the handling of

non-termination.

15

the query to one of two programs. One of these programs handles the case that a wrong

variable instantiation has been made and the other handles missing solutions —that is,

some situation where the original query failed when it should have succeeded. Thus errors

are presumed to be caused in two different ways (excluding any account as to how non-

terminating programs arise) —at least one unsound predicate and at least one incomplete

predicate. The programmer has to choose which of thesç two possibilities to pursue.

A dialogue ensues with the debugging system in relation to a re-execution of the

original goal. Note that, as this takes place after the execution of the original goal, it

would be difficult to integrate this system into a standard Prolog execution trace package

—but see the comment on this in section 3 above. The debugging is expensive in two

different ways. Computationally, it requires repeated application according to the number

of bugs in the program (each run would provide one bug to be fixed). It also requires

the oracle (in the first instance, the programmer) to answer a potentially large number of

questions about which goals_should succeed and what solutions should hold. The query

complexity is a measure of how many statements need to be made by the oracle. Efforts

are usually made to reduce this cost by storing oracular inputs so that, on reapplications of

the debugging process, there is no need to ask the programmer exactly the same question

twice. Drabent et at have sought to allow the oracle to provide more general descriptions

of the intended program behaviour during the debugging process (Drabent et at, 1988).

For detecting the unsound procedure which caused a wrong variable binding, Shapiro

uses a 'divide and query' algorithm. This takes part of the computation and finds a

goal such that about half the total number of goals executed during that computation

are prior. The oracle is then asked about whether this goal has a correct solution. If

not, then the debugging process is applied for a wrong variable to this goal. Otherwise,

the 'divide and query' process is repeated on the remainder of the computation. Lloyd

has a 'top-down' debugging strategy which is more akin to the normal way of using

the standard debugger (Lloyd, 1986). That is, for each goal (query), check whether its

subgoals produce wrong variable instantiations. For the first one that does so, repeat the

process.

The other possibility is that a predicate is incomplete in that it cannot handle all the

16

a

uses to which it is put by the program or programmer. For detecting such an incomplete

procedure, Shapiro's system requires that the programmer issue the top level goal and

then input the complete set of solutions for each subgoal as it arises.

There is a variant of algorithmic debugging produced by Pereira (Pereira, 1986).

Lloyd points out that Pereira's system, known by him as rational debugging, suggests

an expert system-like approach to debugging (Lloyd, 1986). Pereira achieves some in-

crease in efficiency by keeping information around about term dependencies. For each

term, there is an associated tree which indicates which other terms have made a contri-

bution to the structure of the term through unification. The result of applying Shapiro's

system is a suspect clause. Pereira's system produces a suspect term —which provides a

much finer granularity for debugging.

In all these systems the dialogue is driven by the system. The programmer (oracle)

cannot refuse to answer a definite question as the diagnosis depends crucially on the

correctness of the programmer's input. If a mistake is made then the whole analysis is

invalidated. Providing the means to back up and change an input is not currently a

feature of such systems. This is a serious problem in that it is unreasonable to expect the

programmer never to make a mistake and hence to know precisely which predicates will

succeed or fail for given inputs and with what outputs —especially if the datastructures

are very complex.

Thus these debugging systems gradually discover something about the intentions of

the programmer during the debugging process. These intentions relate to the success/

failure of specific goals and associated variable bindings. Generally, Shapiro's system

cannot handle the cut (!). There are suggestions for handling negation but few ideas

for handling other non-logical features. On the other hand, Pereira's system can handle

these features —because it uses the procedural semantics of Prolog.

To summarise, the oracle-based guided debugging systems are computationally ex-

pensive —but so is debugging with the standard tracer— and very inflexible.

17

6 Automatic Debugging and Program Verification

In the context of program verification, we need to show that the program meets the

specification. As part of this activity we may well have recourse to both static and run-

time analysis. At run-time, we require a form of automated debugging to locate the

program code error. An implication of this approach is that the specification is distinct

from the program. -

ILiLisassumedthataProlog_programisaspecification_thene_usJliitpJPg!Ia1rn

(that we regard as the specification) and seek to transform it to a more efficient version.

Note that, in general, arbitrary Prolog programs are not regarded as formal specifications

—partly because there is too much control information embedded in the code.

One recent approach to automatically debugging Prolog programs is based upon

Shapiro's Algorithmic Debugging (Dershowitz & Lee, 1987). Dershowitz and Lee have

built a system, APD, which uses a specification of a program, written in Prolog itself, to

generatrtet cases, loatrrbug and correcticTliirpiovides a deitsttatioxcthatltls

possible to debug example Prolog programs for a range of errors.

7 Automatic Debuggingand Intelligent Tutoring Systems

We can take advantage of automatic debugging techniques as part of a programme to

teach novice programmers to write correct programs. We assume that the idea is to

construct an Intelligent Teaching System (ITS).

A novice writes a program. Meanwhile, behind the scene, the tutoring system au-

tomatically detects program code errors and is then able to suggest possible fixes. We

have already pointed out that this is extremely difficult in the general case but that we

can take advantage of the methods developed for automatic debugging in the context of

teaching

Given that we can locate a program code error then we will want to make use of

this information. Analyses of teacher/student dialogues (e.g. (Stevens et al, 1982)) have

shown that errors are frequently the focal points of such dialogues; the teacher going

on to infer novice misconceptions from such errors. It thus follows that the location of

18

program code errors plays a major role in tutoring systems. To do this requires that there

be an automatic debugger to locate these bugs.

As we have already noted, to do this reliably requires a knowledge of the intended

semantics of the program. A tutoring system, however, can be given the ability to set

the novice programner a task for which there is a sufficiently detailed specification. Two

approaches being pursued include one which makes use of several sources of information

—static analysis, dataflow and Shapiro's guided debugging system— and another which

seeks to identify novice's misconceptions —especially in the area of misconceptions about

Prolog's flow of control. -

Looi describes an automated debugger for Prolog in an intelligent tutoring system

context (Looi, 1988). The debugger performs an initial static analysis of the program -

checking for things like looping and wrong argument types (Mycroft & O'Keefe, 1984).

The system attempts to compare the student program against known library examples,

or if this proves unfruitful, checks the buggy code's behaviour against the behaviour of a

correct program, using a version of Shapiro's debugging system.

Following an empirical study (Fung et cii, 1987), Elsom-Cook and Fung (Fung, 1988)

have proposed using an adaption of a calculus of communicating systems (CCS) as a

formal semantics for describing the behaviour of the Prolog interpreter (Milner, 1980).

CCS views a program as a composition of linked communicating statements. By the

application of a calculation rule the space of all the possible behaviours of the program

may be developed. This however is not necessarily desirable, and thus the space can

be pruned by the application of heuristics. These heuristics are at the level of general

misconceptions about the language as a whole, they are thus above the level of simply

having a library of buggy versions of a program with which to compare the student input.

Diagnosis of errors proceeds by the comparison of the modelled incorrect behaviour and

a known correct version. The major contributions are therefore that the system doesn't

have to rely on a bug library entry for each of the individual bugs contained in a program,

but can instead generate these possible bugs itself, using high-level knowledge of the

domain. Potentially the system can be generalised to the whole Prolog language. The

current implementation works for a subset of variable free Prolog.

19

- 	 7.1 Case Studies in Other Languages 	 - -- -- -- - 	-- 	--
S

Debugging in Prolog is strongly related to debugging in other languages - the approaches

share similar objectives. In this section we take three case studies of debugging systems

from other languages and suggest possible areas of cross-fertilisation.

The first is an example of trying to debug a program as late as possible i.e. at the time

the program is loaded for execution. The last is an example of debugging immediately a

deviation from the correct path is made. The middle approach_lies somewhere between

these two extremes. For general purpose debugging, these systems can only illustrate the

various styles of debugging.

It is important to note, however, that Prolog has a series of unique features which

may well indicate that it requires special features in its debuggers. The unification and

backtracking behaviours of the interpreter are cases in point. They are certainly a source

of errors for the novice (Taylor, 1987; Fung et al, 1987). Likewise experts can make errors

using-themrequiringadebugger-tobe-sensitivrtosuch-behaviourFor-novices-alsothe

lack of syntactic cues as compared to other languages may cause additional problems

specific to Prolog (Gilmore, in press).

7.1.1 Debugging using PROUST 	- 	 - 	 -

The central tenet of the PROUST system (Johnson, 1986) is that a (Pascal) program can

be described as a set of intentions on the part of the programmer. These intentions are

used to guide the production of a hierarchy of plans, which eventually lead to actual code

in a programming language.

PROUST takes as input the student's code, and a set of intentions describing what that

programshoul&achieveUsingthisinformatiowthesystem±uildsamodeFoithestudent

in terms of plans and buggy plans which provide a mapping between the intentions and

the actual program. The bugs which are needed to produce this model can then be used

as input to a program which gives the student advice about the errors which s/he has

made. PROUST achieves this mapping using the process of analysis by synthesis. This

involves starting from the intentions and, using a library of plans, building every program

20

which could satisfy those goals. If the program which the student has written is not one of

these, then PROUST assumes it must contain errors. At this point it attempts to replace

or modify correct plans in the solution using the library of faulty plans. This process

continues until PROUST successfully "explains" the errors or decides that it cannot do

so.

Analysis by synthesis is a computationally expensive technique. Consequently,

PROUST only deals with a small subset of Pascal and can only build models for a small

number of problems. For one program it needs something like 100 plans, and it currently

knows about 5 programs. PROUST is also limited by the fact that it ultimately repre-

sents the program as syntactic units. It has no semantic knowledge of Pascal and cannot

perform datafiow analysis. This means that there is a large class of correct versions of

any program which it will fail to recognise as correct.

Spohrer, Soloway, and Pope (Spohrer a al, 1985) have claimed that these proposed

'programming plans' are a major feature of programming expertise. Gilmore has shown

that the content of plans observed in Pascal experts are not the same as those in

other languages (BASIC in Gilmore's study, but the same would be true of Prolog)

(Gilmore, in press). Thus 'programming plans' will need to be identified in Prolog in

order to generalise this technique. More particularly, PROUST operates purely on pat-

tern matching of surface syntactic features. It does no control-flow or data-flow analysis

and has a heavy reliability on key-words. The system would have problems spotting recur-

sion or dealing with backtracking in Prolog. Looi has implemented an automated analysis

system for simple Prolog programs (Looi & Ross, 1987). The system, like PROUST, uses

an intention-based analysis of programs, however Looi keeps a rating of the suitability of

each interpretation of a program, Sand thus, instead of committing to one interpretation

as PROUST does, may use alternatives. Ross also argues for the use of plans in a Prolog

intelligent tutoring system (Ross, 1987). He argues for the use of a combination of tech-

niques, controlled possibly via a blackboard type architecture, in order to detect correct

or buggy plans.

21

7.1.2 Debugging using GB.EATERP

GREATERP (Anderson et al, 1986) is a tutor for LISP. Based on an empirical study of

LISP learners (Anderson et al, 1984), the observed student's incorrect behaviour provided

the basis for a model of 'bugs' - variations on an 'ideal' student's behaviour. The system

attempts to model the student by a technique Anderson called "model tracing". As the

student solves a problem the set of rules that they potentially could apply forms a set

- - 	of predications about the student's possible behaviour. When a buggy rule is chosen the

system immediately corrects the student and continues. CREATERP has been used as

part of the undergraduate teaching programme at Carnegie-Mellon University for several

years. The system is used in conjunction with a textbook that introduces concepts and

explains about LISP (Anderson et al, 1987). The role of the tutor is to monitor the

student carrying out the exercises in the book. This combination has proved to be more

effective than simply providing the student with a LISP textbook. The model makes major

-use-of-Anderson's-ACT 2 -theory-of-cognition-(-Anderson,-1983)._The-tutorJL..assumesthaL

productions represent the student's intentions, and that the student's subgoals represent

the tutor's subgoals" (Anderson et al, 1986, page 843). This involves a big assumption

about the psychological validity of the model of the student. In principle the approach

could be generalised to Prolog. However it is an open question as to how easy (or even

possible) it would be to make the model of student Prolog skill acquisition that the

system needs. Without either trying to model Prolog learning after Anderson's LISP

modelling (Anderson et al, 1984), or some empirical evidence on the relative difficulty

and differences between learning to program in LISP and Prolog, it is not possible to

answer this question. However, even if it were possible, the target audience for such

a -system is limited to -novices; andeven so,the strictly fixed curriculum and inherent 	- 	--

inflexibility of the system casts somedoubts over its educational desirability.

7.1.3 Debugging using the Programmer's Apprentice

The Programmers Apprentice is a project that aims to produce an intelligent assistant in

order to help experts write and maintain programs (Waters, 1985). The system aims to

22

automate the easier parts of the debugging process whilst leaving the more complicated

parts to the expert programmer. Programs are parsed into surface plans from where

clichés are used to recognise the function of a particular piece of code. A cliché is some

standard way of doing things, e.g. the typical way of searching a one dimensional structure

is via a 'sequential search' cliché. The emphasis in the Programmers Apprentice, however,

is on prevention of bugs. The use of plans helps the user write and structure the programs.

Trivial tasks are taken care of by the program, leaving the expert free to concentrate on

the more complex aspects of the program. If errors or missing parts of a cliché are spotted

by the program, the programmer is informed.

The claim for the Programmers Assistant is that, because the knowledge is represented

in the Plan Calculus (Rich, 1981), the approach should generalise across languages. The

only modification would involve some operational differences between languages (e.g. dif-

ferences in performing simple I/O). However it is not clear how the existing Plan Calculus

could deal with aspects of Prolog behaviour e.g. search, backtracking, or the cut. Non-

determinism might also make the correct interpretational behaviour of a predicate harder

to specify. Thus it might well prove necessary to developed a modified Plan Calculus.

Looi raised two further difficulties (Looi & Ross, 1987). Firstly, different implementa-

tions of the same algorithm parse into quite different plan representations if their control

and data ifow differ. However the clichés should recognise that these two different plans

are in fact the same (providing the clichés are smart enough, there may be a way around

this problem). Secondly, the recognition of algorithms in buggy student programs would

be difficult for the parser in the Programmers Assistant since discrepancies in graph

matches would be explained as bugs rather than (possibly) variant, correct solutions.

It has been suggested that the notion of a programmers assistant could be incorporated

into Prolog by the use of a techniques oriented editor (Brna et al, 1988; Bundy, 1988).

The techniques, introduced earlier, could be available to the user e.g. via a mouse/menu

selection procedure. The user decides how to solve the problem, and how to realise this

solution in code. Once this has been done the next step is to choose the appropriate

implementation technique and this will be written by the editor. The user can specify

multiple techniques e.g. in the classical definition of append/B, the user could specify that

23

I

- - - 	- - a recursive clause would have list deconstruction, list accumulator and result techniques - - -

as arguments. Parts of the code could still be written by hand, or hand adaptions of

techniques produced.

8 Teaching Debugging Skills

One obvious way to improve debugging performance is to teach people how to become

bttëfdëbiigers of rogran HO Vihö*tdebiftäThiö?áñfiWälio very depeffdiht

on what tools are available to do the debugging. This raises two issues, firstly whether we

should instead teach people how to use these tools better, and secondly, if so, which tools

should we choose. The answer to the problem possibly lies in a better understanding of

debugging skill. Currently there is a great deal of effort going into understanding the

psychology of programming, however it might be a profitable enterprise to look closely

at debugging skill as well. If we could understand how people typically went about a

debugging task, we could (a) design better debuggers that more naturally supported and

enhanced human performance, (b) explicitly teach debugging skill and strategies, and (c)

automate these procedures in order to improve the machine's bug location abilities.

9 The Next Steps

The paper has presented an overview of a series of approaches toward better debugging

environments for both novices and experts. However these approaches seem in most

cases to be perfectly consistent, and thus could conceivably be coherently integrated into

a large scale logic programming environment. It would seem plausible that in systems

ofthefutureitwouldbepossiblwtohavemeta'databaseandtechniquestriente&debug-

gers operating with improved tracers. Alternative techniques for bug location within a

standard debugger should be made available —either entirely automated or operating in-

teractively with the user via an oracle. Thus it would seem that by developing interlinked

approaches together it is possible to provide more powerful end-products for the user.

It has been speculated that the size of Prolog programs will increase maybe up to the

24

extent of one million predicate programs in the next few years. To debug such programs

would suggest that there are two ways forward in common with what we have already

discussed. Firstly, providing more efficient ways of controlling the amount of information

from a trace of the program's execution; and secondly, more powerful and automated

aids that assist the user in bug location.

References

Anderson, J.R. (1983). The Architecture of Cdgnition. Harvard University Press.

Anderson, J.R., Farrell, R. and Sauers, R. (1984). Learning to program in lisp. Cognitive

Science, 8(2):87-129.

Anderson, J.R., Farrell, R. and Sauers, R. (1986). The automated tutoring of introduc-

tory computer programming. Communications of the ACM, 29(9):842-849.

Anderson, J.R., Corbett, A.T. and Reiser, B.J. (1987). Essential LISP. Addison Wesley.

Bowen, D.L., (ed.). (1981). DECSystem-10 Prolog User's Manual. Department of

Artificial Intelligence, Edinburgh. Available as Occasional Paper No 27

Brna, P., Bundy, A., Pain, H. and Lynch, L. (1987). Programming tools for Prolog

environments. In Hallam, J. and Mellish, C., (eds.), Advances in Artificial Intelligence,

pages 251-264, Society for the Study of Artificial Intelligence and Simulation of Be-

haviour, John Wiley and Sons, Previously, DAI Research Paper No 302.

Brna, P., Bundy, A., Dodd, T., Eisenstadt, M., Looi, C.K., Smith, B. and van Someren,

M. (1988). Prolog Programming Techniques. , Department of Artificial Intelligence,

Edinburgh, A forthcoming research paper submitted to the special issue of Instructional

Science on Learning Prolog: Tools and Related Issues.

Bundy, A. (1988). Proposal for a Recursive Techniques Editor for Prolog. Research

Paper 394, Department of Artificial Intelligence, Edinburgh, Submitted to the special

issue of Instructional Science on Learning Prolog: Tools and Related Issues.

25

t

- 	Bndy,A.,Pain,H., Brna, P. andLynch,L. (1985).A Proposed Prolog Story. Research

Paper 283, Department of Artificial Intelligence, Edinburgh.

Byrd, L. (1980). Understanding the control flow of prolog programs. In Tarniund, S.,

(ed.), Proceedings of the Logic Programming Workshop, pages 127-138, Available from

Edinburgh as Research Paper 151.

Dershowitz, N. and Lee, Y. (1987). Deductive debugging. In Computer Society Press of

théIEEE(idProceedings

IEEE, San Francisco.

Dewar, A.D. and Cleary, J.G. (1986). Graphical display of complex information within

a Prolog debugger. International Journal of Man Machine Studies, 25:503-511.

Drabent, W., Nadjm-Tehrani, S. and Maluszynski, J. (1988). Algorithmic debugging

with assertions. In Lloyd, J.W., (ed.), Proceedings of the Workshop on Meta Program-

miiifiWLijiTProgramming, pages 365L378TBFithl.

Eisenstadt, M. and Brayshaw, M. (1986). The Transparent Prolog Machine TPM: An

Execution Model and Graphical Debugger for Logic Programming. Technical Report 21,

Human Cognition Research Laboratory, The Open University.

Eisenstadt, M. and Brayshaw, M. (1987). TPM Revisited. Technical Report 21a,

Human Cognition Research Laboratory, The Open University, An extended version of

technical report 21 to appear in the Journal of Logic Programming.

Eisenstadt, M. and Brayshaw, M. (1988). An Integrated Textbook, Video, and Software

Environment for Novice and Expert Prolog Programmers. In Soloway, E. and Spohrer,

J(ed)7SwdyiwthrNrvirPwgTiinmer, LEA.

Eisenstadt, M. (1984). A powerful Prolog trace package. In O'Shea, T., (ed.), ECAI-84:

Advances in Artificial Intelligence, Elsevier Science Publishers.

Eisenstadt, M. (1985). Retrospective zooming: a knowledge based tracking and de-

bugging methodology for logic programming. In Joshi, A., (ed.), Proceedings of the 9th

International Joint Conference on Artificial Intelligence, Morgan Kaufmann.

26

Eisenstadt, M., (ed.). (1988). Intensive Prolog. Associate Student Office (Course

PD622), The Open University Press.

Fung, P. (1988). A Formalisation of Novice's Prolog Errors. CITE Report, Centre for

Information Technology in Education, Institute for Educational Technology, The Open

University.

Fung, P., DuBoulay, B. and Elsom-Cook, M. (1987). An Initial Taxonomy of Novices'

Misconceptions of the Prolog Interpreter. CITE Report 27, Centre for Information Tech-

nology in Education, Institute for Educational Technology, The Open University.

Gilmore, D.J. (in press). Programming plans and programming expertise. Quarterly

Journal of Experimental Psychology.

Johnson, W.L. and Soloway, E. (1985). PROUST: knowledge-based program under-

standing. IEEE Transactions of Software Engineering, SE-11(3):267--275.

Johnson, W.L. (1986). Intention-Based Debugging of Novice Programming Errors. Pit-

man.

Lloyd, J.W. (1986). Declarative Error Diagnosis. Technical Report 86/3, Department

of Computer Science, University of Melbourne.

Looi, C.K. and Ross, P. (1987). Automatic Program Debugging for a Prolog Intelligent

Teaching System. Research Paper 307, Department of Artificial Intelligence, Edinburgh.

Looi, C.K. (1988). APROPOS2: a program analyser for a Prolog Intelligent Teaching

System. In Looi, Proceedings of the International Conference on Intelligent Tutoring

Systems-88, University of Montreal, Previously Research Paper no 377, Department of

Artificial Intelligence, Edinburgh University.

Milner, R. (1980). A Calculus of Communication Systems. Volume 92, Springer-Verlag,

Heidelberg.

Mycroft, A. and O'Kefe, R.A. (August 1984). A polymorphic type system for Pro-

log. Artificial Intelligence, 23(3):295-307, Earlier version available from Edinburgh as

27

- 	 -

Fain, H. and Bundy, A. (1987). What stories should we tell novice PROLOG program-

mers. In R., Hawley, (ed.), Artificial Intelligence Programming Environments, Ellis

Horwood, Also available as DAT research paper 269.

Pereira, L.M. (1986). Rational debugging in logic programming. In Shapiro, E., (ed.),

Third International Conference on Logic Programming, pages 203-210, Springer Verlag,

Lecture Notes in Computer Science No. 225.

Plummer, D. (1987). Coda: An Extended Debt gger for Prolog. Technical Re-

port AITR87-54, University of Texas at Austin.

Rajan, T. (1985). APT: The Design of Animated Tracing Tools for Novice Programmers.

Technical Report 15, HCRL, Open University.

Rajan-_T--(-i986)_-A-PT:_A_Princip1ed-Design-for_an-Animated_View-of-Program-Execu-

tion for Novice Programmers. Technical Report 19, Human Cognition Research Labo-

ratory, The Open University.

Rajan, T. (1987). APT: a principled design of an animated view of program execution

for novice programmers. In Bullinger, H.J. and Shakel, B., (eds.), Human-Computer

Interaction - INTERA CT'87, Elsevier Science Publishers B.V. (North Holland).

Rich, C. (June 1981). Inspection Methods in Programming. Artificial Intelligence Lab-

oratory Technical Report AI-TR-604, MIT Artificial Intelligence Laboratory.

Ross, P. (1987). Some thoughts on the design of an intelligent teaching system for

P.àl6AiSBQithfl4i7Sümmef(62). 	
- -- -

Shapiro, E. Y. (1983). Algorithmic Program Debugging. MIT Press.

Spohrer, J.C., Soloway, E. and Fope, E. (1985). A goal-plan analysis of buggy pascal

programs. Human-Computer Interaction, (1):163-207.

28

- 	Stevens, A., Collins, A. and Goldin, S.E. (1982). Misconceptions in students' un-

derstanding. In Sleeman, D.H. and Brown, J.S., (eds.), Intelligent Tutoring Systems,

pages 13-49, Academic Press, London.

Taylor, J. (1987). Programming in Prolog: An In-Dept/i Study of Problems for Beginners

Learning to Program in Prolog. Unpublished Ph.D. thesis, School of Cognitive Studies,

University of Sussex.

van Emden, M.H. (1984). An interpreting algorithm for Prolog programs. In Campbell,

J., (ed.), Implementations of Prolog, Ellis Horwood, Chichester.

Waters, R.C. (November 1985). The Programmer's Apprentice: a session with KBE-

macs. Transactions on Software Engineering, SE-11(11).

