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The Method of Assigning Incidences

Weiru Liu David McBryan and Alan Bundy
School of Info.& Soft.Eng. Dept. of AI
Univ. of Ulster at Jordanstown Univ. of Edinburgh
Co.Antrim BT37 0QB Edinburgh EH1 1HN

Abstract

Incidence calculus is a probabilistic logic in which incidences, standing for the situations in
which formulae may be true, are assigned to some formulae, and probabilities are assigned to
incidences. However, numerical values may be assigned to formulae directly without specify-
ing the incidences. In this paper, we propose a method of discovering incidences under these
circumstances which produces a unique output comparing with the large number of outputs
from other approaches. Some theoretical aspects of this method are thoroughly studied and
the completeness of the result generated from it is proved. The result can be used to calculate
mass functions from belief functions in the Dempster-Shafer theory of evidence (DS theory) and
define probability spaces from inner measures (or lower bounds) of probabilities on the relevant
propositional language set.

1 Introduction

Incidence calculus ([2], [4]) is a probabilistic logic for dealing with uncertainty in intelligent systems.
In incidence calculus, incidences are assigned to some formulae, and probabilities are assigned to
incidences. An incidence is assigned to a formula if this formula is true when the incidence occurs.
Incidences can be explained as the possible worlds relevant to a problem in logics, or all the possible
outcomes of an event in probability theory. The probability of a formula is calculated through the
set of incidences assigned to it.

Calculating probabilities of formulae through incidences results in the indirect assignment of
numerical values on formulae. The initial assignment of incidences on some formulae (called axioms)
plays a vital role in further propagating incidences to other formulae and obtaining probabilities of
them. It is proved in [13] that the indirect encoding in incidence calculus provides the possibility of
combining dependent evidence, a problem which is difficult to solve in pure numerical approaches.
However in practice, numerical values may be assigned to some formulae directly without giving
incidences, like the methods used in pure numeric reasoning theories, e.g., DS theory, probabilistic
logic, and probability theory. It is, therefore, necessary to recover the incidence assignments (if
they exist) from the given numerical assignment in these circumstances ([11]).

In [17], the task of assigning incidences was viewed as a tree searching problem and two tech-
niques of performing this search were discussed. One of them was a depth first search while the
other extended the Monte Carlo method, introduced initially in [3]. Both methods generate a
number of consistent assignments of incidences, given a numerical assignment. In fact, these meth-
ods try to find all possible consistent assignments of incidences. Therefore, both of the programs
are slow in terms of finding answers. Besides, they cannot be used in more general situations,
represented using generalized incidence calculus theories, to which the original incidence calculus
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was extended [14]. In this paper, we discuss the incidence assignment problem in the situation
where incidence calculus has been extended [14]. An alternative approach to assigning incidences
from numerical assignments is explored. This approach is based on a new concept: basic incidence
assignment. The significance of the new incidence assignment method is that it can determine
whether a consistent assignment is available efficiently and then construct only one assignment,
which is a basic incidence assignment. Through this core assignment, a family of consistent as-
signments can be generated. As there is only one possible output comparing with a large amount
of output from other approaches, the new method is considerablely faster then those in [17]. This
result also gives a method to check whether a numerical assignment on a set is a belief function in
DS theory ([8], [19]) and then to calculate its mass function when it is. The result can further be
used to construct probability spaces from inner measures (or lower bounds) of probabilities on the
relevant propositional language sets [9].

Although our approach only produces a single output, a basic incidence assignment, it does not
mean that we may have ignored any possible outcomes discovered by other methods. In [15], the
theoretical features of basic incidence assignment based approach were explored intensively. It is
proved that incidence assignments discovered in our approach are more fundamental then incidence
assignments obtained from other methods, and any output from other methods is subsumed by a
unique output from our method.

Overall, this paper makes the following contributions regarding developing the original incidence
calculus.

• The concept of basic incidence assignment is proposed which underlies the foundation for the
new approach.

• The relationship between a basic incidence assignment and an incidence assignment is ex-
amined which reveals the nature of similarities among apparently different incidence func-
tions.

• An algorithm on incidence assignments from numerical assignments is designed and imple-
mented.

• The theoretical foundation of this approach is examined in which the completeness of the
result generated from the algorithm is proved.

• An algorithm is designed to check if a numerical assignment on a set is a belief function, and
obtain the corresponding mass function when it is.

• An algorithm is designed to recover the probability space from an inner measure on a pro-
positional language set.

The rest of the paper is organized as follows. Section 2 introduces some basic definitions
used throughout the paper and the basics of the original incidence calculus. Section 3 describes
the generalized incidence calculus theories, and proposes basic incidence assignments. Section 4
concentrates on the relationships between basic incidence assignments and incidence functions,
to see how to find one from the other. In Section 5, an algorithm for obtaining the incidence
assignment from a numerical assignment is discussed. Section 6 concentrates on exploring the
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theoretical nature of incidence assignments and discusses why a single output is enough to represent
a number of incidence assignment, given a numerical assignment. The application of the result to
DS theory and probability spaces is presented in Section 7. Finally, in Section 8 we summarize the
paper.

2 The Original Incidence Calculus

We first give some basic definitions which will be used in the later sections, then introduce the
original incidence calculus.

2.1 Basic definitions

Definition 2.1: The Probability Space

A probability space (X, χ, µ) has:
X : a sample space usually containing all the possible worlds;
χ: a σ-algebra containing some subsets of X , which is defined as containing X and closed under

complementation and countable union.
µ: a probability measure µ : χ→ [0, 1] with the following features:
P1. µ(Xi) ≥ 0 for all Xi ∈ χ;
P2. µ(X) = 1;
P3. µ(∪∞

j=1Xj) = Σ∞
j=1µ(Xj), if the Xj’s are pairwise disjoint members of χ.

A subset χ′ of χ is called a basis of χ if it contains non-empty and disjoint elements, and if χ
consists precisely of countable unions of members of χ′. For any finite χ there is a unique basis χ′

of χ and it follows that

ΣXi∈χ′µ(Xi) = 1.

Given a set X , when a probability distribution µ assigns a probability on every singleton
x ∈ X , σ-algebra χ and the basis χ′ of χ are the same as X . The corresponding probability space
is (X,X, µ).

Definition 2.2: The Propositional Language

• P is a finite set of atomic propositions.

• L(P ) is the propositional language formed from P .

true, false ∈ L(P ),

if q ∈ P , then q ∈ L(P ), and

if φ, ψ ∈ L(P ) then ¬φ ∈ L(P ), φ ∧ ψ ∈ L(P ), φ ∨ ψ ∈ L(P ), and φ→ ψ ∈ L(P ).

That is, L(P ) is closed under the operations negation (¬), disjunction (∨), conjunction (∧)
and implication (→).
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Definition 2.3: The Basic Element Set

Assume that P is a finite set of propositions and P = {q1, q2, ..., qn}. An item δ, defined as
δ = q′1∧ ...∧ q′n where q′j is either qj or ¬qj , is called a basic element. The collection of all the basic
elements, denoted as At, is called the basic element set from P . Any formula ψ in the language set
L(P ) can be represented as

ψ = δ1 ∨ ... ∨ δk,
where δj ∈ At.

2.2 The original incidence calculus

Incidence calculus ([2]) is a logic for probabilistic reasoning. In incidence calculus, probabilities are
not directly associated with formulae, rather sets of possible worlds are directly associated with
formulae and probabilities (or lower and upper bounds of probabilities) of formulae are calculated
from these sets.

Definition 2.4: The Original Incidence Calculus Theories

An incidence calculus theory is a quintuple

<W , µ, P,A, i >,

where

• W is a finite set of possible worlds.

• For all w ∈ W, µ(w) is the probability of w and µ(W) = 1, where µ(I) = Σw∈Iµ(w).

• P is a finite set of propositions. At is the basic element set of P . L(P ) is the language set
of P .

• A is a distinguished set of formulae in L(P ) called the axioms of the theory.

• i is a function from the axioms in A to 2W , the set of subsets of W. i(φ) is to be thought of
as the set of possible worlds in W in which φ is true, i.e., i(φ) = {w ∈ W| w |= φ}. i(φ) is
called the incidence set of φ.

i is extended to be a function from L(A) to 2W by the following defining equations of incidences.

i(true) = W ,

i(false) = {},
i(¬φ) = W \ i(φ),
i(φ∧ ψ) = i(φ) ∩ i(ψ),
i(φ∨ ψ) = i(φ) ∪ i(ψ),
i(φ→ ψ) = W \ i(φ) ∪ i(ψ).
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Such an incidence calculus theory is truth functional, i.e., the incidence set of a formula can be
calculated purely from its parts.

For a formula in L(P ) \ L(A), the lower and upper bounds of its incidence set are defined as:

i∗(φ) =
⋃

ψ∈L(A)

{i(ψ) | i(ψ → φ) = W} (1)

i∗(φ) =
⋂

ψ∈L(A)

{i(ψ) | i(φ→ ψ) = W} (2)

The corresponding lower and upper bounds of probabilities of this formula are p∗(φ) = µ(i∗(φ))
and p∗(φ) = µ(i∗(φ)). For a formula, if i∗(φ) = i∗(φ) = i(φ), then p(φ) is defined as p∗(φ). We say
p(φ) is the probability of formula φ.

Example 2.1

Suppose there are three propositions, P = {sunny, rainy, windy}, and seven possible worlds,
W = {sun,mon, tues, wed, thus, fri, sat}. Assume that each possible world is equally probable,
i.e. occurs 1/7 of the time. Through a piece of evidence, we learn that four possible worlds fri,
sat, sun, mon support rainy, and three possible worlds mon, wed, fri make windy true. Then the
incidence sets of these two propositions are:

i(rainy) = {fri, sat, sun,mon},
i(windy) = {mon, wed, fri}.

The set of axioms A is {rainy, windy}. For every formula in L(A), it is possible to get its
incidence set. For instance, for formula ¬windy ∧ rainy, we have

i(¬windy ∧ rainy)= i(¬windy)∩ i(rainy)
= (W \ i(windy))∩ i(rainy)
= {tue, thru, sat, sun} ∩ {fri, sat, sun,mon}
= {sat, sun}.

For other formulae in L(P ) \ L(A), such as, (sunny ∨ windy) ∧ ¬rainy = φ, we can only use
equations (1) and (2) to obtain its bounds. In this special case, i∗(φ) = i(windy∧¬rainy) = {wed}
(as only i((windy ∧ ¬rainy) → φ) = W) and i∗(φ) = {tues, wed, thus} (as i(φ→ ¬rainy) = W).

The result says that at least one day, but at most three days in that week that it is either sunny
or windy but not rainy.

�

3 Generalized Incidence Calculus

In [13] and [14], we argued that incidence calculus theories introduced in Section 2 can only be
used to represent a special group of information which should specify incidence functions with
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truth functionality. Then we suggested to weaken the conditions on incidence functions in order
to let incidence calculus represent a wider range of information. As a result, generalized incidence
calculus theories (GICTs) are introduced to replace the original incidence calculus theories.

Definition 3.1: Generalized Incidence Calculus Theories (GICTs)

A generalized incidence calculus theory (GICT) is in the form of <W , µ, P,A, i > where W , µ and
P are the same as in Definition 2.4.

• A is a distinguished set of formulae in L(P ) called the axioms of the theory on which incid-
ences are assigned initially.

• i is a function from the axioms in A to 2W , the set of subsets of W. i(φ) is to be thought of
as the set of possible worlds in W in which φ is true. i(φ) is called the incidence set of φ.
Function i satisfies the conditions

i(true) = W ,

i(false) = {},
i(φ ∧ ψ) = i(φ) ∧ i(ψ), φ, ψ ∈ A.

The condition i(φ ∧ ψ) = i(φ) ∧ i(ψ) requires that A is closed under the operation ∧. This
condition is true whenever for any two formulae φ, ψ in A, i(φ), i(ψ) and i(φ ∧ ψ) are all defined.
Because, if a possible world w supports φ∧ψ, w must also support both φ and ψ, so that i(φ∧ψ) ⊆
i(φ)∩ i(ψ). On the other hand, if w supports both φ and ψ, then w supports φ∧ψ as well, so that
i(φ) ∩ i(ψ) ⊆ i(φ∧ ψ).

When A is not closed under ∧ initially, we can always extend it to be closed by defining
i(φ ∧ ψ) = i(φ) ∩ i(ψ). Therefore, in the rest of the paper, we take A as a set closed under ∧. We
also assume in the rest of the paper that true and false are always included in a set of axioms.

The function i in a GICT is also called an incidence function in the rest of the paper. Only
when confusions may occur, will we make it clear whether i is a original incidence function, or a
function in a GICT.

Similar to the situation in the original incidence calculus, it is not usually possible to infer the
incidences of all the formulae in L(P ), given a GICT. We can only define both the upper and lower
bounds of the incidence set using the following equations.

i∗(φ) =
⋃

ψ∈A,ψ|=φ
i(ψ) (3)

i∗(φ) = W \ i∗(¬φ) (4)

where ψ |= φ iff ψ → φ = true. That is, formula ψ → φ is a tautology.
In particular, for any φ ∈ A, we have i∗(φ) = i(φ).
The equations for calculating bounds here are slightly different from those defined in (1) and

(2). (3) and (4) are more close to the similar concepts in other theories, such as the bounds of
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beliefs in the DS theory, and the inner and outer measures of probabilities on logical sentences in
[9], [10].

The lower bound of an incidence set (equation (3)) represents the set of possible worlds in which
φ is proved to be true and the upper bound (equation (4)) represents the set of possible worlds
in which ¬φ fails to be proved. Function Prob∗(φ) = µ(i∗(φ)), the lower bound of a probability
measure, gives the degree of our belief in φ and function Prob∗(φ) = µ(i∗(φ)), the upper bound of
a probability measure, represents the degree we fail to believe in ¬φ. If for every formula φ in A,
Prob∗(φ) = Prob∗(φ) holds, then Prob(φ) is defined as Prob∗(φ) and is called the probability of
this formula. In this case, a GICT is shrunk into an original incidence calculus theory. Otherwise,
the probability of φ does not exist.

In the following, when we mention a lower bound of a probability distribution on A, we always
mean the function Prob∗(∗) obtained through the lower bounds of incidence sets.

Now we use an example to see how to apply generalized incidence calculus theories.

Example 3.1 (Originally from [9] and used in [7])

A person has four coats: two are blue with single-breasted, one is grey and double-
breasted and one is grey and single-breasted. To choose which colour of coat to wear,
this person tosses a (fair) coin. Once the colour is chosen, which specific coat is worn is
determined by a mysterious procedure. What is the probability of the person wearing
a single-breasted coat?

To solve this problem in generalized incidence calculus, we need to construct a GICT first. We
let a set of propositions P be P = {grey, double} where grey stands for ‘The coat is grey’ and
double stands for ‘The coat is double-breasted’ and let W = {w1, w2} where w1 is for blue coats
and w2 for grey coats. Then we have

At = {grey ∧ double,¬grey∧ double, grey∧ ¬double,¬grey ∧ ¬double}.
Among these basic elements, ¬grey ∧ double is false, as there is no such coat among the four

choices. It is possible to derive that w1 supports formula ¬grey∧¬double and w2 supports formula
(grey ∧ ¬double) ∨ (grey ∧ double). Therefore, we get a GICT, <W , µ, P,A, i >, where

µ(w1) = µ(w2) = 0.5,
A = {¬grey ∧ ¬double, (grey∧ ¬double) ∨ (grey ∧ double), true, false},
i(¬grey ∧ ¬double) = {w1},
i((grey ∧ ¬double) ∨ (grey ∧ double)) = {w2},
i(true) = {w1, w2}, i(false) = {}.

So

i∗(¬double) = i(¬grey ∧ ¬double),
i∗(¬double) = W \ i∗(double) = W ,

and
p∗(¬double) = 0.5, p∗(¬double) = 1.
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The answer to the question is that the probability of the person wearing a single-breasted coat
lies between 0.5 and 1.

�

3.1 Basic Incidence Assignment

For each axiom φ ∈ A of a GICT < W , µ, P,A, i >, the incidence set i(φ) contains every possible
world which makes φ true. If w ∈ i(ψ) and ψ |= φ (ψ 
= φ), then w makes φ true, and w ∈ i(φ).
Assume that ψ1, ..., ψj ∈ A are all the axioms satisfying the condition ψj |= φ (ψj 
= φ), then
i(φ) \ ∪ji(ψj) may or may not be empty, depending on the specification of i. We are particularly
interested in φ and those possible worlds in i(φ) \ ∪j i(ψj), when it is not empty. What properties
do these possible worlds possess? Clearly, the possible worlds in i(φ) \ ∪j i(ψj) make only φ true
without making any of ψ (ψ |= φ, ψ 
= φ) true. We denote this set as ii(φ). If we let A0 contain all
those axioms φ for which ii(φ) is not empty, then ii defines a function on axioms in A0. For other
axioms, ψ, in A\A0, ii(ψ) = {}. This implies that i(ψ) is purely the union of the incidence sets of
some other axioms ψj, where ψj |= ψ. That is, the set i(ψ) does not carry any extra information
than that union.

Definition 3.2: Defining a function ii from i

Assume that i is the incidence assignment from a GICT, <W , µ, P,A, i >, we define a new function
ii on a subset of A, A0, from the following equation:

A0 = {φ | ii(φ) = i(φ) \ ∪ψj |=φ,ψj �=φi(ψj), ii(φ) 
= {}, φ, ψj ∈ A}.

Definition 3.3: Basic incidence assignment

Given a set of axioms A0 and a set of possible worlds W, a function ii : A0 → 2W is called a basic
incidence assignment if ii satisfies the following conditions:

ii(φ) 
= {}, φ ∈ A0;
ii(φ)∩ ii(ψ) = {}, φ 
= ψ (φ 
|= ψ or ψ 
|= φ);
ii(true) = W \ ⋃

φj �=true ii(φj), φj ∈ A0, true ∈ A0, when W \ ⋃
φj �=true ii(φj) 
= {}.

Clearly, in a basic incidence assignment, each possible world w is only assigned to a specific
axiom. ii(φj) (φj ∈ A0) partitions the set W , as ∪φj ii(φj) = W as shown in the definition. If
w ∈ ii(φj), we say that φj is the smallest formula which w supports (by smallest, we mean that
if w also supports φl, then φj |= φl (φj 
= φl)). Therefore, a basic incidence assignment gives a
unique mapping relation between each possible world and the smallest formula of all the formulae
it supports, for instance, if w supports φ, then w supports φ∨ψ1, φ∨ψ2,... etc. In a basic incidence
assignment, if w ∈ ii(φ), then w 
∈ ii(φ ∨ ψj). However, an incidence function i maps a possible
world w to every formula it supports, i.e., if w ∈ i(φ), then w ∈ i(φ ∨ ψj).

In order to see the difference between i and ii, we look at an example.
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Example 3.2

Following the incidence assignment in Example 2.1, the generalized incidence calculus theory is

<W , µ, P,A, i >

where W contains seven possible worlds, and µ(w) = 1/7. P = {sunny, windy, rainy} and A =
{rainy, windy, rainy ∧ windy, true, false}1. The incidence function gives the following incidence
sets to the axioms in A.

i(rainy) = {fri, sat, sun,mon},
i(windy) = {mon, wed, fri},
i(rainy ∧windy) = {mon, fri},
i(true) = W and i(false) = {}.

An assignment ii on set A \ {false} can then be defined using Definition 3.2.

ii(rainy ∧ windy) = {fri, mon},
ii(rainy) = {sat, sun},
ii(windy) = {wed},
ii(true) = {tues, thur}.

From this ii, the incidence function can be recovered as:

i(rainy ∧windy) = ii(rainy ∧ windy) = {mon, fri},
i(rainy) = ii(rainy)∪ ii(rainy ∧ windy) = {fri, sat, sun,mon},
i(windy) = ii(windy)∪ ii(rainy ∧windy) = {mon, wed, fri},
i(true) = ii(true) ∪ ii(rainy)∪ ii(windy)∪ ii(rainy ∧ windy) = W .

�

sat in ii(rainy) means that the smallest axiom this possible world supports is rainy. While
the smallest axiom that fri supports is rainy ∧ windy although fri ∈ i(rainy) as well.

Function ii defined in this example is a basic incidence function of i based on Definition 3.3,
and it is easy to see that the original incidence function i is recoverable from it. In general, is every
function ii defined through Definition 3.2 a basic incidence assignment of that incidence function
i? If yes, what is the procedure to recover its incidence function? Is the basic incidence assignment
of a particular i unique? In the next section, we will answer these questions.

1It is worth noted that the set of axioms A in this generalized incidence calculus theory is closed under ∧ and is

different from that in the original incidence calculus theory in Example 2.1 (the original incidence calculus does not

require this condition).
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4 Relationships of Basic Incidence Assignments and Incidence

Functions

Basic incidence assignments and incidence functions are all about mapping relations between a
set of axioms and a set of possible worlds. A basic incidence assignment maps a possible world
uniquely to an axiom while an incidence assignment maps a possible world to all the axioms to
which it supports. So what are the general relationships between these two types of assignment?
Are the relationships one to one, or one to many, or even many to many? This section goes deeper
along this line to see what the answer is.

4.1 An incidence function has a unique basic incidence assignment

Algorithm A below constructs a function ii from an incidence function i in a GICT. Theorem 1
confirms that the function ii obtained from Algorithm A is the same as the function ii defined
in Definition 3.2 and that this function is unique. Theorem 2 proves that function ii obtained
from Algorithm A is a basic incidence assignment and the corresponding incidence function can be
recoved from it. Therefore, we conclude that given an incidence function i, there is always a unique
basic incidence assignment from which it can be recovered.

Algorithm A: Extraction of a function ii

Given a GICT < W , µ, P,A, i >, function ii on a domain A0 (A0 ⊆ A) can be obtained by the
following procedure.

Define a subset A0 of A \ {false}, as A0 = {ψ1, ..., ψn} where A0 satisfies the condition

∀ψi ∈ A0, ∀φ ∈ A, φ 
|= ψi if φ 

= ψi. (5)

Therefore, A0 contains the “smallest” formulae in A and A0 is not empty2. In fact, we can find
at least one element belonging to A0 using the following procedure. For a formula φ ∈ A\ {false},
if ∃ψi ∈ A, ψi 
= φ and ψi |= φ, then we use ψi to replace φ and repeat the same procedure3until we
obtain a formula ψj and we cannot find any formula which makes ψj true, then ψj will be in A0.

Step 1: for every formula ψ ∈ A0, define ii(ψ) = i(ψ).

Step 2: define A′ = A \ (A0 ∪ {false}).

Step 3: if A′ is left with only tautologies, go to Step 6.

Step 4: choose a formula φl in A′ which satisfies the requirement that for any φj ∈ A′, if φj 
= φl,
then φj 
|= φl.

Define ii(φl) = i(φl) \
⋃
ψlj∈A0,ψlj |=φl

ii(ψlj).

Step 5: delete φl from A′ and update A0 to be A0 ∪ {φl} when ii(φl) 
= {}. Go to step 3.
2We assume that A contains at least one axiom in addition to the tautologies and false. Otherwise, this GICT

tells nothing but true is supported by W and false by empty.
3This procedure will terminate because P is finite, so are L(P ) and the set of axioms, A.
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Step 6: further defining ii(true) = W \ ∪ψj∈A0ii(ψj). If ii(true) 
= {} then ii(true) represents
those possible worlds which only support formula true, and add true to A0. So function
ii : A0 → 2W is constructed.

From this algorithm, we come to Theorem 1 below which proves that function ii obtained in
the algorithm is the same as function ii defined in Definition 3.2.

Theorem 1 Given a GICT, < W , µ, P,A, i >, the function ii constructed from Algorithm A is
the unique function satisfying the conditions in Definitions 3.2.

Proof

To make the statement clear, we assume that the output of Algorithm A is (A1, ii1) where A1

contains a set of axioms, on which ii1 is defined, and an output of Definition 3.2 is (A0, ii).
Part I: (A1, ii1) satisfies the conditions in Definition 3.2.

(i) ii1(φ) 
= {} for every φ ∈ A1.
(ii) for φ ∈ A1,

ii1(φ) = i(φ) \ ⋃
ψj∈A1,ψj |=φ ii(ψj) (equation in Step 4)

= i(φ) \ ⋃
φj∈A1,φj |=φ,φj �=φ(

⋃
ψjl∈A1,ψjl|=ψj

ii(ψjl) ∪ ii(ψj))
(based on S ∪ S = S, we add some extra ii(ψjl) sets)

= i(φ) \ ⋃
φj∈A1,φj |=φ,φj �=φ i(ψj) (through the reverse of the equation in Step 4)

= ii(φ) (from Definition 3.2).

Therefore (A1, ii1) satisfies the conditions in Definition 3.2.
Part II: Proof that ii1 is identical with ii.
From the proof of Part I, we can see that (A1, ii1) ⊆ (A0, ii) where ∀φ ∈ A0, ii1(φ) = ii(φ).
We only need to prove that (A0, ii) ⊆ (A1, ii1).
At the beginning of Algorithm A, we let the smallest axioms from formula (5) be in A′

1. Then
A′

1 ⊆ A0, and ii1(φ) = ii(φ) for φ ∈ A′
1.

We choose an axiom ψ ∈ A0 \ A′
1 where for any other ψj ∈ A0 \ A′

1, if ψj 
= ψ, then ψj 
|= ψ.
Then there is a list of ψl where ψl |= ψ, otherwise, ψ in A′

1. Based on Step 4 in Algorithm A, we
have

ii1(ψ) = i(ψ) \ ⋃
ψl∈A′

1,ψl|=ψ ii1(ψl)
= i(ψ) \ ⋃

ψl∈A′
1,ψl|=ψ ii(ψl) (as ii1(ψl) = ii(ψl))

⊇ i(ψ) \ ⋃
ψl∈A′

1,ψl|=ψ i(ψl).

As i(ψ) \ ⋃
ψl∈A′

1,ψl|=ψ i(ψl) is not empty, so is ii1(ψ). Therefore, ψ is in A1.
Redefine A′

1 = A′
1 ∪ {ψ}. Repeat the above procedure for another axiom ψl in A0 \ A′

1, we
will prove that ψl is in A1. So eventually, every formula which is in A0 is also in A1. That is
(A0, ii) ⊆ (A1, ii1). So A1 and A0 are the same set, and ii1 and ii are identical on this set.

Part III: Proof that ii is the unique function of this kind.
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Given an incidence function i on axiom set A, there is only one function ii from i through
Definition 3.2. Because an output from Algorithm A is equivalent to a function ii defined from
Definition 3.2, and there is only one such ii given an i, there must be only one output from
Algorithm A, given a i. Therefore, for a given i, the function ii, either from Algorithm A, or from
Definition 3.2, is unique.

QED

Theorem 2 Given a GICT < W , µ, P,A, i >, the function ii defined on set A0 obtained from
Algorithm A is a basic incidence assignment and function i in the theory can be recovered from it
using equation (6).

i(φ) =
⋃

φj∈A0,φj |=φ
ii(φj). (6)

Proof

Part I: ii is a basic incidence assignment
Suppose that ii(φi) ∩ ii(φj) = W ′ 
= {}, we have the following inference procedure:

∃w, w ∈ ii(φi) ∩ ii(φj)
=⇒ w ∈ i(φi) and w ∈ i(φj)
=⇒ w ∈ i(φi) ∩ i(φj)
=⇒ w ∈ i(φi ∧ φj)
=⇒ ∃φ 
= false and w ∈ i(φ) and φ = φi ∧ φj (as φi 
= φj)
=⇒ ∃φ′ 
= false, φ′ |= φ, w ∈ ii(φ′), and φ′ |= φi, φ

′ |= φj

=⇒ ∃φ′ 
= false, w 
∈ i(φi) \ ii(φ′) and w 
∈ i(φj) \ ii(φ′)
=⇒ w 
∈ i(φi) \ ∪φil|=φi

ii(φil) and w 
∈ i(φj) \ ∪φjl|=φj
ii(φjl)

=⇒ w 
∈ ii(φi) and w 
∈ ii(φj)
=⇒ w 
∈ ii(φi) ∩ ii(φj).

Contradiction.
So the equation ii(φi)∩ ii(φj) = {} holds for any two distinct elements φi and φj in A0. As we

also have ii(true) = W \ ∪jii(φj), when ii(true) 
= {}, so ii is a basic incidence assignment.

Part II: i can be obtained from ii

Now we prove that the incidence function i in < W , µ, P,A, i > can be derived from ii using
equation (6).

For a formula φ ∈ A0, there are two situations when φ is added into A0.
1) φ is added into A0 in Step 1, then

i(φ) = ii(φ) =
⋃
φj |=φ

ii(φj).

2) φ is added into A0 in Step 4 and 5 when ii(φ) 
= {}, then

i(φ) = ii(φ) ∪ (
⋃

φj∈A0,φj |=φ
ii(φj)) =

⋃
φj∈A0,φj |=φ

ii(φj).

12



For a formula φ ∈ A \ A0, we have ii(φ) = {} at Step 5, equation

i(φ) =
⋃

φj∈A0,φj |=φ
ii(φj)

holds.
Therefore, no matter in which case, the incidence set i(φ) of φ can always be derived from

(A0, ii) using equation (6).

QED

Example 4.1 (Simplified from [5])

Suppose that there are four urns of balls. The balls in the first urn are all Blue, the balls in
the second urn are either Blue or Green, the balls in the third urn are all Red and the balls in the
fourth urn are either Green or Red. Suppose one ball is drawn from an urn and we are interested
in the colour of the drawing ball. The following propositions can be included in set P .

q1: The ball is Blue;
q2: The ball is Blue ∨Green;
q3: The ball is Red;
q4: The ball is Green ∨Red.
It is possible to establish the supporting relations between the event “drawing a ball from an

urn” and the propositions in P using an incidence function i as:

i(q1) = {1}, i(q2) = {1, 2},
i(q3) = {3}, i(q4) = {3, 4},
i(true) = {1, 2, 3, 4}, i(false) = {}.

where 1, 2, 3, 4 stand for drawing a ball from urns 1, 2, 3 and 4 respectively.
As i(q2 ∧ q4) = i(q2) ∩ i(q4) = {}, the set of axioms A is A = {q1, q2, q3, q4, true, false} which

is closed under ∧ and the corresponding generalized incidence calculus theory is:

<W , µ, P,A, i >,

where W = {1, 2, 3, 4} and µ(w) = 1/4.
A function ii on set A\{false} can be defined through Definition 3.2 and it is a basic incidence

assignment.

ii(q1) = {1}, ii(q2) = {2},
ii(q3) = {3}, ii(q4) = {4},
ii(true) = {}.

ii(q4) = {4} means that the balls in the fourth urn only support proposition q4. The incidence
function i on A can be recovered as:

13



i(q1) = ii(q1), i(q2) = ii(q2) ∪ ii(q1),
i(q3) = ii(q3), i(q4) = ii(q3) ∪ ii(q4),
i(true) =

⋃
j ii(qj) = W i(false) = {}.

�

Constructing a incidence function i from ii is not difficult if we know the incidence function i

first and ii is derived from it. What is the prospect of defining an incidence function i given a basic
incidence assignment ii on domain A0? What is the method of finding a domain A, which should
be closed under ∧, on which i is defined? We will solve this problem in the next subsection.

4.2 An basic incidence assignment maps to a family of incidence assignments

Example 4.2

Given the following incidence function on a set of axioms A = {windy, rainy, rainy ∧
windy, windy ∨ sunny, rainy ∧ (windy ∨ sunny), true, false} as:

i(rainy) = {fri, sat, sun,mon},
i(windy) = {mon, wed, fri},
i(rainy ∧windy) = {mon, fri},
i(windy ∨ sunny) = {mon, wed, fri},
i(rainy ∧ (windy ∨ sunny)) = {mon, fri},
i(true) = W and i(false) = {}.

A function ii can be defined on domain A0={windy∧rainy, windy, rainy, true} using Definition
3.2 as

ii(rainy ∧ windy) = {fri, mon},
ii(rainy) = {sat, sun},
ii(windy) = {wed},
ii(true) = {tues, thur}.

�

This incidence function shares the same basic incidence assignment with the incidence assign-
ment in Example 3.2, but the original sets of axioms are different. The set of axioms in Example
3.2 is a proper subset of the set of axioms in Example 4.2. This suggests that a family of incidence
functions may map to a specific basic incidence assignment. So, how to find the smallest set of
axioms in a family given (ii,A0) and how to generate other members of this family are the questions
we need to answer.

The first theorem below proves the existence of the smallest set of axioms on which an incidence
function i is derivable, given a basic incidence assignment, and the second proves that a family of
sets of axioms can be generated based on the smallest set of axioms.
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Theorem 3 Given a set of axioms A0 with a basic incidence assignment ii, let

A = A0 ∪ {false} ∪ {φ | φ = ψ1 ∧ ... ∧ ψn, ψ1, ..., ψn ∈ A0, n > 1}.
Function i defined on A by equation (6) is an incidence function.

Proof

Part I: i is an incidence assignment on A.

First of all, because ii(true) = W \ ∪j ii(φj), we have i(true) = ii(true) ∪ (∪jii(φj)) = W . We
also define i(false) = {}.

As A is defined in the way that it is closed under ∧, we only need to prove that i(φ ∧ ψ) =
i(φ) ∩ i(ψ) when φ, ψ and φ ∧ ψ are all in A.

Suppose that i(φ) ∩ i(ψ) = W ′ 
= {},

∀w ∈ W ′, w ∈ i(φ) ∩ i(ψ)
⇐⇒ ∃φ0, w ∈ ii(φ0) (φ0 |= φ, φ0 |= ψ)
⇐⇒ ∃φ0, w ∈ ii(φ0), φ0 |= φ ∧ ψ
⇐⇒ ∃φ0, w ∈ ii(φ0) ∧ ii(φ0) ⊆ i(φ ∧ ψ) (from equation (6))
⇐⇒ w ∈ i(φ ∧ ψ)

So we have i(φ) ∧ i(ψ) = i(φ ∧ ψ). When i(φ) ∧ i(ψ) = {}, it is also easy to prove that
i(φ) ∧ i(ψ) = i(φ∧ ψ). Therefore the function i defined by (6) is an incidence function.

Part II: A is the smallest among all possible sets of axioms which are closed under ∧.

It is easy to see that A is smallest set which includes A0 and closed under ∧.

QED

Theorem 4 Given a basic incidence assignment ii on a set of axioms A0, let A be the smallest
set of axioms defined in Theorem 1, then a set B defined using equation (7) below is a member of
a family of sets, on which there is an incidence function iB leading to ii.

B = A∪ {φ | φ = ψ ∨ φ′, φ′ ∈ A} (7)

where ψ ∈ L(P ) but ψ 
∈ A.

Proof

We need to prove three separate results for this theorem. Firstly, B is closed under ∧. Secondly,
there is an incidence function iB on domain B. Thirdly, the basic incidence assignment of iB is the
same as ii.

Part I: Proof of B being closed under ∧.

Assume that φ1 and φ2 are two distinct formulae in B.
(i) if both of these formulae are in A, then φ1 ∧ φ2 ∈ A ⊆ B. B is closed.

(ii) if both of these formulae are in B \ A, we have
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φ1, φ2 ∈ B ⇐⇒ ∃φ′1 ∈ A, ∃φ′2 ∈ A, φ1 = φ′1 ∨ ψ, φ2 = φ′2 ∨ ψ
⇐⇒ ∃φ′1 ∈ A, ∃φ′2 ∈ A, φ1 ∧ φ2 = (φ′1 ∨ ψ) ∧ (φ′2 ∨ ψ)
⇐⇒ ∃φ′1 ∈ A, ∃φ′2 ∈ A, φ1 ∧ φ2 = (φ′1 ∧ φ′2) ∨ ψ
⇐⇒ ∃φ′′ ∈ A, φ′′ = φ′1 ∧ φ′2, φ1 ∧ φ2 = φ′′ ∨ ψ
⇐⇒ φ1 ∧ φ2 ∈ B (because φ′′ ∨ ψ ∈ B according to equation(7))

So B is closed under ∧.
(iii) if one of these formulae is in B \A, we can use the similar approach as in (ii) to prove that

B is closed under ∧.

Therefore, the set constructed using (7) is closed under ∧.

Part II: Proof that there is an incidence function, iB, which is closed under ∧ on domain B.

Now we define a function iB on B as

iB(φ) =

{
iA(φ) if φ ∈ A⋃
φj∈A,φj |=φ iA(φj) otherwise

(8)

where iA is the incidence function on A obtained from Theorem 3. Assume that φ1 and φ2 are
two distinct formulae in B, we need to prove that iB(φ1) ∧ iB(φ2) = iB(φ1 ∧ φ2).

(i) if both of these formulae are in A, then φ1 ∧ φ2 ∈ A.
iB(φ1 ∧ φ2) = iA(φ1 ∧ φ2) = iA(φ1) ∩ iA(φ2) = iB(φ1) ∩ iB(φ2)
So iB is closed under ∧.

(ii) if both of these formulae, φ1, φ2 are in B \ A, we assume that iB(φ1) ∩ iB(φ2) = W ′ 
= {}.
Then we have

∀w ∈ W ′, ⇐⇒ w ∈ iB(φ1) ∩ iB(φ2)
⇐⇒ ∃φ′1, φ′2 ∈ A, w ∈ iB(φ1) ∩ iB(φ2), φ1 = φ′1 ∨ ψ, φ2 = φ′2 ∨ ψ
⇐⇒ ∃φ0, w ∈ iiA(φ0) φ0 |= φ′1, φ0 |= φ′2, φ0 ∈ A, φ1 = φ′1 ∨ ψ, φ2 = φ′2 ∨ ψ
⇐⇒ ∃φ0, w ∈ iiA(φ0), φ0 |= φ′1 ∧ φ′2, φ1 = φ′1 ∨ ψ, φ2 = φ′2 ∨ ψ
⇐⇒ ∃φ0, w ∈ iA(φ′1 ∧ φ′2), φ1 ∧ φ2 = (φ′1 ∧ φ′2) ∨ ψ
⇐⇒ w ∈ iB(φ1 ∧ φ2), as iA(φ′1 ∧ φ′2) ⊆ iB((φ′1 ∧ φ′2) ∨ ψ) = iB(φ1 ∧ φ2).

iB is closed under ∧.

(iii) Similarly, when only one of these formulae is in B, we can still prove that iB is closed under
∧.

Because true, false ∈ A, we have iB(true) = iA(true) = W and iB(false) = iA(false) = {}.
Therefore, iB is an incidence function on B.

Part III: Proof of the basic incidence assignment of iB is ii on domain A0.

To prove that ii is a basic incidence assignment of iB, we only need to show that ii(φ) = {}
when φ 
∈ A.

For any φ ∈ B \ A, we have
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iiB(φ) = iB(φ) \ ⋃
φj∈B,φj |=φ iB(φj) (from Definition 3.2)

=
⋃
φj∈A,φj |=φ iA(φj) \ ⋃

φj∈B,φj|=φ iB(φj) (replace iB(φ) using equation (8))
=

⋃
φj∈A,φj |=φ iA(φj) \ ⋃

φj∈B,φj|=φ (
⋃
φj∈A,φl|=φj

iA(φl))
(replace each iB(φj) using equation (8))

=
⋃
φj∈A,φj |=φ iA(φj) \ ⋃

φl∈A,φl|=φ iA(φl) (as φj |= φ, φl |= φj , so φl |= φ)
= {} (as {φj | φj ∈ A, φj |= φ} = {φl | φl ∈ A, φl |= φ}).

As (A, iB) = (A, iA), we have (A, iiB) = (A, iiA) = (A0, ii) (from Theorem 3). Therefore, the
basic incidence assignment derived from iB is the same as ii.

QED

The conclusion we derived from the above two theorems is that a single incidence assignment
is mapped to a unique basic incidence assignment and a single basic incidence assignment can be
mapped to a family of incidence assignments.

5 The Method of Recovering an Incidence Function from Numer-

ical Assignments

Given a GICT, the lower bounds of probabilities on formulae can be inferred through equation (3),
when i∗ is obtained. However sometimes numerical assignments are given on some formulae directly
without defining any incidence functions. We are interested in how to find consistent GICTs in
these cases. The central part for achieving this is to define incidence functions which may be derived
from a basic incidence assignment. So discovering a basic incidence assignment would be the first
step in the whole recovery procedure. In this section, we discuss how to extend Algorithm A to
find a basic incidence assignment and its incidence function in these circumstances.

5.1 An algorithm for assigning incidences

Algorithm B: From Numerical Assignments to Incidence Functions

Given a set of axioms A which is closed under ∧ and a lower bound of probability distribution
Prob∗ on A, construct a function ii on A0 (A0 ⊆ A) and a function i on A.

Step 1: Let A0 be the subset of A \ {false} as defined in equation (5). If there are l elements in
A0 each of which satisfies Prob∗(φj) > 0 (if Prob∗(φj) = 0, it is not necessary to introduce a
possible world w) then l possible worlds will be defined and W = {w1, w2, ..., wl}.
For j = 1, ..., l, φj ∈ A0, define

Prob′∗(wj) = Prob∗(φj),
µ(wj) = Prob′∗(wj),
ii(φj) = {wj},
A′ = A \ (A0 ∪ {false}).
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Step 2: Choose a formula ψ from A′ which satisfies the condition that ∀ψ′ ∈ A′, ψ′ 
|= ψ if ψ′ 
= ψ.

Then define Prob′∗(ψ) = Prob∗(ψ)− Σφj∈A0,φj |=ψProb
′∗(φj).

If Prob′∗(ψ) > 0, then add a new possible world wl+1 to W and define

µ(wl+1) = Prob′∗(ψ),
ii(ψ) = {wl+1},
A0 := A0 ∪ {ψ},
A′ := A′ \ {ψ},
l := l + 1.

If Prob′∗(ψ) = 0, let A′ = A′ \ {ψ}. No new possible world will be created to match ψ.

If Prob′∗(ψ) < 0, this assignment is not consistent, stop the procedure.

Repeat this step until A′ is left with only tautologies.

Step 3: If Σj(Prob′∗(φj)) < 1, then add a possible world wl+1 to W. Define

µ(wl+1) = 1 − ΣjProb
′∗(φj),

A0 = A0 ∪ {true},
ii(true) = {wl+1}.

Step 4: The final set of possible worlds is W = {w1, w2, ..., wl+1} and the probability distribution
is µ(wi), and Σiµ(wi) = 1. ii is a function on A0. Finally, we define a function i as:

i(φ) =
⋃

φj∈A0,φj |=φ
ii(φj), φ ∈ A

i(false) = {}.

If there are n elements in A then there are at most n+ 1 elements in W .

Theorem 5 Given (A, Prob∗) where A is a set of axioms closed under ∧ and Prob∗ is an assign-
ment of lower bounds of probabilities on A, functions i and ii obtained from Algorithm B are an
incidence function and a basic incidence assignment respectively. The corresponding generalized
incidence calculus theory <W , µ, P,A, i > can produce Prob∗ on A.

Proof

Part I: ii and i are a basic incidence assignment and an incidence function respectively.

For any two formulae φ and ψ in A0, we have

ii(φ)∩ ii(ψ) = {} (when φ 
= ψ)
ii(true) = {wn+1} = W \ ∪φj∈Aii(φj).
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So ii is a basic incidence assignment. Therefore i(ψ) = ∪φj |=ψii(φj) is an incidence function on A
based on Theorem 3.

The corresponding generalized incidence calculus theory is

<W , µ, P,A, i > .

Part II: The lower bounds of probabilities of formulae µ(i∗(φ)) is the same as the original
numerical assignment Prob∗(φ).

For any ψ ∈ A, we can calculate the lower bound of its probability, denoted by pi∗ (in order to
distinguish it from Prob∗), as follows.

pi∗(ψ) = µ(i∗(ψ))
= µ(∪φj∈A,φj |=ψi(φj))
= µ(∪φj∈A,φj |=ψ ∪φjl∈A,φjl|=φj

ii(φjl))
= µ(∪φjl∈A,φjl|=ψii(φjl))
= µ(∪φjl∈A,φjl|=ψ,φjl �=ψii(φjl)) + µ(ii(ψ))
= Σφjl∈A,φjl|=ψµ(ii(φjl)) + µ(ii(ψ))
= Σφjl∈A,φjl|=ψProb

′∗(φjl) + Prob′∗(ψ)
= Prob∗(ψ).

So this theory produces the same lower bounds of probabilities for those formulae in A as Prob∗.

QED

This algorithm is entirely based on the result that ii(φ) ∩ ii(ψ) = {}. In Algorithm B, for a
formula φ, we keep deleting those portions in Prob∗(φ) which can be carried by formulae φj (where
φj |= φ) until we obtain the last part which must be carried by φ itself. This last portion will only
be contributed by its basic incidence set.

5.2 Unique output of the algorithm

In this section we first give an example to demonstrate the use of Algorithm B. The example is
reconstructed from [12]. Then we prove that the output of the algorithm is unique regardless of
the order of selecting axioms.

Example 5.1

Suppose that we have P , L(P ) and a set of axioms A = {a, b, c, a ∧ b, a ∧ c, b ∧ c, a ∧ b ∧
c, false, true} with the lower bound of a probability distribution Prob∗ as

Prob∗(a) = 0.760, Prob∗(b) = 0.640,
Prob∗(c) = 0.480, Prob∗(a ∧ b) = 0.525,
Prob∗(a ∧ c) = 0.350, Prob∗(b ∧ c) = 0.225,
Prob∗(a ∧ b ∧ c) = 0.165, Prob∗(true) = 1,
Prob∗(false) = 0.
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The set A is closed under the operator ∧. Using Algorithm B, an incidence function is defined
from the following steps.

Step 1. The set A0 is {a ∧ b ∧ c} which contains the smallest formula in A. This means that
there is one possible world, w1 ∈ W , supporting formula a∧ b∧ c and µ(w1) = 0.165. We also have

Prob′∗(a ∧ b ∧ c) = Prob∗(a ∧ b ∧ c) = 0.165,
µ(w1) = 0.165,
ii(a∧ b ∧ c) = {w1},
A′ = A \ (A0 ∪ {false}).

Step 2. Choose formula a ∧ b from A′. Because a ∧ b ∧ c is the only formula in A0 and it has
the property that a ∧ b ∧ c |= a ∧ b, we have

Prob′∗(a∧ b) = Prob∗(a ∧ b) − Prob′∗(a∧ b ∧ c) = 0.525− 0.165 = 0.36.

Since Prob′∗(a∧ b) > 0, we have W = W ∪ {w2} and define

ii(a∧ b) = {w2},
µ(w2) = Prob′∗(a∧ b),
A0 = A0 ∪ {a ∧ b},
A′ = A′ \ {a ∧ b},
l = 2.

Repeating this step for each of the remaining elements in A′, we get

W = W ∪ {w3}, ii(a ∧ c) = {w3}, µ(w3) = 0.185, A0 = A0 ∪ {a∧ c};
W = W ∪ {w4}, ii(b ∧ c) = {w4}, µ(w4) = 0.06, A0 = A0 ∪ {b ∧ c};
W = W ∪ {w5}, ii(a) = {w5}, µ(w5) = 0.05, A0 = A0 ∪ {a};
W = W ∪ {w6}, ii(b) = {w6}, µ(w6) = 0.055, A0 = A0 ∪ {b};
W = W ∪ {w7}, ii(c) = {w7}, µ(w7) = 0.07, A0 = A0 ∪ {c}.

Also, l = 7.
Step 3. As

ΣjProb
′∗(φj) = 0.165 + 0.36 + 0.185 + 0.06 + 0.05 + 0.055 + 0.07 = 0.945,

we have W = W ∪ {w8} and define
µ(w8) = 1 − Σjµ(ii(φj)) = 1 − µ({w1, ..., w7}) = 0.055,
A0 = A0 ∪ {true},
ii(true) = {w8}.

Step 4. We obtain W = {w1, ..., w8} with probability distribution µ on it. ii is a basic incidence
assignment on A0. The incidence function derived from i(φ) = ∪φj |=φii(φj) on axioms set A is as
shown below.
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i(a∧ b ∧ c) = {w1}, i(a∧ b) = {w1, w2},
i(a∧ c) = {w1, w3}, i(b ∧ c) = {w1, w4},
i(a) = {w1, w2, w3, w4}, i(b) = {w1, w2, w4, w6},
i(c) = {w1, w3, w4, w7}, i(true) = W ,

i(false) = {}.

�

When we apply Algorithm B, there may be more than one formula satisfying the conditions in
Step 2, but the order of choosing these formulae has no effect on the final result. In this example,
after we choose a ∧ b ∧ c in Step 1 and come to Step 2, it does not matter whether we choose a∧ b
or a ∧ c first. The final result remains the same.

Algorithms A and B were both implemented on a Sun Sparc 4 Workstation in Sicstus Prolog 2.1.
The execution time for this example is 0.759 (milliseconds) in the order {a∧b∧c, a∧c, b∧c, a, b, a∧
b, c, false, true}. If the axioms are reordered as {a, b, c, b∧ c, a∧ c, a∧ b, a∧ b∧ c, false, true}, there
is little difference. The runtime for the latter case is 1.189 (milliseconds). The algorithm creates a
set of possible worlds with 8 elements.

Theorem 6 Applying Algorithm B to (A, Prob∗) produces the same result regardless of the order
of selecting formulae in Step 2.

Proof

Assume that A0 = {φ1, ..., φk} after Step 1 and there are two formulae ψ1, ψ2 satisfying the
condition specified in Step 2.

In Step 1, for every φj ∈ A0, we have

Prob′∗(φj) = Prob∗(φj),

µ(wj) = Prob′∗(φj),

ii(φj) = {wj}.
Assume that we choose ψ1 first in Step 2, then we have

Prob′∗(ψ1) = Prob∗(ψ1) − Σφj∈A0,ψj |=ψ1
Prob′∗(φj).

Now we choose ψ2 and obtain

Prob′∗(ψ2) = Prob∗(ψ2) − Σφj∈A0∪ψ1,φj |=ψ2
Prob′∗(φj) (because ψ1 is a smallest formula now)

= Prob∗(ψ2) − Σφj∈A0,φj |=ψ2
Prob′∗(φj) (because ψ1 
|= ψ2),

which indicates that adding ψ1 into set A0 has no effect on the outcome of Prob′∗(ψ2).
In the same way we can prove that choosing ψ2 first and then ψ1 gives exactly the same

Prob′∗(ψ1) and Prob′∗(ψ2) as above. That is, Prob′∗ on set A0 ∪ {ψ1, ψ2} remains the same no
matter which formula in {ψ1, ψ2} is chosen first. Similarly, we can prove the theorem for any set
of formulae {ψ1, ..., ψn} satisfying the condition in Step 2.
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QED

Applying Algorithm B to (A, Prob∗) only produces one basic incidence assignment, as the order
of choosing axioms has no effect on the final output. Through this basic incidence assignment, not
only an incidence function can be defined on A, but also a family of incidence assignments can
be obtained through Theorem 5, which would share the same set of possible worlds, but with a
different set of axioms.

The size of a set of possible worlds created from Algorithm B is related only to the size of
the initial set of axioms. What would happen if we have some ideas about the size of a set of
possible worlds already (say, a set of possible worlds with 100 elements) and that is larger than the
set obtained from Algorithm B? In other words, there may be many pairs, (Wj, µj), which would
generate Prob∗ on A, as long as an appropriate i is available, as the situations in [17].

In the next section, the nature of the basic incidence assignment created from Algorithm B
will be examined, and this assignment will be compared with any potential consistent assignment,
given a numerical assignment on a closed set. The result shows that the pair (W , µ) obtained
from Algorithm B subsumes all the possible pairs (Wj, µj) from other approaches. In another
word, given a pair (Wj, µj), W partitions Wj , and for each element A in the partition, there is an
element w ∈ W with µ(w) =

∑
wj∈A µj(wj).

5.3 Comparison with related approaches

There are two algorithms in [16] , [17] for assigning incidences on axioms based on a probability
assignment, one of which is the extension of a method in [3] in the original incidence calculus.
The common feature of the two algorithms is that a set of possible worlds has to be fixed first,
such as a set of 100 elements, each of which with probability 1/100. Given a set of axioms, both
algorithms try to divide possible worlds into groups and assign each group to an axiom. Therefore,
not only the number of axioms but also the interrelationship of these axioms affect the division
procedure. For instance, assume that there are only two axioms a, b in A, then the assignment
procedure could be simply done by choosing two subsets of the set of possible worlds which can
produce Prob∗(a) and Prob∗(b) respectively. However, if Prob∗(a∧ b) is known as well in addition
to Prob∗(a) and Prob∗(b), then we need not only two subsets of possible worlds W1, W2 to match
Prob∗(a) and Prob∗(b), but also another subset W3 which matches Prob∗(a∧ b) with the condition
that W3 = W1 ∩W2. That is, the complexity of these two algorithms increases along with the
interrelationship of axioms considerably. Because of this, the order of axioms also affects the
efficiency of the algorithms [16], [17]

In summary, there are three factors associated with the complexity of each algorithm in [16],
[17]: the number of axioms, the relations among axioms, and the order of axioms in addition to
the requirement of a fixed number of possible worlds. However, in our algorithm, only one factor
affects the complexity, that is, the number of axioms. Besides, the new algorithm does not require
a set of possible worlds to be predefined.

Example 5.1 has also been tested [16], [17] using the two algorithms, with a predefined set of
possible worlds containing 100 elements, each of which with 1/100 probability. Although there
are only 8 axioms in A, both algorithms take a long time to find a consistent assignment of
incidences (with runtime 374.520 and 355.060 seconds respectively). Our algorithm only needs
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1.189 (milliseconds) runtime to find a consistent assignment (all these experiments were carried
out on Sun Sparc 4 stations in Sicstus Prolog). This example illustrates that the relations among
axioms could slow the algorithms down enormously, much worse than the size of set of axioms. In
real world cases, axioms always have some interrelations.

6 Properties of Basic Incidence Assignments

In [15], the theoretical background of the basic incidence assignment was investigated to explain
why Algorithms B produces only one basic incidence assignment comparing with a large number of
outputs from other approaches, and to examine whether Algorithm B has omitted any alternative
incidence assignments implied by the numerical assignment.

In this section, we will summarize the research carried out in [15]. We argue that one basic
incidence assignment is the only possible outcome of Algorithm B. All the consistent incidence
assignments from the numerical assignment can be generated from this unique basic incidence
assignment.

6.1 Similarity of separate incidence assignments

Definition 6.1 A regular GICT

A GICT <W , µ, P,A, i > is said to be regular iff

∀w ∈ W , µ(w) 
= 0.

That is, there are no possible worlds with zero probability. Any GICT can be converted to an
equivalent regular theory by simply removing the excess possible worlds with zero probability. For
each w with µ(w) = 0, redefine

W ′ = W \ {w},
∀w ∈ W ′, µ′(w) = µ(w),
∀φ ∈ A, i′(φ) = i(φ) \ {w}.

In the rest of this section, we assume that all GICTs have already been transformed in this way,
if necessary, and when we refer to two GICTs as being equal, we mean subject to removal of these
possible worlds.

Definition 6.2 Similarity of possible worlds

Given an generalized incidence calculus theory (GICT), < W , µ, P,A, i >, two possible worlds
w1, w2 ∈ W are similar (w1 ∼ w2) iff

∀φ ∈ A, w1 ∈ i(φ) ⇐⇒ w2 ∈ i(φ).
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Clearly, similarity is an equivalence relation. It is reflexive (w ∼ w), symmetric (w1 ∼ w2 ⇒
w2 ∼ w1) and transitive (w1 ∼ w2 ∧w2 ∼ w3 ⇒ w1 ∼ w3).

Therefore, we can talk about equivalence classes of similar possible worlds, and indeed in any
GICT W will be partitioned by the set of all such classes.

Definition 6.3 Fundamental generalized incidence calculus theory (GICT)

A GICT, < W , µ, P,A, i >, is fundamental iff it has no distinct similar possible worlds. That is,
iff

∀w1, w2 ∈ W , w1 ∼ w2 ⇒ w1 = w2.

Definition 6.4 Direct subsumption of GICT

A GICT, <W ′, µ′, P,A, i′ >, is directly subsumed by <W , µ, P,A, i > iff

• For some w′
1, w

′
2 ∈ W ′ with w′

1 ∼ w′
2 and some w3 
∈ W ′, W = (W ′ \ {w′

1, w
′
2}) ∪ {w3}

•
µ(w) =

{
µ′(w) : w 
= w3

µ′(w′
1) + µ′(w′

2) : w = w3

•
i(φ) =

{
i′(φ) : w′

1 
∈ i′(φ)
(i′(φ) \ {w′

1, w
′
2}) ∪ {w3} : w′

1 ∈ i′(φ)

In this definition, the fact that w′
1 ∈ i′(φ) will imply that w′

2 ∈ i′(φ), since w′
1 ∼ w′

2. So a
subsumption replaces two possible worlds which occur in the same set of incidences with a single
possible world whose probability is the sum of the probabilities of the previous two.

Definition 6.5 Subsumption of GICTs

A GICT <W0, µ0, P,A, i0 > is subsumed by <Wn, µn, P,A, in > iff there is a list of GICTs

[<W0, µ0, P,A, i0 >, ..., <Wn, µn, P,A, in >]

such that ∀j = 1, ..., n, <Wj−1, µj−1, P,A, ij−1 > is directly subsumed by <Wj, µj, P,A, ij >.
It is worth pointing out that the list can be singleton. That is any GICT subsumes itself.

Theorem 7 A fundamental GICT can only be subsumed by itself.

Proof

Assume that a GICT subsumes a fundamental one, then there will be a chain of direct subsump-
tion between the two. A direct subsumption acts on a pair of similar worlds in a GICT, but there
can be no such pair in a fundamental theory and so the chain must have zero length. Therefore
the fundamental GICT is subsumed by itself.
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QED

Since probabilities of formulae (or lower bounds of probabilities, to be precise) are calculated
through the incidence sets of these formulae, we can have the following statement.

If <W1, µ1, P,A, i1 > subsumes <W2, µ2, P,A, i2 >, then

∀φ ∈ P, µ1(i1(φ)) = µ2(i2(φ))

where µ applied to a set is the sum of the results of applying µ to the individual members of that
set.

Theorem 8 Subsumption preserves lower bounds of probability.

Proof

As a subsumption is made up purely of a series of direct subsumptions, it is sufficient to show
that direct subsumption preserves lower bounds of probability. This, however, is not difficult, as
Prob∗(i(φ)) = µ(i(φ)). Let < W , µ, P,A, i >directly subsume < W ′, µ′, P,A, i′ >. Let w be the
new possible world which is introduced in Definition 6.4. Now, if w 
∈ i′(φ) then

Prob′∗(φ) = µ′(i′(φ)) = µ′(i(φ)) = Prob∗(φ).

If, on the other hand, w ∈ i′(φ), then

Prob′∗(φ) = µ′(i′(φ))
= µ′((i(φ) \ {w1, w2}) ∪ {w})
= µ′(i(φ) \ {w1, w2}) + µ′(w)
= µ(i(φ) \ {w1, w2}) + µ(w1) + µ(w2)
= µ((i(φ) \ {w1, w2}) ∪ {w1} ∪ {w2})
= µ(i(φ))
= Prob∗(φ).

QED

Note that because subsumption preserves lower bounds of probabilities in the above way, is also
preserves similarity of possible worlds. To illustrate this, we will define the function of occurrence.

Definition 6.6: Occurrence function

In a GICT, <W , µ, P,A, i >, the occurrence (o) is a function mapping the possible worlds (in W)
to the subsets of the axioms (in ∧(A) which means that A is closed under ∧) defined by

o(w) = {φ ∈ A | w ∈ i(φ)}.

So the occurrence of a possible world is the set of axioms in whose incidence sets it occurs. It
is then trivial to show from Definition 6.2, that

w1 ∼ w2 ⇐⇒ o(w1) = o(w2).
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Subsumption preserves occurrence (and hence similarity) since a possible world in a subsumption
theory will either have existed in the original GICT with the same occurrence, or it will have
replaced two similar possible worlds. In this later case, the occurrence of the new possible world
will (by Definitions 6.4 and 6.5) be the same as that of the first two, and it will therefore be similar
to any other possible world which was similar to the first two.

Definition 6.7: Fundamental Subsumption

A GICT has a fundamental subsumption iff it is subsumed by a fundamental GICT.

Theorem 9 Fundamental subsumption is unique up to renaming.

Proof

Let us assume that a GICT, < W , µ, P,A, i >, is subsumed by two fundamental GICTs,
< W1, µ1, P,A, i1 > and < W2, µ2, P,A, i2 >. We must provide an isomorphism between these
to show that they are unique up to renaming. Clearly the sets of atomic propositions and axioms
are the same in both cases.

Each direct subsumption acts on a pair of similar possible worlds, and replaces that pair with a
single possible world. As stated earlier, subsumption preserves similarity of possible worlds. That
is for any equivalence class of ∼ and a direct subsumption acting on two possible worlds in it, the
equivalence structure will be retained, with the substitution of the new possible world for the old
two. A fundamental subsumption continues this process until each equivalence class is reduced to
a single element; if any has more than one, the GICT is not fundamental as similarities exist, and
none can be reduced to zero. If the number of equivalence classes in W is n, then the number of
elements in both W1 and W2 will therefore also be n. We form an isomorphism between the two
sets of possible worlds based on the original equivalence classes; an element w1 ∈ W1 is mapped to
w2 ∈ W2 when w1 and w2 are subsumed from the same equivalence class in W .

By Definition 6.4, µ1 and µ2 of each element will be the same of µ applied to all members of
the corresponding equivalence set. As this original set is the same for both cases, µ1 and µ2 are
isomorphic.

i1 and i2 are also isomorphic, this is clear as subsumption is incidence preserving.

QED

Theorem 10 Every GICT is subsumed by a fundamental GICT.

Proof

Let <W , µ, P,A, i > be a GICT. If it is fundamental, then it subsumes itself and we are done.
If it is not fundamental, then there are two possible worlds, w1, w2 ∈ W such that w1 ∼ w2. We
can therefore define a new GICT < W ′, µ′, P,A, i′ > which directly subsumes our original theory
(by Definition 6.4). Clearly, if <W ′, µ′, P,A, i′ > directly subsumes <W , µ, P,A, i > then W ′ has
one less element than W . We can continue this process of direct subsumption, reducing the size
of W at every step. As W is finite, and GICTs with less than two possible worlds are necessarily
fundamental, we will eventually reach a fundamental GICT, which will subsume the original GICT
by the definition of subsumption as a chain of direct subsumptions.
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QED

So we have now shown that every GICT is subsumed by one and only one fundamental GICT.
We are now ready to define our equivalence relation on GICTs.

Definition 6.8: Similarity of GICTs

Two GICTs < W1, µ1, P,A, i1 > and < W2, µ2, P,A, i2 > are similar (< W1, µ1, P,A, i1 > ∼
<W2, µ2, P,A, i2 >) iff they are subsumed by the same fundamental GICT.

It is clear that this is an equivalence relation, since every GICT is subsumed by itself, it is
reflexive; the symmetricity is trivial; and the transitivity again follows trivially from the above
results.

6.2 Fundamental nature of basic incidence assignment

Based on previous discussion, it is therefore necessary to prove that a GICT derived from applying
the basic incidence assignment algorithm is fundamental. We must, before attempting to prove
this, address the problem of possible worlds with zero probability. Algorithm B has ensured that
no such possible worlds would have been created. So the derived GICT is a regular one.

Theorem 11 Any GICT derived from applying Algorithm B to (A, Prob∗) (A is closed under ∧)
is fundamental, for that family of GICTs which have the same set of axioms.

Proof

Given a numerical assignment on a set of axioms A, which is closed under ∧, Algorithm B will
produce a basic incidence assignment ii on A0 (A0 ⊆ A). A number of incidence assignments can
be derived from this basic incidence assignment on different sets of axioms (Theorems 3 and 4)
where A is the smallest set among all of them. We need to prove that every such derived GICT is
fundamental to that family of GICTs which have the same set of axioms. To do this, we only need
to take the GICT with A as the set of axioms as an example, as others can be proved similarly.

So we need to prove that GICT, <W , µ, P,A, i >, derived from the basic incidence assignment
ii on A0 (A0 ⊆ A) is fundamental to all other GICTs in the form <Wj, µj, P,A, ij > which share
A but with different sets of possible worlds and probability distributions.

To prove this, we must show that no two distinct possible worlds in this GICT are similar -
that is that for every pair of possible worlds w1, w2, there must be at least one φ ∈ A such that
either w1 ∈ i(φ) ∧ w2 
∈ i(φ) or w1 
∈ i(φ) ∧ w2 ∈ i(φ).

For simplicity, we will take w1, w2 to be ordered so that w1 was created before w2 in the
algorithm. From the procedure of the algorithm, we know that there is a formula φ1 ∈ A, that
ii(φ1) = {w1}, and likewise for w2. Clearly w1 ∈ i(φ1). We will show that w2 
∈ i(φ1), which is
sufficient, as w1, w2 are arbitrary.

In Algorithm B, we have

i(φ1) = ∪φj |=φ1
ii(φj).

27



So w2 ∈ i(φ1) means that ii(φl) = {w2} for a specific φl, because of the property of basic
incidence assignment ii(φi) ∩ ii(φj) = {}. Therefore, w2 ∈ i(φ1) implies that φl |= φ1. However,
if φl |= φ1, then φ1 should not have been selected before φl, which contradicts the choice of w2.
Therefore this GICT is fundamental.

Similarly, as every other GICT derived from this basic incidence assignment has the same set
of possible worlds, every such GICT must be fundamental.

QED

So, we have shown that every GICT is subsumed by a fundamental one, and that GICTs derived
from Algorithm B are fundamental. What we have to show next is that any GICT derived from any
other incidence assignment approach is subsumed by a GICT from Algorithm B, given (A, Prob∗),
where A is closed as usual.

Definition 6.9 Strict Incidence Set

In a GICT, the strict incidence set of a subset of axioms is the intersection of the incidence
sets of all the axioms in the subset with the complement of the incidence sets of all the axioms not
in the subset. In other words, for a subset, A′, of set A,

si(A′) = (
⋂
φ∈A′

i(φ))∩ (
⋂

ψ∈A\A′
W \ i(φ)).

Intuitively, the strict incidence set of a set of axioms is the set of possible worlds in which those
axioms, and only those axioms, are true.

Definition 6.10 Basic Probability Portion

Given a GICT <W , µ, P, A, i >, assume that ii is the basic incidence assignment derived from
i on domain A0, then probability µ(ii(φ)) for φ ∈ A0 is called the basic probability portion carried
by φ, denoted as bp(φ). For any ψ ∈ A \ A0, we define bp(ψ) = 0.

Clearly, following Definitions 3.3 and 6.10, we have

∑
φ∈A0

bp(φ) = 1.

This means that the basic probability portion of an axiom is the portion in its lower bound of
probability that carried by that axiom, that cannot be obtained from other axioms.

Corollary 1 Given a GICT, assume that the basic incidence assignment from it is ii on domain
A0, then w1 and w2 are similar (Definition 6.2) if w1, w2 ∈ ii(φ).

Proof

It is straightforward based on Definitions 3.3 and 6.2 and Theorem 2.

QED
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Corollary 2 In a fundamental GICT, the basic probability partion of an axiom φ is either 0, when
ii(φ) = {}, or µ(w) when ii(φ) = {w}.

Proof

This follows directly from Definitions 3.3 and 6.10, and Definition 6.3.

QED

Theorem 12 A consistent lower bound of a probability distribution Prob∗ on a set of axioms A,
which is closed under conjunction, has one and only one fundamental consistent GICT, with A as
the set of axioms.

Proof

From Theorems 3 and 4 we know that GICT, < W , µ, P,A, i >, derived from Algorithm B is
named as the smallest theory because the set of axioms , A, in this theory contains fewer elements
than that in other derived theories, with sets of axioms as Bj.

Assume that the corresponding GICTs of all consistent incidence assignments discovered from
many other approaches are in set Q. Further assume that a subset of Q is Q1 containing those
GICTs which all have a comment set of axioms, A. Then we need to prove that this smallest theory
is the only fundamental GICT subsumes all GICTs in Q1. Similarly, we can prove that each GICT
in Q \Q1 is subsumed by a GICT obtained through Theorem 4.

Part I: Now, we will prove that the smallest GICT is the only fundamental GICT among all
GICTs in Q1.

Assume that we have a non-contradictory lower bound Prob∗ of a probability distribution on
a finite set of n axioms A, which is closed under conjunction. The consistency of the lower bound
ensures that a consistent incidence assignment is derivable from Algorithm B, which is fundamental.
We must now show that it is unique.

If there are n axioms in A, then there are at most n − 1 possible worlds being created in
Algorithm B. Each possible world w makes ii(φ) = {w} true (for a φ) and none for false. If
the basic incidence assignment ii is defined on domain A0, then bp(φ) = µ(w) for φ ∈ A0 and
ii(φ) = {w}.

We now choose a GICT from Q1 arbitrarily, say < W1, µ1, P,A, i1 >. There is a unique basic
incidence assignment ii1 derivable from i1. We assume ii1 is defined on domain A1. Then based
on Definition 6.10, we have bp1(ψ) = µ1(W ′), W ′ ⊆ W1, for ψ ∈ A1 and bp1(ψ) = 0 if ψ 
∈ A1.

However, as bp and bp1 both define basic probability portions on axioms from the same consistent
probability distribution, bp(φ) must be the same as bp1(φ). Therefore, A0 and A1 specify the same
set of axioms, for each of which the basic probability portion is not zero. That is:

µ(ii(φ)) = µ1(ii1(φ)), φ ∈ A0, φ ∈ A1.

In other words, we have
ii(φ) = {w}, µ(w) = µ1(ii1(φ)).
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(i) if for every φ ∈ A1, ii1(φ) has only one element w′, then we can rename this possible world
as w, where ii(φ) = {w}. So after renaming all the elements in W1, we have W = W1. The smallest
GICT is identical with <W1, µ1, P,A, i1 >.

(ii) if there exists an axiom ψ where ii1(ψ) has more than one element, say ii1(ψ) =
{w1, w2, ..., wn}, then we have w1 ∼ w2 ∼ ... ∼ wn (from Corollary 1). Therefore, according
to Definitions 6.4 and 6.5, the smallest GICT <W , µ, P,A, i > subsumes <W1, µ1, P,A, i1 >.

In summary, any GICT in Q1, <W1, µ1, P,A, i1 >, is either identical with the smallest GICT,
when the former is also a fundamental one, or subsumed by the smallest GICT. So the smallest
GICT is the unique fundamental GICT subsumes all the GICTs in Q1.

Part II:

Similarly, we can prove that any GICT from any incidence assignment approach is either
identical with a GICT derived from Theorem 4 or subsumed by it.

Therefore, there is only one fundamental GICT for that family of GICTs which all have the
same set of axioms, and the fundamental one is the one derived from the basic incidence assignment
approach.

QED

So, we have proved that for any lower bound of a consistent probability distribution on a set
of axioms closed under conjunction, there is a unique fundamental incidence assignment and that
this assignment is the one found by Algorithm B. Under this condition, any consistent incidence
assignment produced by [17] is equivalent to the one produced in this paper, further more, any
consistent assignment produced by any method will be subsumed by this fundamental one. As there
are an infinite number of such assignment (take any possible world and divide it into two, each with
half the probability and repeat the procedure), Algorithm B is simplier than other approaches.

7 Extending the Result to DS Theory and Probability Spaces

One of the meaningful extensions of Algorithm B is to determine whether a numerical distribution is
a belief function (in DS theory) when A is the whole language set L(P ), and to determine the mass
function when it is. The algorithm can also be used to recover the corresponding probability space
when Prob∗ is thought of as an inner measure (or a lower bound) on A in probability structures
[9], [10].

7.1 Deriving mass functions in DS theory

7.1.1 DS theory

In DS theory, a piece of evidence is always described on a special set, called a frame of discerment
Θ, which contains mutually exclusive and exhaustive answers for a question. This piece of evidence
can either be in the form of a mass function, denoted as m, or in the form of a belief function,
denoted as bel. The conditions for these two functions are

ΣA⊆Θm(A) = 1; m({}) = 0.
bel(Θ) = 1,
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bel(∪n1Ai) ≥ Σibel(Ai) − Σi>jbel(Ai ∩ Aj) + ...+ (−1)−nbel(∩iAi),

where n =| Θ |.
The relationship between a belief function and its mass function is unique. They can be re-

covered from each other as follows.

bel(A) = ΣB⊆Am(B),
m(A) = ΣB⊆A,B �=∅(−1)a−bbel(B),

where a− b =| (A ∧ ¬B) | and A,B ∈ L(P ) [21]. | A | stands for the total number of elements
in A.

If m(A) > 0, then A is called a focal element of this belief function.

7.1.2 Relationships between mass functions and basic incidence assignments

Incidence calculus is about calculating incidences and bounds of probabilities on formulae while DS
theory is about calculating beliefs on subsets of a set. To establish some relationships between the
two theories, we need to find a common domain to which both theories can talk.

In Section 2, the basic element set, At, of a given set of atomic propositions P is defined. At
satisfies the definition of a frame of discernment, so it is a frame of discernment and both belief
functions and mass functions can be defined on it. Following the one-to-one relationship between
2At and L(P ) in Definition 2.3, we can map each formula φ to a subset of At and denote this subset
as Aφ.

Therefore, given a belief function bel on At, we can define a belief function on L(P ) as bel′(φ) =
bel(Aφ) where Aφ ⊆ At and φ = ∨δi, δi ∈ Aφ. Therefore we can also talk about a belief function
on a language set L(P ).

Let < W , µ, P,A, i > be a GICT, and ii be the corresponding basic incidence assignment on
A0. Then ∑

φ∈A0

µ(ii(φ)) = 1.

If we define m(φ) = µ(ii(φ)), m is a mass function and the elements in A0 are in fact the
corresponding focal elements. So if we can discover a basic incidence assignment, we can also
discover a mass function. This result also supports what we have proved in [13].

7.2 Deriving mass functions

Based on the discussion in the previous subsection, in the following we show an alternative way
to derive a mass function from a numerical assignment by means of incidence calculus, when this
assignment is a belief function. This is described in Algorithm C below.

Algorithm C: Deriving Mass Functions:

Given a numerical assignment Prob∗ on the set A = L(P ), determine whether Prob∗ is a belief
function on this language set 4 and obtain its mass function if it is.

4In fact, this language set can be any frame of discernment.
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Step 1: Delete all those elements in A in which Prob∗(∗) = 0. Similar to the action in Algorithm
B, define a subset A0 out of A using formula (5).

For every φ ∈ A0, define m(φ) = Prob′∗(φ) = Prob∗(φ).

Define A′ = A \ A0.

Step 2: Choose a formula ψ from A′ which satisfies the condition that ∀ψ′ ∈ A′, ψ′ 
|= ψ if ψ′ 
= ψ.

Define Prob′∗(ψ) = Prob∗(ψ)− Σφj∈A0,φj |=ψProb
′∗(φj).

If Prob′∗(ψ) > 0, define

A0 = A0 ∪ {ψ},
A′ = A′ \ {ψ},
m(ψ) = Prob′∗(ψ).

If Prob′∗(ψ) = 0 then ψ is not a focal element of this belief function.

If Prob′∗(φ) < 0 then this assignment is not a belief function, stop the procedure.

Repeat this step until A′ is empty.

Step 3: All the elements in A0 will be the focal elements of this belief function and the function m
defined in Step 2 is the corresponding mass function. It is easy to prove that ΣAm(A) = 1.

The algorithm tries to find the focal elements of a belief function one by one. Once all the focal
elements are found and the uncertain values of these elements are defined, the corresponding mass
function is known.

Example 7.1:

Assume that there are four elements in At = {a, b, c, d}. A = L(P ) is A = {a, b, c, d, a∨ b, a ∨
c, a ∨ d, b ∨ c, b ∨ d, c ∨ d, a∨ b ∨ c, a∨ c ∨ d, a∨ b ∨ d, b∨ c ∨ d, a∨ b ∨ c ∨ d = true, false} and the
corresponding numerical assignment on elements of A are

Prob∗({a}) = 0.5, Prob∗({d}) = 0.3,
Prob∗({a ∨ b}) = 0.7, Prob∗({a ∨ c}) = 0.5,
Prob∗({a ∨ d}) = 0.8, Prob∗({b ∨ d}) = 0.3,
Prob∗({c ∨ d}) = 0.3, Prob∗({a ∨ b ∨ c}) = 0.7,
Prob∗({a ∨ c ∨ d}) = 0.8, Prob∗({a ∨ b ∨ d}) = 1,
Prob∗({b ∨ c ∨ d}) = 0.3, Prob∗({a ∨ b ∨ c ∨ d} = true) = 1.

All the rest formulae have zero value of lower bounds.
Applying Algorithm C on (A, Prob∗), the calculating procedure for a mass function is as follows.

Step 1. After deleting those elements with 0 degrees of belief, we have A = {a, d, a∨ c, a ∨ b, a∨
d, b∨ d, c ∨ d, a∨ b ∨ c, a∨ c ∨ d, a∨ b ∨ d, b ∨ c ∨ d, a∨ b ∨ c ∨ d = true}
A0 = {a, d}.
Definem(a) = Prob′∗(a) = Prob∗(a) = 0.5,m(d) = Prob′∗(d) = Prob∗(d) = 0.3. A′ = A\A0.
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Step 2. Get a∨ c from A′. Because a |= a∨ c, we have Prob′∗(a∨ c) = Prob∗(a∨ c)−Prob′∗(a) =
0.5− 0.5 = 0. So a ∨ c is not a focal element. Define A′ = A′ \ {a ∨ c}.
Repeat this procedure until we get a ∨ b and we have Prob′∗(a∨ b) = 0.7− 0.5 = 0.2. Define

m(a ∨ b) = Prob′∗(a∨ b) = 0.2,
A0 = A0 ∪ {a ∨ b},
A′ = A′ \ {a∨ b}.

Repeat this procedure until A′ is empty.

Step 3. We get A0 = {a, d, a∨b} and the mass function m givesm(a) = 0.5, m(d) = 0.3, m(a∨c) =
0.2.

�

7.3 Recovering probability spaces

In [9], [10], Fagin and Halper suggested a method to assign probability measures on formulae instead
of on sets. In this method, given a probability space (W , χ, µ)5, an inner measure on a propositional
language set L(P ) can be defined through a truth assignment π(w) : L(P ) → {true, false} as
follows. If π(w)(φ) = true, φ is said to be true at w; otherwise we say that φ is false at w. φπ is
defined to contain all those elements in W in which φ is true. If we define Prob∗(φ) = µ∗(φπ) where
µ∗ is the inner measure of µ, then Prob∗ is called an inner measure of a probability distribution
on L(P ). It is proved in [10] that a belief function on such a language set is also an inner measure
which is generated from a probability space. Therefore it is also interesting to apply the above
technique to recover a probability space when we know an inner measure Prob∗ of probabilities on
L(P ).

Algorithm D: Recovering Probability Spaces:

Given an inner measure Prob∗ on the set A = L(P ), recover the initial probability space from
which Prob∗ is derived.

Step 1: Delete all those elements in A in which Prob∗(∗) = 0. Similar to the initial step in
Algorithm B, define a subset A0 out of A using formula (5).

For every φj ∈ A0, define π(wj)(φj) = true and µ(wj) = Prob′∗(φj) = Prob∗(φj).

Define A′ = A \ A0. Assume that there are l elements in A0. So there are l possible worlds
created.

Step 2: Choose a formula ψ from A′ which satisfies the condition that ∀ψ′ ∈ A′, ψ′ 
|= ψ if ψ′ 
= ψ.

Define Prob′∗(ψ) = Prob∗(ψ)− Σφj∈A0,φj |=ψProb
′∗(φj).

If Prob′∗(ψ) > 0, define

5In order to be consistent with incidence calculus, we take a set of possible worlds as a set of sample space.
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A0 = A0 ∪ {ψ},
A′ = A′ \ {ψ},
µ(wl+1) = Prob′∗(ψ),
π(wl+1)(ψ) = true,
l = l + 1.

If Prob′∗(ψ) = 0 then there is no need to create an extra possible world to match ψ alone.

If Prob′∗(φ) < 0 then this assignment is not a correct inner measure, stop the procedure.

Repeat this step until A′ is empty.

Step 3: Set χ′ = {{w1}, ..., {wl+1}} is the basis of an unspecified probability space. It is easy to
prove that Σwjµ(wj) = 1.

The corresponding probability space will be (W , χ, µ) where χ is the σ−algebra generated by
the basis χ′. In the simplest case, the probability space can just be (χ′, χ′, µ).

Through Theorem 3, we can prove that from probability space (χ′, χ, µ) and mapping π, the
lower bound Porb∗ on L(P ) can be re-calculated.

More details about probability space, probability structure and its relation with DS theory can
be found in [9], [10].

Example 7.2

Continuing Example 7.1, if we take Prob∗ as an inner measure of a probability measure on A
from an unknown probability space, this space can be recovered as (W , χ′, µ) where the basis for
χ is χ′ = {{w1}, {w2}, {w3}}, and µ(w1) = 0.5, µ(w2) = 0.3, µ(w3) = 0.2.

�

8 Summary

Dealing with uncertainty is an important task in many automated reasoning systems. Quite a few
numerical and symbolic approaches have been proposed and discussed ([1], [2], [6], [18], [19], [20],
[22] etc). Incidence calculus is one among these. The main difference between incidence calculus and
pure numerical approaches is the indirect assignment of numerical values, that is, the assignment
of numerical values on statements through possible worlds. This enables incidence calculus to deal
with dependencies among evidence.

However, when numerical values are assigned on statements directly rather than on possible
worlds, incidence calculus cannot be applied directly. A set of possible worlds needs to be construc-
ted, so do the assignments between possible worlds and statements, and between numerical values
and possible worlds, before applying incidence calculus.

In this paper, we discussed how to construct a set of possible world from an assignment of
probabilities in generalized incidence calculus. An important concept, basic incidence assignment,
is proposed which possesses some significant features that incidence functions do not. Each incid-
ence function has a unique basic incidence assignment and many different incidence functions may
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have the same basic incidence assignment. So it is more meaningful to recover a basic incidence
assignment than an incidence function from a numerical assignment. This is the main achievement
of our algorithm.

Comparing to the methods discussed in [17], our algorithm is superior to them in terms of lower
computational complexity. Only one output is essential and this output is easy to define, while
the other methods try to find all consistent assignments. In our algorithm, the size of the set of
possible worlds entirely depends on the size of A. For example, if there are only n elements in
A, then we can define a set of possible worlds containing at most n − 1 elements. We also proved
that any incidence assignment generated from a consistent numerical assignment is subsumed by a
fundamental incidence assignment derived from the same numerical assignment using our approach.

When we extend the result to DS theory and the probability space, we follow the known result
that a lower bound in incidence calculus is equivalent to a belief function ([13]) and a belief function
is, in turn, equivalent to an inner measure in probability structures ([10]) when these three theories
concern the same problem space. Therefore the incidence assignment method can not only be used
to define an incidence assignment but also be used to construct an undefined probability space. In
the latter case, a basis for an σ−algebra of a probability space is constructed.
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