
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building Abstractions

Citation for published version:
Bundy, A, Giunchiglia, F & Walsh, T 1990, 'Building Abstractions' Automatic Generation of Approximations
and Abstactions, vol na, no. na, pp. 1-10.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Automatic Generation of Approximations and Abstactions

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/building-abstractions(0e16dc32-61ec-4a23-a7ef-7311ea58598b).html


Building abstractions

Alan Bundy
Dept. of Artificial Intelligence, Edinburgh

Fausto Giunchiglia
IRST, Trento

Toby Walsh
Dept. of Artificial Intelligence, Edinburgh

Abstract
The use of abstraction has been largely informal. As a conse-

quence, it has often been difficult to see how or why a particular
abstraction works. This paper attempts to help correct this trend
by presenting a formal theory of abstraction. We use this theory to
characterise the different types of abstraction that can be built; the
different classes of abstractions we identify capture the majority of
abstractions of which we are aware. We end by proposing a method
for automatically building one very common type of abstraction, that
used in Abstrips; our proposal is motivated by consideration of the
various formal properties that such a method should possess.

1 Introduction

We see abstraction as the mapping of one representation of a problem, the
“ground” representation onto a new representation, the “abstract” represen-
tation. The overall aim might be to improve the efficiency of reasoning; for
example, an abstract solution might be used to guide the solution to the
ground problem. Or it might be to increase the number of facts derivable;
for example, a learning system might construct abstract versions of rules that
are learnt so that they can fire in new situations.

0



Unfortunately the use of abstraction has in general lacked sound and the-
oretical foundations. This has led to many problems. For example, abstrac-
tions have in general been constructed by hand; without a comprehensive
theory of abstraction, it is very difficult to determine automatically what to
abstract for a given problem representation. Additionally there has been a
lack of understanding of why abstraction works, of the different ways ab-
straction can be used, and of the relationships between the different types
of abstractions. These factors have greatly restricted the usefulness of ab-
straction. The aim of this paper is: (1) to describe a theory of abstraction;
(2) to use this theory to identify the different types of abstractions that can
be built; (3) to look in detail at how we can automatically build one (rather
famous) type of abstraction.

2 A theory of abstraction

We begin by outlining the formal framework presented in [?, ?]. Since we see
abstraction as a mapping between problem representations, we need a formal
method for describing problem representations. One very general method is
with a formal system, Σ.

Definition 1 (Formal System) : A formal system, Σ is a
pair, 〈Λ, TH(Σ)〉 where Λ is the language, TH(Σ) is the set of
theorems and TH(Σ) ⊂ Λ.

The language, Λ provides the basic tools for writing down formulae. Usu-
ally the language is defined by an alphabet, the set of (well formed) terms
and the set of well formed formulae (wffs from now on). To simplify matters,
we just take it to be a set of well formed formulae (leaving the alphabet, and
the set of well formed terms implicit). The set of theorems, TH(Σ) is the
set of statements which are taken to be true. Thus TH(Σ) ⊂ Λ. In fact,
we nearly always deal with axiomatic formal system, in which the theorems
are given by the transitive closure of a set of inference rules applied to a set
of axioms.

Since we view abstraction as a mapping between problem representations,
we formally define an abstraction as a mapping from one formal system to
another, more abstract one:

1



Definition 2 (Abstraction) : An abstraction, f : Σ1 ⇒ Σ2

is a pair of formal systems 〈Σ1,Σ2〉 with languages Λ1 and Λ2

respectively, and an effective total function f : Λ1 → Λ2.

Following historical convention, Σ1 is called the ground space and Σ2

the abstract space. f , the function that maps wffs from Λ1 onto wffs
in Λ2 is called the mapping function. This is a very general definition
of abstraction. Indeed it gives no guarantee that the abstraction is useful;
what is true in the abstract space may bear no relationship to what is true
in the ground space. An interesting and general restriction is therefore to
abstractions that preserve provability in some way. In [?] we identified the
very important class of truthful abstractions for which any theorem of the
ground space is mapped onto a theorem of the abstract space.

Definition 3 (Truthfulness) An abstraction, f : Σ1 ⇒ Σ2 is
truthful iff, if ϕ ∈ TH(Σ1) then f(ϕ) ∈ TH(Σ2).

Truthful abstractions are complete (the abstraction of any ground theo-
rem is a theorem in the abstract space) but may not be correct (there may
be theorems in the abstract space which do not correspond to any theorem in
the ground space). A large number of abstractions proposed in the past are
truthful. For example, Hobbs’ granularity [?] can be described as a truthful
abstraction. In [?], we also considered the dual class of abstractions which are
correct but not complete. In any sufficiently interesting theory, undecidabil-
ity ensures that is not possible to have both completeness and correctness.
Preserving provability is actually only a very weak property to demand – in
[?] we also consider stronger properties like the preservation of the structure
of proofs; abstract proofs can then be used to guide the search for ground
proofs. Of course, the preservation of the structure of proofs usually entails
some type of preservation of provability. What is perhaps most important
is that we are able to prove some very interesting results just from the weak
assumption that provability is preserved.

3 Types of abstractions

Many different (truthful) abstractions have been proposed. Unfortunately,
there have been few attempts at classifying the different types of abstractions.

2



A first step therefore in building abstractions automatically is to identify
the different ways we can abstract a problem representation. This section
attempts to provide such a classification.

With axiomatic formal systems, the abstract space often uses the same
inference rules (or a subset of them) as the ground space. This makes im-
plementation easier, and allows for the use of hierarchies of abstractions.
Additionally, the axioms of the abstract space are frequently given by apply-
ing the mapping function to the axioms of the ground space. From now on
we will restrict our attention to such abstractions. We can therefore classify
abstractions simply by the properties of their mapping function.

An important class of abstractions – and one that formalises nearly all
previous work in abstraction – is the class of atomic abstractions; that is,
abstractions which map the atomic formulae, and not their logical structure.
For example, f(p & q) is often the same as f(p) & f(q). Note that we have
overloaded the symbol “&” since it is used to represent both conjunction in
the ground and in the abstract languages. Strictly speaking we should dis-
tinguish between these two uses. However, since it is given the same meaning
in both the ground and the abstract spaces, we introduce no ambiguity by
this overloading.

Abstracting the logic is very dangerous as the consistency of a formal
system is usually very finely balanced. In general, the logic itself is well
behaved and it is the theory that needs to be simplified. Additionally, an
abstraction cannot change the logical structure of formulae too radically if
it is to preserve provability (or, more strongly, the structure of proofs). [?]
provides a longer discussion of these issues.

The recursive definition of atomic formulae suggests a systematic classi-
fication of atomic abstractions:

1. term abstractions where we map the terms. Further subdivided into:

• domain abstractions where we map the constants together;

• function abstractions where we map the function names to-
gether, or reduce their arity;

2. predicate abstractions where we map the predicate names together,
reduce their arity or (a special case) map the whole atomic formula
onto '/⊥.

3



This classification describes all atomic abstractions that can be decom-
posed into mappings on the individual parts of the atomic formulae. All
these different types of abstractions can be found in the literature. Most,
in fact, can be found in the work of Plaisted [?, ?]. Both Hobbs [?] and
Imielinski [?] have proposed domain abstractions. Plaisted [?, ?] has used
function abstractions on some interesting problems. Tenenberg [?] has looked
at predicate abstractions which collapse predicate names together. And the
abstraction used in Abstrips [?] can be seen as predicate abstraction that
maps certain preconditions onto '.

This section has identified some of the major types of abstraction. Each
maps a different part of the atomic formula (eg. the predicate names, the
constants, ...) or alternatively the whole atomic formula. It will depend on
the problem, and the choice of representation exactly what it is worthwhile
mapping together. The next section considers this problem in detail for one
particular class of abstraction.

4 Building Abstrips abstractions

An important class of atomic abstractions is the class of predicate abstrac-
tions which map some of the atomic formulae onto '. Abstrips [?] used
such abstractions to simplify its Strips-like planning domain. This section
explores how to build such abstractions automatically.

The problem domain is determined by a set of operators. We assume each
has a set of preconditions, and a conclusion described by an implication in a
situation calculus. Abstrips constructed a hierarchy of abstraction levels by
mapping preconditions onto true, ' according to their criticality; this is a
measure of how difficult the precondition is to achieve. Those preconditions
which it is impossible to change are given the highest criticality. Those
preconditions which it is very hard to change are given the next highest
criticality. And those preconditions which it is very easy to change are given
the lowest criticality. This notion of criticality is, in fact, very general and
need not be restricted just to preconditions – for instance, when using a
domain abstraction, we can define the criticality of the name of a constant.

Abstrips constructed plans in a hierarchy of abstract spaces, each of which
ignored the preconditions below a certain criticality. We propose a method
to calculate such criticalities automatically which improves upon the semi-

4



automatic method used in Abstrips. As in the original method used by Ab-
strips, the criticality of a precondition is independent of its arguments; that
is, it is a measure of how difficult on average it is to achieve a precondition.
To this end, we ignore the arguments to the preconditions.

We envisage an iterative process, whereby we assign the preconditions
some default starting value and then by a series of iterations calculate their
criticality. We shall represent by C(Ops, p, n) the criticality of the predicate,
p at the n-th iteration given a set of operators, Ops. Note that, unlike Ab-
strips, we assign a criticality to every predicate, irrespective of whether it
appears as a precondition to an operator or not. We will not be particu-
larly interested in the absolute values C(Ops, p, n) returns, just their relative
ordering. We motivate the choice of our criticality assignment function by
identifying some desirable properties it should possess. The first is that the
assignment function should converge to an unique answer.

Property 1 (Convergence)

lim
n→∞

C(Ops, p, n) = ap

We might sometimes allow ap to be infinite (in which case, we also want
to be able to know that the criticality can be calculated with arbitrary pre-
cision). Second, we would like the assignment function to be fair. Initially,
we have no information to distinguish between the different predicates. The
assignment function should not therefore discriminate between them. Every
predicate should be given a uniform starting value, a0.

Property 2 (Fairness)

C(Ops, p, 0) = a0

Third, we want the function to be monotonic. Given a set of operators,
if we add another operator with conclusion, p then as p is easier to satisfy
(we have another way of proving it) the criticality of p should go down (or,
at least, stay the same). And if we add a precondition, q to an operator with
conclusion p then as p is more difficult to satisfy (we have to prove another
precondition) the criticality of p should go up (or, at least, stay the same).

Property 3 (Monotonicity)

C(Ops ∪ {q → p}, p, n) ≤ C(Ops, p, n)

C(Ops ∪ {(q&r) → p}, p, n) ≥ C(Ops ∪ {r → p}, p, n)

5



There are other properties, like selectivity (the assignment function
should return a range of values), which are less precise in their definition
and whose truth may depend very precisely upon the given operators. This
is, by no means, an exhaustive list of properties that a criticality assignment
function should possess; for example, we might also want the function to re-
spect impossibility – those preconditions which cannot be changed should
be given the largest criticality. Nevertheless, we would argue that these are
all necessary properties.

5 A solution

We propose a criticality assignment function that satisfies all the properties
identified in the last section. It is based upon interpreting C(Ops, p, n) as
the difficulty of finding a proof of p of up to depth n. C(Ops, p, n) is defined
recursively as a function of the difficulty of finding a proof of up to depth
n − 1 plus the difficulty of finding a proof of exactly depth n (which we
represent by D(Ops, p, n)). We combine these difficulties by analogy to the
calculation of parallel resistance. With two resistors in parallel, the current
can go through either the first resistor or the second, thereby reducing the
total resistance. Similarly, we can find either a proof of up to depth n−1, or
we can find a proof of exactly depth n. Thus the difficulty of finding a proof
of up to depth n is the parallel sum of the difficulties of finding a proof of
up to depth n − 1 and of finding a proof of exactly depth n (equation ??).
This method of combining difficulties guarantees the monotonicity property.
The starting values for the calculation of criticalities are given by equation
??; this equation gauarantees the fairness of our solution.

C(Ops, p, 0) = a0 (1)
1

C(Ops, p, n)
=

1

C(Ops, p, n − 1)
+

1

D(Ops, p, n)
(2)

This still leaves us to decide how to calculate D(Ops, p, n), the difficulty
of finding a proof of exactly depth n. This is also defined recursively.

The boundary conditions are easy. D(Ops, p, 0) is the difficulty of finding

6



a proof of depth 0; this must equal C(Ops, p, 0) (equation ??). The other
boundary condition is when no operator has p as a conclusion; since it will
be impossible to change this predicate, we set this difficulty to ∞ (equation
??).

The step equations are more complicated. The difficulty of finding a
proof of p of exactly depth n, that is D(Ops, p, n) is the parallel sum of the
difficulties of finding a proof of depth n that ends with an operator with p
as conclusion (equation ??). D(Ops, q → p, n) represents the difficulty of
finding a proof of depth n that ends with the application of the operator,
q → p. Note that q itself might be a conjunction of preconditions, pi. Finally
the difficulty of ending a proof of depth n with the operator, ∧pi → p, that is
D(Ops,∧pi → p, n) is at least as difficult as finding a proof of depth n− 1 of
the most difficult precondition to that operator, that is max{D(Ops, qi, n −
1)} (equation ??). In calculating the difficulty of proving the preconditions
to an operator, we have made the simplifying assumption that the difficulty
is dominated by the most difficult precondition; a more thorough analysis
would also consider the difficulties of proving the less difficult preconditions.
However, such a calculation could be very expensive; taking the maximum
should give a good lower bound.

D(Ops, p, 0) = a0 (3)

D(Ops, r,m) = ∞ (4)
1

D(Ops, p, n)
=

∑

q→p∈Ops

1

D(Ops, q → p, n)
(5)

D(Ops,∧qi → p, n) = max{D(Ops, qi, n − 1)} (6)

where Ops contains no operator with r as conclusion, and m > 0

6 A worked example

We have tested this solution on some examples, taken from both planning
domains (eg. the original Abstrips operators [?]) and from theorem proving

7



domains (eg. the operators devised by Green for the famous Monkey and
Bananas problem [?]). For illustration, we give a table containing the calcu-
lation of criticalities for the Monkey and Bananas problem. The operators
for this problem are given in Appendix ??.

C /a0 n = 0 1 2 3 ∞
at 1.00 0.25 0.25 0.25 0.25
has 1.00 0.50 0.33 0.25 0.25
reachable 1.00 0.50 0.33 0.33 0.33
on 1.00 0.50 0.50 0.50 0.50
movable 1.00 1.00 1.00 1.00 1.00
empty 1.00 1.00 1.00 1.00 1.00
climbable 1.00 1.00 1.00 1.00 1.00

Our criticality assignment function converges to an answer rapidly. In-
deed, by the third iteration it reaches its final values. The relative or-
der of criticalities calculated by our method is almost identical to that as-
signed by the original semi-automatic method used in Abstrips. The method
used in Abstrips also needed an initial partial order on the preconditions.
For the Monkey and the Bananas problem, we assume the partial ordering
{(climbable,movable, empty), (on, reachable, has, at)}. The first set of pre-
conditions represent type preconditions that cannot be changed, whilst the
second set are all conclusions of operators (and so can be changed). The only
difference between the criticalities calculated by our method and those cal-
clulated by the method used in Abstrips is that the latter method gives at a
lower criticality than has. However, this difference seems more a criticism of
the need to supply a partial order as a different partial order would produce
different criticality assignments.

7 Conclusions

We have presented a powerful theory of abstraction. We have used this theory
to identify the different ways we can abstract a new problem. We then

8



concentrated on one particular type of abstraction, that used in Abstrips.
We explored how to build such abstractions automatically, motivating our
proposed method by defining the formal properties we want it to possess.

Acknowledgements

Alan Bundy is supported by a SERC Senior Fellowship. Fausto Giunchiglia
started this work at the Department of Artificial Intelligence at Edinburgh
supported by SERC grant GR/E/4459.8. He is now supported at IRST
by the Istituto Trentino di Cultura. Toby Walsh is supported by a SERC
studentship. All the members of the Mathematical Reasoning group in Edin-
burgh and the Mechanized Reasoning group in Trento are thanked for their
many contributions to this work.

Appendix

A Monkey and Bananas’ Operators

at(z, x1, s) ∧ movable(z) ∧ empty(x2, s) → at(Monkey, x2,m(Monkey, z, x2, s))

at(z, x1, s) ∧ movable(z) ∧ empty(x2, s) → at(z, x2,m(Monkey, z, x2, s))

at(z, x, s) ∧ climbable(y, z, s) → at(z, x, c(y, z, s))

at(z, x, s) ∧ climbable(y, z, s) → on(y, z, c(y, z, s))

at(Box, Under, s) ∧ on(Monkey,Box, s) → reachable(Monkey,Bananas, s)

reachable(z, x, s) → has(z, x, r(z, x, s))

9


