THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

A Critical Survey of Rule Learning Programs

Citation for published version:

Bundy, A \& Silver, B 1982, 'A Critical Survey of Rule Learning Programs' Proceedings of ECAI-82.

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Author final version (often known as postprint)

Published In:

Proceedings of ECAI-82

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Abatract

 funn exs in tifyning techninues.
Keywor cs

Acknowlecterants)

- Introductio

Th1s paper is oritical survey of ther following - The ELM prosran, LBrazdil 78. 日rozall 81], with tronstoras " specificasinn into a progrom in the
dnains of: simple arithmetic. al dnanins of: simpl
series coapletinn
The AMBER oragram, (Langley di), which acquires
the sobility to generate sieple Eriblish utierances.
 intekration.
The wati Infereice System ar Snapiro. IShaptro he donins of of ithmetic. list processing. etc.

 near misses.
This survey arnat frat the auchors' atteepts in

 apar.
In order to clarify the siallasitics and differences
between the techniques we hove cescribed than with :

 techniquae to another'o rulas.
2. The Loarning Taek

The lask tackied by 911 the researohers 11 tited

 and
x Figure 2-1: Some Example Rulet
For cur purposes it 13 necessary that the rules have
truth value. $1 t$ will be conventent to cousider in
 truth value assigned by a stendard model th the usuel
The rules are modified because there is sonetni
These fults can be of two types: Factual faulta: A rule is false, i.e. the rules
conatitute o proaram wilch calculates incorrect Control faulta: the rules are true, but have proaran, e.g. they do not terainate.
The faulis in Lanaley and shapiro's rules were factual ond thooe in matenell et ints rules were.
raults. Erozdil considered foults of both type.
The prograts listed obove all used the follouing nain control loop.
Unt11 the rules are getisfoctory:
2. Hodity the rule to rebove the rault

Foilowing Mitehmil et al, we will call the subprogrm

[^0]
 marting the rosulting profre treoe. Mo, manysi mot Sdeatify whare the rules bohaved correctly, calle
 3 une: the poastive $10 n t e n c e s$ to seneralise the rule

- Irrore of oaseation: A rule follios to rire, alther
 nose
tast ance regulret three plooen of inforation o
 The rule.
- The contert, consiating of the variebie dinaling when the rule vai fired.
olloring brozall. we will edopt the the vurisble bindings or positive the convention the

3.1. Using Ideal traces to Find Favite
.1. Uoing Ideal Traces to find Fevite
io compering the proste trace with antrol caults

Figure 3-1: Search Tree for Prograss Rulen
De technigues ona de sumartised as pollove: proble prosim trace by running the rules on a
(b) coapare with the ldanl trace and find the tirat
(0)The rulen wisich fired before this point, together with thatr asocionea inloction point, together
 14 a oomplestion error.
For inatance, suppone the rule

3.2. Conatruetine the idest frace

 protran's wearotio tind a desirabie bremeh of the
 il so furthar and try to fise a icest coet eolution.

3.3. Using Contridictiona to Find Factuna Foult

(b)Dorive ${ }^{+}$), the mapty clausa, troe the rules by
resolution,
 (0)Sot $\overrightarrow{1} \rightarrow$ to be the current clause or the derivation (d) Until the current cleuse 1s e rule. do the (1) The current clause was derived by retolvios

 inits o contains any free variables than

(iv)
tle Q^{2}
ise.
(whothervise σ is faise. Let C be the current cleuse.
(e)The eurrent ciause is © faulty rule, and applying Instance:
deciation as The deciation as to whether acen 0^{1} is true or fallae con
ether be suppled by the prosreas user or calculated

 describe(x) \& object $(x, y) \rightarrow$ prefixc $(x, 0)$
-) object(balls,eventa)
\rightarrow Deacribe(event2)
but that prefin(toalls,a) were know to be false
Adding the nex diding the new rule
protin(balls
we con derive the empty clouse with the deetivation
aven in figure $3-2$

```descr:be(x) 4 object(x,n) -> preftx(x,a) dgsar1be(r) & object(x,y) -> debcr1be(x) \mathrm{ Ceccr:be(I') & object(X,Y') & object(X,Y)} -> prefix(x,a) -> object(bolls,eventz) fescribo(event2) -> prerix(balls,a) -> deacribe(tventz) profix(ben11,a) prerix(balls,a) .)```   F1gura 3-2: Derivation of the Eapty clause

The controdtction backtracing sigorithe now soos

	1	$\left\|\begin{array}{l} \text { Truth } \\ \text { velue } \end{array}\right\|$
$\stackrel{ }{-}$	(preftx(bails,a)	falst
-> prafix(bosila,a)	dosscribe(event2)	true
describe(event2) $\rightarrow \rightarrow$ proflif(bolls,a	abject(Danils,eventa)	true
	describelibills)	true

the rule
describe(x) $\operatorname{object}(x, y) \rightarrow p$ prefix( $x, f)$

4. Modirying the Rules


adding arter conditions to orule's hypotheti,


Instantinting a rule, e. ©. tranaforaing $\left.\begin{array}{l}f(x, y) \rightarrow C(x, y) \\ H(x, x) \rightarrow C(x, x)\end{array}\right)$
 control
Shapira.
Updating e rule's hypothesis, e.e. tranatornaty $\underset{H}{\mathrm{H} \rightarrow \mathrm{C}} \mathrm{C}$ to $\mathrm{H}^{\prime} \rightarrow \mathrm{C}$

4.1. Ordering the Rul*s




 the progres trace the pane with the tdeal traco. Et
 leennique can be sumarised os followa:



 where $P>Q$ oenns that the ayatea will fire $P$ berion uhe

are all applicabic. but that the idoal trace rean that subz should fire, then the orders
subz ) subs and subz $>$ eq
will be tuposed.

 aubx subat In this cosse



Langley uses ruive reordering to dool with fuetual

 echalque ts a rather dutious paychological orkument.
.2. Nating Extra Coratitions to sole's Hypothesis In this stection we with consiluer hous rule con be hypothes
 the pest. The wartable oindints of the correct application with ave incorrect apoltation will vive is oundinjs of the tnecton conterrect. The ispot of thas techal ques 12 to find some difference bativen the
selection ond rejection contexts and wise this
 replised in that, follow
dierialation alsorithem

(b)Find enterot, 4'. Untch is true in the in the
selection contert ald false in the rejection selection content and dalse in the rejection
coment. $H$ ts called atiseriainating literol.
 The nev
for instance, suppose the rule

hat beon correctily applited to the word 'tall! an
ncorrectly applited to the word halls, wo have:

Refection Contert: 1 ballis/x, event2/Y)
To find the difference. H. . Detwen these conterts we Pply thea as substitutians to the therals in the

the oniy diseriminating literni is onngular $(x)$. Adoin tha the fule is a new condition yields

4.2.1. Yar Msises

In this particuiar wimbinotion uf selection context refection context and deser!ption space, there is only
one diser:unating iteral. Foilowink winston we call


 ceanink event y happened in the past, if past(event 1 id
 aportance in deteritinne tiether a diseriainating iteral is founc and what oort or new ruies are formed. pace: ${ }^{10}$ user supplied. and it is diffleult to see ho
it could bo othervise.
Lengiey doelte with for miss gitumitions oy ereating

describe $(x) \&$ object $(x, y)$

 priority ardering.


Ho wasd - coaified vorsilian or the disorimanation



Rejection contert: (bellu/x, avoot $3 /$ )
 discritination al boritive would drog past(y) froe thy
4.2.2. Instantiating * Kule

An ol ternative to adding an axtra condition to
 ariticient rules stince the ortre condition 13 heodies hy the pattern menchor

one conteris
salection Context: $(3+1 / x 1,1 / \times 2$
Rejoction Context: (3/x1, 2/x2)
 oxtre condition. Aiternatively, wo coould instentitite




4. 3. Updating the Hypothesit of a Rule

 for larning the concept of an arch froe exaplou on





 at we to. he will be derinitos
The deacitption apace, in the focusaing aleorition





$\underset{\text { mplifes that }}{r(x)}$


abels on the tim heration by ar the so


F. meant 'la ayntectionly tdencteal to'.

$$
\begin{aligned}
& \text { descr } 1 \text { be }(x) \& \operatorname{coject}(x, y) \\
& \begin{array}{l}
\text { be }(x) \text { adject }(x, y) \\
i \rightarrow 1 \operatorname{ligular}(x) \rightarrow \text { prafix }(x, a)
\end{array}
\end{aligned}
$$




 to fisura $4 \rightarrow$.








The Mont Cancers Hion: that the hypothests is apecified by the conjunction of relations
aboolling tis uppar marke, wilich leads the rule to


- To Moant specific Viev: that the hypothesis in
ppecified by the coalunction of reiations
 for the sake are or orisasion.


 thure $A-1$ 1s
deecribe $(x) ~ \& ~ e c t o r(~$
$x, y) \rightarrow$ prefix $(x, e)$
ather than

$\rightarrow$ prefis(x, 1$)$
We, for the atke of definiteness, we will sisume that Me rules tre Rired foruards, Neither of these ther onses are dualt or the one deacritiod below.
the partial reprosentation of to rule provided by :


inplited by the oridence so far. ${ }^{\circ}$ For inatence, the vertion apace
ficure 4-1, 10:

$\rightarrow$ pretix $(x, 0))$
C: (aoseribe $(x) \& \operatorname{set}$ ( $(x, y) \rightarrow$ prefin( $x, n))$
the description thece reor is eontation, cospact that
 verstion apaces do not oxplicitiy record oplece of
infornation vitol to the algorithe andy the information vitel to the sligorition. acmoly the rules. ©.s. betwen object $(x, y)$ in $S$ and sotor $(X, y)$ in
C.

 orith the meanina or discrimination to cover all cosica in which near/fur nidset cause the uppor eerk. to
 then the critic providea A positive training inationee

 concept
seneralizotiog.
The rocuasing
elsoritim does not just compara, the

 carka in the reliation troes. We need oniy compore the
urrent context with the current positions or these arks. If the critic hes provided was with , posilive


 disacrimination are duas procesents, bet this duality is that it 18.

Ve mow conalder seneralisation anc diacrimination in
more detali.
4.3.1. Generailzation

The ingut ${ }^{\text {th }}$ seneralization conssata, of: the
 consists of nek iover marks for sone or the trats.
Ench tree is considered to turn and the following stape executed.
a) For exch of the rolations labeling a tip node.
delerwine its truth waine in the selection deterwine
context.
(D)Enactly one or thase ralations will be true the
the seliection contert. lobel
tis node. the current node.
(c) Find the losst upper bound of the curreat nooe
ond the current lower ark end nake this the new lower eark
for $\operatorname{tnatance}$, suppose that the rule
deseribe( $x$ ) $\rightarrow$ prefixi(x,a)
has been corractiy appliad in the selection context
$(1 d o s / x$, event $1 / M)$
are that ponition of the marks in the reliation trean
are as in ricure ${ }^{n-2, \text { 2, The tip }}$ in relstions wish are true
in the selection contert are: esent (cos.event 1).

Inderiniter (coges)
present (eventi)



 un descript ion spece. the rule does not change form.
 Mone: Doceuse the 1ifting or the 1over merks con


The rarsion apace oorresponding to the nev lower 3: 104 recribe $(x) \&$ actor $(x, y)$
singular $(x)$

c: \{describe( $x$ ) $\rightarrow$ prefix $(x, s) \mid$
the towt tit
Cojection conterin of on tineorren consiats of: the

 followns stepe expeciteo
 deteraine
context.
 current pocto. Mote that ithe current noce muith the
belon the upper nork, othervise the rule could belov the upper mork, otherwise the rule could (e) It the current node 11 es belou the
then anrk the tree at a mite tros.

(d)otharutise, the current node must ite between the | upper |
| :--- |
| tres. |

It least one of the trees must be grey, othervise the


 prosent otrilemes:
depth firat: We can plek ane or the grey trose at
diseriminact;
oreach rirat: or create - new rule for asch erey

- zero option: or we can do nothins.

 ahould then backup and chose onother discriminant. The breadth risat option conrasponda to Loneley's eolution




 least
nark. describe( X ) $\rightarrow$ prefiz( $\mathbf{1}, \mathrm{A}$ )
hat been incorrectiy applied in the rejeotion oontex (ehaseit/x, esentin or the arke in the rolation trean re as in ficure 4-2. The tip relations with ore true in the rejection contezt tre:
actiontenacos.,vent2)
angular chaias)
inderinitetetenasea)
present (event2)
 reee it is chosen as the discriminant then action( $X, y$



If trae had been plaked as the discrimanoat the hee nev rule would have been: refixix,
er the tenst of th uttersace does not arfect wethe ventually en anita profix ectors then this rule woul
 The rule wulld not rire when it should. At chis atase



[^0]:     those beet
    conatents.

