-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Using Matching in Algebraic Equation Solving

Citation for published version:
Borning, A & Bundy, A 1981, 'Using Matching in Algebraic Equation Solving' Proceedings of IJCAI-7.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of IJCAI-7

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28961408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/using-matching-in-algebraic-equation-solving(dd8c9205-12f6-4512-a79e-325c2d9d6420).html

USING MATCHING IN ALGEBRAIC EQUATION SOLVING*

Alan Borning

Department of Artificial

and Alan Bundy

Intelligence

University of Edinburgh
Hope Park Square, Meadow Lane
Edinburgh EH8 9NW

Scotland
ABSTRACT able to derive the solutions to several of these
hard problems.
This paper describes the wuse of powerful

algebraic matching techniques for applying rewrite . . .
rules In equation solving. A matcher Is presented The PRESS solutions constitute a rational
that knows about the commutativity and
associativity of addition and multiplication, will

provide defaults for missing summands and factors,
the

and if necessary will solve algebraically for
value of pattern variables.
1. Introduction

This paper describes the wuse of powerful
matching techniques in algebraic equation solving.
This work builds on the PRESS algebra system, a
computer program for solving equations and

for simplifying expressions [4].
upon which the present work is
based, Is proposed in [3]; this report also
describes many of the ideas in PRESS. PRESS and
the matcher extensions are written in PROLOG [7].

Inequalities and
A powerful matcher,

resesrch described here is to
technique of meta-level
algebraic manipulation
hard problems. We

The goal of the
test the search control
inference and the powerful
methods of PRESS on some
consider the problems of solving the general
quadratic and cubic equations and a general
trigonometric equation. The solutions of these
problems given in standard algebra textbooks all
have a "magic" element. An expression is drawn out
of a hat with a flourish of "Consider the following
term e++<"+ As a side effect of applying the PRESS
equation solving methods, we show how the magic
element can be understood. In fact, the program Is

Computing resources for this research were
provided by Science Research Council grant number
GR/A 37954. A. Borning was supported at the
University of Edinburgh by a NATO Poatdoctoral
Fellowship from the National Science Foundation.

Current address:
Computer Science Department,
University of Washington
Seattle, Washington 98195
USA

FR-35

466

reconstruction of part of the history of algebra:
we are not saying that this is how these solutions
but that our program does

were first discovered,

show how they could have been discovered by a
rational process of analysis of the problem, in
terms of the tools available for its solution.

PRESS uses multiple sets of rewrite rules,
employing meta-level reasoning and descriptions to
guide that application and hence control search.
Some of the Important rewrite rule sets are:
Isolation PRESS tries applying Isolation

rules when there is a single
occurrence of the unknown in the
equation. Isolation rules are
applied to strip away surrounding
functions and operators from the
unknown, finally resulting in an
equation with the wunknown on one
side by itself, and some expression
(free of the unknown) on the other.
A typical isolation rule is

arcsin x - b -> x = sin b.

collection Collection rules serve to reduce

the number of occurrences of the
unknown, so that isolation can be
applied. A typical collection rule
is

uw + vw -> (utv)w
which collects relative to w.

attraction Attraction rules move occurrences

of the unknown closer together in
the expression tree, so that
perhaps a collection rule can be
applied. A sample rule is

logpu + logpv -> logpuv,
which attracts u and v.

To apply a rewrite rule to an expression,
PRESS wuses a matcher that knows about the
commutativlty and associativity of addition and
multiplication. For example, to apply the
collection rule

uw + vw -> (u+v)w

to the expression

xy + s(3x)
in order to collect the two occurrences of x, the
PRESS matcher would substitute x for w, y for u,
and 3s for v. The result of applying the rule would

be

(y+3s)x.
The matcher used the commutatlvity and
associativity of multiplication in accomplishing
the match.

An application of collection is the crucial
step in the solution of some equations. Reflecting
this, human mathematicians will try quite hard to
find and apply a collection rule to an expression.
For example, the standard solution of the general

quadratic equation

ax? + bx +c « 0
uses the collection rule

u? + 2uv + v? -> (u+v)2.

All the other steps of the solution are either
preparations for applying the rule, or subsequent
isolation steps. (However, a different terminology
is usually used — rather than talking about
rewrite rules, mathematicians talk about
identities. Also, the process of applying the
above collection rule is often presented in

"compiled form*' as the operation of completing the
square.) Similarly, the standard solution of the
trigonomtric equation

a sin x4 b cos x - ¢C
depends critically on the use of the rule

cos u sin v + sin u cos v -> sin(u+v).
(Descriptions of the solutions of these equations

may be found in [9].)

However, the application of these rules —
matching the left hand side of a rule with an
expression — cannot be accomplished by using
simple pattern matching and information about
associativity and commutatlvity. What additional
techniques are required? As part of an
investigation of this question, an experimental

in PRESS that can, among
the above equations

matcher has been embedded
other things, solve both of
from first principles.

2. The Matching Algorithm

The matcher is called with descriptions of the
expression and pattern to be matched. If the match
is successful, a transform is returned, consisting
of a series of substitutions and arithmetic
operations, such that the result of applying the
transform to the pattern would be algebraically
equal to the expression.

When
simple cases.
identical, the match succeeds trivially,
null transform is returned. If the pattern
consists solely of a pattern variable, the match
succeeds again, and a transform consisting of the
single substitution "variable -> expr" is returned.

called, the matcher first checks for
If the expression and pattern are
and the

467

Otherwise, the matcher must try harder. The
matcher has two ways of accomplishing a non-trivial
match: by recursively matching corresponding parts
of the expression and the pattern, or by solving
algebraically for the value of a pattern variable.

2.1. Recursively Matching Parts of Expressions

In general, to match two complex expressions,
the matcher will first check that the principal
operators or functions are the same, and will then

match the corresponding arguments. For example,
consider matching the expression logea with the
pattern log v, where v is a pattern variable. The

matcher first checks that the functions log are the
same, and then calls Itself recursively to match e
with e, and a with v.

The matcher knows about the commutatlvity and
associativity of addition and multiplication. When
matching two sums or products, the matcher puts all
the terms In each sum or product into an unordered
bag. It then has available a range of alternatives

in matching the two bags, among the more important
being:
- If both bag8 are empty, the match
succeeds trivially.

- The matcher can pick a term from each bag

and call itself recursively to match the
two terms. In using this alternative,
the matcher will pick the most complex
term from one bag, wusing a simple
complexity metric. Then, it will pick an
appropriate term from the other bag by

performing a fussy match between the term
from the first bag and candidate terms
from the other bag. (See Section 3 for a
description of fussy matching.)

- If the term in either the expression or
the pattern is free of the unknown, the
matcher can permit the match to succeed

by adding or multiplying each side of the
rule by a term, if applying the operation
will not Invalidate previously matched
parts of the expression and pattern.

* If the pattern contains a pattern
variable, the matcher can try to solve

for Its value algebraically. (See
Section 2.2.)

When matching a sum against any other

expression (including a product), the matcher will
convert the other expression into a plus bag with
just the one element. Matching a product against
any other expression (except a sum) is handled
analogously.

2.2. Solving Algebraically for the Value of a
Pattern Variable

The other principal technique for
accomplishing a match la to solve algebraically for
the value of a pattern variable. An equation is
constructed whose two sides are the expression and
pattern to be matched, and presented to the main
equation solving routine. Use of this technique
Increases the power of the matcher considerably, as

it puts the full capabilities of the equation
solver at the matcher's disposal.

In solving equations of this kind, a
particular rather than a general solution s
wanted. The equation solver Is told about this by

adding an appropriate aaaertlon to the data base,
so that only a single solution is returned, with
alternate solutions being generated only if the
program backtracks.

3. Search Control

The matcher has available a considerable range
of strategies for accomplishing a match; some of
these strategies, such as solving algebraically for
the value of a pattern variable, can be expensive

to use. Therefore, It is Important that the search
Involved In accomplishing a match be tightly
controlled. The main technique for doing this is

the use of fuzzy matching as a preliminary check
before the full matcher is invoked. (Note that we
are using the term "fuzzy** in a different sense
than as in "fuzzy logic**)s Fuzzy matching is used
both for the initial selection of a collection
rule, and for the selection of a pair of terms to
match from two bags. Another technique for
controlling search is the complexity heuristic for
deciding which term in a bag to look at next.

To check for a fuzzy match, the program
computes the features terns of the expression and
pattern, and then matches these using the normal

PRESS matcher (which is comparatively inexpensive).
The algorithm for extracting a features term gives
special status to the unknown, reflecting the fact
that the matcher can often deal with miscellaneous
expressions that are free of the unknown.

the unknown itself,
is the unknown as

- If the expression is
then its features term
well.

is free of the unknown,

- If the expression
the expression

Its features term s
"mumble”.

- To compute the features term of a sum,
the features term of each term in the sum
are found. All "mumbles" are discarded;
the features term is then a sum
consisting of the remaining features
terms. Products are handled analogously.

- Integer exponents of expressions not free
of the unknown remain themselves.

468

- The features term of any other complex
expression is found by computing the
featurea term of each argument, and

returning a new term with each argument

replaced by its corresponding features
term.
For example, suppose that x is the unknown.

Then the features term of a cos y is "mumble", the
features term of ax+b Is x, and the features term

of a sin(x?)+cos(y?) is sin(x?).

These techniques have proven to be quite
powerful: most spurious matches are rejected during
fuzzy matching, and little search is done using the
full matcher. To handle the search that does
occur, the matcher uses the depth-first search
provided by the built-in PROLOG backtracking
mechanism, along with a memo procedure to save the
results of matches in case they are needed again.

The current search control methods are for the
most part adequate for matches that are eventually
successful, and for matches that can't succeed (and

are detected as such by the fuzzy matcher). The
matcher takes considerably longer on matches that
pass the fuzzy matcher, but eventually fall. For
example, if one asks the system to find the
solution to the general cubic equation
ax® + bx? + ex +d = 0,
it will (reasonably enough) attempt to apply the
collection rule
ud + 3udv +3uv? + V@ > (u+v)3.
This match eventually fails, but only after
considerable backtracking.
4. An Example — Deriving the Solution for the
General Quadratic Equation
The operation of the matcher will now be
illustrated by an example. Because of space
limitations, a summary is presented here; a

complete annotated trace of the matcher's operation
on this and other problems, as well as a fuller
description of the program, may be found in [2].

To start things off, the user asks PRESS to

solve the equation

ax? + bx + c m 0

PRESS decides that Isolation is not
since there are two occurrences of the
therefore tries to collect these two
occurrences. In searching for an applicable
collection rule, the program first performs a fuzzy
match between the expression and the pattern part
of each potentially applicable collection rule.
The fuzzy matcher extracts a features term from the
rule with matching

for x.
applicable,
unknown. It

expression, and searches for a
features. The features term of the left hand side
of the equation is

x? + x,

the coefficients and the constant term c¢ having
been regarded as relatively unimportant.

One of the collection rules known to PRESS is
u? + 2uv + v¢ > (u+v)?
which collects relative to u. When the unknown x is
substituted for u, the features term of the rule is
also

x? + Xx.

The program therefore selects this rule and tries
to apply it to the left hand side of the equation.
(This is in fact the only collection rule known to
PRESS that will pass the fuzzy match.)

The full matcher is now invoked to match the
pattern part of the rule with the quadratic
expression. Since the principal operator of both
the expression and pattern is +, the matcher
converts to a bag representation. As previously
described, there are a number of ways in which two
bags can be matched. The matcher tries one of

picking a term from each bag and

matching those two terms. It selects the term ax?
from the expression (on the grounds that it is the
most complex), and then chooses a term with

matching features from the rule,

these methods:

in this case x -°

now calls itself recursively on

Since the principal

The matcher

these two terms. operator of

ax is times, the matcher again converts both terms
to a bag representation. The x term from the
pattern is converted to a times bag with one
element. The matcher picks the nr terms from each
bag, and matches them trivially. After that,
however, it must match the expression bag, which
still has the "a" left in it, with the now empty
pattern bag. The previously used strategy of
picking a term from each product is no longer
applicable. Instead, the matcher decides that the

"a" should be dealt with by multiplying both sides
of the rule by "a". This result is returned as a

transform.

The two remaining terms in the pattern bag are
multiplied by "a", and the matcher is called
recursively on the remaining ©parts of the
expression and rule, which are now

bx + ¢
and

2
2xva + v-a.
respectively.

Again converting to a bag representation, the
matcher recursively tries to match the two terms
containing x, namely bx and 2xva. The two x's are
matched trivially. The matcher then makes several
unsuccessful attempts to match b with a term from
the pattern. (The strategy previously employed of
multiplying both sides of the rule by some
expression can no longer be used, since doing so
would invalidate the already established match of

2
the x terms.)

After these failures, the matcher tries the
other principal matching strategy, that of solving
algebraically for the value of a pattern variable.
The equation solving program is called recursively

469

to solve for v in belva. Tha answer, v-b!h.'ic
easlly obtained by isolation.

With this substituticn for v, the terms bx and
Zxva now mateh. This result 1is returned as a

transfora
v => b/2a,
which 1is applied to the remaining cara in the

pattern bag, namely vza. to vield
b/ba,

The last two terms don’t match each other.
However, the matcher can complete the match by
adding c to each side of the rule, sand subtracting

the hz:‘ha term.

The match of the expression ax? + bx + ¢ and

the pattern ’2 + Ixv + \rz is now complete. Tha
matcher returns the following transform:

* 2

+ec

« b2/4a

v => bf2a

+cC

- b%/4a

v -> b/2a
The pattern will match the expression if the
transform listed is applied to it (multiply each
side of the rule by a, then add c to each side,

subtract b%/4a from each side, and substitute b/2a
for v). The rule remains a valid collection rule
after the transform has been applied to each side
of it. So the transform is applied to the
replacement part of the rule, and the altered
collection rule is applied to the original
equation. The result is
(x+b/2a)?a + ¢ - b%/4a - 0.

Most of the work is now done.
equation has a single occurrence of x, and is
easily solved by lIsolation to yield the two roots
of the quadratic. The program's solution, written

The new

in two-dimensional notation, is:
{2
b { b c
xs = + / -
2a /] a
\/ §a
or
/2
b P e
x= - - / -
2a / 2 a
A 4 8
If the fractions are put over a common
demonlnator, the answers simplify to the usual

expressions. (A package for performing this sort

of simplification has been been incorporated into

PRESS, but after this trace was taken.)

5. Other Problems Solved using the Matcher

Another equation solved using the matcher is

a sin x + b cos x ¢ c*
The features term of the left hand side of the
equation is

sin x + cos x*
One of the trigonometric collection rules is

cOoS U sin v + sin u cos v -> sin(u+v),
which collects relative to u. When x is substituted
for u, the features term of this rule is

cos x + sin Xx,
which matches the features term of the left hand
side of the equation* (Note that the sin v and
cos v factors are dropped, as they are free of the
unknown.) The first term of the expression and the
second term of the pattern, namely a sin x and
sin x cos v, are matched by multiplying each side
of the pattern by al/cos v. The matcher next
matches the remaining terms from the expression and
pattern, which are now

b cos x
and

(cos x sin v)al/cos v
respectively* The two cos x factors are matched
trivially* To complete the match, the matcher
solves algebraically for a value for the pattern
variable v. In the process, the (recursively
invoked) equation solver employs another collection
step to collect the two occurrences of v by using
the rule

sin w/cos w -> tan w*

application of the augmented PRESS
program, a procedure was written that compiles
specialised methods for solving certain kinds of
equations* The user gives the program the general
form of an equation, such as the quadratic or the

As an

trlgonometlc equation* The program solves the
equation using the powerful matcher, and then
asserts a new PROLOG ©procedure for solving
Instances of that equation*

The matcher has also been used to solve
equations using a change of unknown, such as the
equation

52y . sy+l 4 6 . o
Here, the equation is matched against an equation
whose solution is known (in this case the
quadratic) to generate the change of unknown
5V > x.
6. Work In Progress
A milestone in the history of algebra and

the solution of the general
recently made progress
One

in [}

equation solving was
cubic equation* We have
toward getting PRESS to solve this equation*®
solution we are working towards, described
uses the collection rule

cos®u - 3/4 cot u -> 1/4 cos(3u).

470

The program currently will solve the equation with
some help. PRESS reduces the general equation to

8+ hz+g-0

using a linear substitution* However, at that
point it must be explicitly told to try the "magic
substitution'' z - w cos u. We hope to extend PRESS
so that it will be able to solve the cubic and
quartic equations from first principles without
human intervention, using both this solution path

and others.

7. Related Work

the authors' knowledge, no
has been implemented that

To the best of
other algebraic matcher

compares in power to the one described here, which
builds in the associative, commutative, and
distributive laws, and has available the full power

of the equation solving system for solving for a

value for a pattern variable.

The PRESS program (without the extensions
described here) includes a matcher that knows about
the commutetlvity and associativity of addition and

multiplication. The matcher in MACSYHA (5), [6]
knows about commutatlvity and associativity. It
also provides defaults for missing summands,
factors, and exponents, and will distribute

products over sums to accomplish a match.

There is considerable literature concerning
pattern matching in theorem proving — see [8] for
a survey of the state of the art. None of this
work is very relevant to the present research.
Most of these algorithms build in only a very few
axioms, whereas the matcher described here builds
in an indefinite number. On the other hand, these
algorithms are wusually for two-way matching and
come with a completeness proof, which we could not

have.

[1]

[2]

[3]

[A]

[5]

[6]

(8l

[9]

REFERENCES

Barnard and Child.

Higher Algebra.
MacMillan, 1936.

Borning, A., and Bundy, A.

Using Matching In Algebraic Equation Solving.

Research Report 158, Dept. of Artificial
Intelligence, Edinburgh, 1981.

An expanded version of this IJCAIl paper.
Also available as Technical Report No. 81*
05-01, Computer Science Department,
University of Washington.

Bundy, A.

Analysing Mathematical Proofs (or reading
between the lines).

" Proceedings of the 4th IJCAI. Georgia,
1975.

An expanded version is available from
Edinburgh as DAl Research Report No. 2.

Bundy, A. and Welham, B.

Using Meta-level Inference for Selective
Application of Multiple Rewrite Rules in
Algebraic Manipulation.

Artificial Intelligence , 1981.

In press. Also available from Edinburgh as
DAl Research Report No. 121.

Fate man, R. J.

Essays in Algebraic Simplification.
PhD thesis, MIT, 1972.
Also available as MAC TR-95.

Mathlab Group.
MACSYMA Reference Manual
MIT, 1977.

Pereira, L., Pereira, F., and Warren, D.

User's Guide to DECsystem-10 PROLOG

Dept. of Artificial Intelligence, Edinburgh,
1978.

Raulefs, P., Siekmann, J, Szabo, P., and

Unvericht, E.

A Short Survey on the State of the Art in
Matching and Unification Problems.

AISB Quarterly (32):17-21, December, 1978.

Tranter, C. J.
Advanced Level Pure Mathematics.
English Universities Press, 1970.

471

