-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Biomarkers for cystic fibrosis lung disease

Citation for published version:

Macgregor, G, Gray, RD, Hilliard, TN, Imrie, M, Boyd, AC, Alton, EW, Bush, A, Davies, JC, Innes, JA,
Porteous, DJ & Greening, AP 2008, '‘Biomarkers for cystic fibrosis lung disease: Application of SELDI-TOF
mass spectrometry to BAL fluid' Journal of Cystic Fibrosis, vol. 7, no. 5, pp. 352-358. DOI:
10.1016/}.jcf.2007.12.005

Digital Object Identifier (DOI):
10.1016/}.jcf.2007.12.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Cystic Fibrosis

Publisher Rights Statement:
© 2008 Published by Elsevier B.V

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/28961385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jcf.2007.12.005
https://www.research.ed.ac.uk/portal/en/publications/biomarkers-for-cystic-fibrosis-lung-disease(1583390b-e436-49ae-9228-63ed5e09ed6f).html

Jourr:al of cystic
Fibbrosis

www.elsevier.com/locate/jcf

e B RS
ELSEVIER Journal of Cystic Fibrosis 7 (2008) 352358

Biomarkers for cystic fibrosis lung disease: Application of SELDI-TOF mass
spectrometry to BAL fluid

Gordon MacGregor ®, Robert D. Gray ?, Thomas N. Hilliard °, Margaret Imrie ?,
A. Christopher Boyd ®, Eric W.F.W. Alton ® Andrew Bush ®, Jane C. Davies °,
J. Alastair Innes ?, David J. Porteous *, Andrew P. Greening **

& School of Molecular and Clinical Medicine, University of Edinburgh, EH4 2XU, United Kingdom
® Imperial College, London, SW3 6LR, United Kingdom

Received 25 April 2007; received in revised form 5 December 2007; accepted 17 December 2007
Auvailable online 1 February 2008

Abstract

Background: For cystic fibrosis (CF) patients there is a lack of good assays of disease activity and response to new therapeutic interventions,
including gene therapy. Current measures of airways inflammation severity are insensitive or non-specific.

Methods: Bronchoalveolar lavage fluid from 39 CF children and 38 respiratory disease controls was obtained at bronchoscopy and analysed by
surface enhanced laser desorption ionisation time of flight (SELDI-TOF) mass spectrometry. Recognized proteins were assessed for CF disease
specificity. Individual protein identification of specific peaks was performed.

Results: 1277 proteins/peptides, >4 kDa, were detected using 12 different surfaces and binding conditions. 202 proteins/peptides were
differentially expressed in the CF samples (p<0.001), 167 up-regulated and 35 down-regulated. The most discriminatory biomarker had a mass of
5.163 kDa. The most abundant, with a mass of 10.6 kDa, was identified as s100 A8 (calgranulin A).

Conclusions: The application of SELDI-TOF mass spectrometry allows evaluation of proteins in BAL fluid avoiding the limitations of only
analysing predetermined proteins and potentially identifying proteins not previously appreciated as biomarkers. Its application to cystic fibrosis

should enable appropriate evaluation of evolving illness, of gene therapy and other new therapies.
© 2008 Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society.

Keywords: Paediatric; Proteomics; Pulmonary disease; Bronchoscopy

1. Introduction

Cystic Fibrosis (CF) is the most common fatal single gene
defect in Caucasian populations [1]. CF is characterised by
airways inflammation, which occurs early [2], chronic bacterial
infection, frequent exacerbations and ultimately respiratory
failure and death. Gene therapy is a logical ambition to prevent
the fatal lung progression, and proof-of-principle for gene transfer
has been reported in the nasal and pulmonary epithelia following
non-viral gene therapy [3-5].

* Corresponding author. Respiratory Unit Offices, Anne Ferguson Building,
Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom. Tel.: +44 131 537 1781; fax: +44 131 537 1038.

E-mail address: a.greening@ed.ac.uk (A.P. Greening).

Assessing the effects of new therapies in CF is difficult since
most standard clinical measurements lack adequate sensitivity
and specificity. Physiological measurements such as first second
forced expired volume (FEV) reflect long term lung damage and
are less sensitive to changes in airways inflammation. Assays of
individual markers of inflammation, such as interleukin (IL)-8,
allow quantitative assessment of airways inflammation but are not
specific for CF. Surrogate markers of CF airways inflammation in
exhaled breath have been reported but these too are not disease
specific [6—8]. Therefore sensitive and specific biomarkers of CF
airways inflammation are required.

Proteomics is the characterisation of the proteome (protein
compliment) of a given biological system. Proteomics techniques
can be applied to identify disease specific proteins and protein
patterns in biological samples. In CF lung disease protein
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biomarkers may reflect disease severity (phenotype) more
sensitively than genetic data (genotype). Knowledge of specific
“proteotypes” could be used to develop assays for the assessment
of inflammation in the CF lung and changes to therapeutic
interventions. Recent work utilising the proteomic method of two
dimensional polyacrylamide gel electrophoresis (2D PAGE) has
been reported demonstrating biomarkers of CF exacerbation in
sputum [9]. This is an established technique in proteomics but can
be labour intensive and time consuming. Furthermore, it may be
less sensitive in demonstrating low abundance and low molecular
weight proteins which tend to be underrepresented or absent on
2D PAGE [10]. These less abundant, lower molecular weight
proteins are best investigated with mass spectrometry techniques.

Mass spectrometry separates proteins by mass and net electrical
charge. Active selection of proteins in a biological sample by
adherence to chromatographic surfaces and application of mass
spectrometry (surface enhanced laser desorption ionisation time of
flight; SELDI-TOF) allows analysis of proteins without reliance on
antigen—antibody interactions. Disease related proteins can there-
fore be identified without any predetermined selection process.
This may allow the development of specific and novel assays, and
facilitate better clinical monitoring. The technique was recently
reported in application to sarcoidosis [11] and most recently in CF
[12]. We describe its application to CF, seeking identification of
appropriate biomarkers to monitor the use of new treatments such
as gene therapy. Assessments were made in young children to
increase the chance of detecting primary changes consequent upon
altered cystic fibrosis transmembrane regulator (CFTR). However,
the control children also had active lung disease, including
suppurative problems, which acted as a control for the bacterial
colonization found in CF children.

2. Methods
2.1. Subjects

Subjects were children undergoing flexible bronchoscopy, for
clinical reasons, in a single paediatric centre. Bronchoalveolar
lavage (BAL) was performed in 39 children with CF and 38 non-

CF children with a range of other respiratory diseases (Table 2).
The reasons for bronchoscopy in the CF children were as follows:

Table 1

to detect bacterial infection after diagnosis of CF (8 cases), failure
to respond to antibiotic therapy during a pulmonary exacerbation
[24], lobar consolidation [5], and microbiological surveillance
while undergoing a surgical procedure [2]. The majority of CF
patients and control subjects were taking antibiotic therapy at the
time of bronchoscopy. The study was approved by the Local
Research Ethics Committee and formal written consent was
obtained from patients’ parents. The patients in this paper reflect
an unselected subset of patients in a BAL/bronchoscopy study
which will be reported elsewhere (Hilliard et al., in submission).

2.2. Procedures

Flexible bronchoscopy was carried out under general anaes-
thesia, with BAL performed in the middle lobe using 3 aliquots of
1 ml/kg of normal saline. The return fluid was pooled. BAL fluid
was centrifuged at 2000g x 10 min to separate cellular and fluid
phases. The supernatant was stored at —80 °C until analysis. The
cell pellet was resuspended, treated with 0.1% dithiothreitol and
differential cell counts performed on a cytsopin preparation
stained with May—Grunwald—Giemsa. IL-8 concentrations were
measured by commercial ELISA (R&D, Minneapolis, USA).

2.3. Surface enhanced laser desorption/ionisation mass
spectroscopy

Samples were thawed and applied to a range of chromato-
graphic chip surfaces (Table 1) under specific binding conditions.
The use of a range of surfaces and binding conditions avoided the
possibility of unintended “pre-selection” of proteins that might
occur if only one or two chip surfaces were used. For the metal
affinity surface 2 puL of sample was incubated directly on to the
chip surface. For other chip surfaces 20 pL of sample was
incubated on the chip surface via a bioprocessor. Following
incubation the chip surfaces were washed, sinapinic acid matrix
applied, and air dried. Samples were analysed automatically on the
Protein Biology System 2 SELDI-TOF mass spectrometer
(Ciphergen Biosystems, Freemont, USA) with a laser intensity
of 205, deflector at 4000 Da and a focus mass of 11,000 Da. Data
were then processed in the following fashion. Baseline correction
was performed to enhance the contrast of peaks to baseline using a

Binding properties of the eight best chromatographic chip surfaces and the number of differential peptide peaks revealed on analysis

Chip surface Binding Number of Differential peaks Highly differential peaks Up regulated in CF Down regulated in CF
properties subjects in
analysis®
CF Control p<0.05 (n) 2<0.001 (n) »<0.001 (n) »<0.001 (n)
CM10 at pH4 Cationic 24 21 81 21 15 6
CMI0 at pH6 Cationic 22 21 31 9 9 0
CMI0 at pHS8 Cationic 23 10 33 7 5 2
Q10 at pH6 Anionic 20 20 148 77 71 6
Q10 at pH8 Anionic 24 20 27 20 14 6
Q10 at pHI10 Anionic 21 23 103 46 33 13
IMAC Nickel Metal ion 21 14 33 12 12 0
IMAC Copper Metal ion 19 17 24 10 8 2

? Number of subjects refers to the number of spectra compared for each surface after data processing and normalisation (see Methods).
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Fig. 1. Heat Map of protein expression on IMAC Ni surface. Areas of red represent overexpressed proteins. Hierarchical clustering separates most CF subjects from
control subjects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The relative intensities of protein marker 5.163 kDa for CF patients and
control subjects are shown. Complete separation of the two groups is seen
(»<0.001). The data are from the IMAC Nickel surface.

fitting width of 4 times the expected width. Noise was auto-
matically measured from 4 to 50 kDa and spectra corrected
accordingly. Data were then normalised for total ion current. The
total ion current for an individual spectrum was divided by the
average total ion current over all spectra and thus each spectrum
was awarded a normalisation coefficient. A normalisation co-
efficient of 1 reflected individual AUC the same as average, <1
suggests a greater AUC than average, and > 1 a smaller AUC than
average. Spectra with a normalisation coefficient of >2 were
excluded from further analysis to ensure only good quality spectra
were compared.

2.4. Protein identification

Protein identification was carried out by peptide mass finger-
printing of trypsin digested fragments following protein purifica-
tion and gel electrophoresis. BAL fluid was bound to hydrophobic
beads (Polymer Labs, Shropshire, UK) and eluted with increasing
concentrations of acetonitrile. This allowed separation of proteins
by chemical properties before application to 18% tricine/glycine
polyacrylamide gel for one dimension electrophoresis.
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Fig. 3. The relative intensities of s100 A8 (calgranulin A), on the IMAC nickel
surface, for CF patients, disease controls excluding primary ciliary dyskinesia
(PCD) patients, and primary ciliary dyskinesia patients. SI00A8 was signi-
ficantly raised in CF compared with PCD (p<0.05) and with disease controls
excluding PCD (p<0.01).

Table 2
Demographic details of patients studied including lung function and
bronchoalveolar lavage (BAL) neutrophils and interleukin (IL)-8

Measurement CF Controls®
Age (y) 6.4 (0.7) 6.1 (0.6)
FEV, (% predicted) 61 (3.3) 80 (3.4)
FVC (% predicted) 79 (3.8) 92 (4.2)
BAL Neutrophils (%) 49.2 (5.3) 21.8 (3.6)
BAL IL-8 (pg/ml) 1308.1 (56.4) *716 (89.9)
Male (n) 13 20
Antibiotic therapy at time of BAL (n) 23 22

Figures represent mean (SEM). (FEV)/FVC not recorded in all patients due to
difficulty of procedure in the younger age group. There were 39 CF subjects and
38 control subjects.

? Control patients consisted of lower respiratory tract infection n=11, chronic
cough 8, primary ciliary dyskinesia 7, croup 3, others 9.

* p<0.001.

After Coomassie staining, bands were punched out, samples
destained and protein passively eluted with formic acid into so-
lution. An aliquot of eluate was reapplied to SELDI-TOF for
confirmation of molecular weight of peak of interest, and trypsin
digestion of the main sample performed. Digest fragments were
applied for further mass spectrometry analysis on SELDI-TOF.
The proteins were identified using on-line database recognition of
the peptide fragments (Profound 4.10.05, Rockerfellar University,
USA).

2.5. Data analyses

Mass spectral data analyses were carried out using Ciphergen
Express (Ciphergen Biosystems, Freemont, USA), a platform
specific software package which allows automatic peak identifi-
cation, clustering and data analysis. Peaks were subjected to a
cluster wizard using Ciphergen Express (Ciphergen Biosystems,
Freemont, USA). A cluster window of 0.3% was employed
allowing the comparison of protein peaks across groups by their
signal intensity, only peaks with a signal to noise ratio of >3 being
used. Statistical analysis between the two groups (CF vs. Non-CF)
was performed using Mann Whitney testing similar to the method
used by Kriegova et al. [11]. The analysis was restricted to peptide
peaks >4 kDa. No correction was made for multiple comparisons.

Table 3
Correlation of protein markers seen on the IMAC Ni surface and the percentage
of bronchoalveolar lavage (BAL) neutrophils

Marker molecular weight (Da) Correlation p Value
5163 No correlation ns
11,589 No correlation ns
10,545 No correlation ns
5025 No correlation ns
10,590 (s100 A8) Negative correlation 0.0025
5321 No correlation ns
12,269 Negative correlation 0.012
12,162 No correlation ns
11,454 No correlation ns
10,186 (s100 A12) Positive correlation 0.0035
6214 Positive correlation 0.0004
21,066 Positive correlation 0.0025
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This resulted in differences in the numbers of patient and control
samples suitable for analysis on the different chip surfaces
(Table 1). Data were also analysed with hierarchical clustering to
demonstrate the ability of SELDI-TOF to separate CF from con-
trol using multiple peaks. Heat maps and hierarchical clustering
were performed automatically by Ciphergen Express Software
(Ciphergen Biosystems, Freemont, USA).

3. Results

1277 clustering peaks, >4 kDa, were detected using 12 different
surfaces and binding conditions. 202 peaks were differentially
expressed in the CF samples (p<0.001) (Table 1). 167 of these
were of higher signal intensity in CF compared to control and 35
had lower signal intensity than control. Fig. 1 demonstrates the
separation of CF from non-CF subjects using a Heat Map (sce
figure legend). The statistically most significant biomarker with a
predicted mass of 5.163 kDa (Fig. 2) is as yet unidentified. This
biomarker completely discriminates CF from control and was
expressed most efficiently on the IMAC nickel chip surface.

Thus far we have identified three proteins. The most abundant
is s100 A8 (calgranulin A) at 10.6 kDa. This was increased
significantly in the CF patients compared with controls, and was
higher in controls with PCD than non bronchiectasis-associated
controls (Fig. 3). s100 A8 was most readily found on the IMAC
nickel chip surface but was also seen on the other chip surfaces.
The other two identified proteins are s100 A9 (calgranulin B) and
s100 A 12 (calgranulin C). The identity of s100 A8 was confirmed
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Fig. 4. Correlations of s100 A8 (panel A; p=0.0025) and s100 A12 (panel B;
»=0.0016) with percent BAL neutrophils, in CF patients.

by western blot and direct antibody capture on SELDI-TOF. Other
proteins are in the process of identification.

BAL neutrophil and IL-8 levels are shown in Table 2.
Regression analyses were performed for the IMAC nickel surface
proteins and 5/12 correlated with BAL neutrophils, two nega-
tively and three positively (Table 3; Fig. 4). The 5.163 kDa protein
correlated both with BAL neutrophils (p<0.01) and BAL IL-8
concentration (p<0.001).

4. Discussion

Using SELDI-TOF technology we have been able to demon-
strate a large panel of peptide biomarkers that differentiate, with
high statistical significance, CF lung disease from a disease control
population. Although these represent cross sectional data we would
suggest they potentially represent biomarkers that may prove useful
in monitoring CF airways inflammation and possibly CFTR
function. Longitudinal data are required for evaluation of ro-
bustness and value of individual proteins once formally identified.

SELDI-TOF allows the identification of large numbers of
potential biomarkers in a biological sample, based on molecular
weights and chemical characteristics. In essence it provides high
throughput screening for biomarkers, particularly when present in
low abundance, avoiding the limitations of antibody binding and
of only analysing predetermined proteins. It is able, therefore, to
identify proteins not previously appreciated to be potentially
valuable biomarkers. The technology has been applied to serum
and urine to identify disease specific biomarkers [13—15], but its
application to BAL fluid allows a valuable evaluation of proteins
in the areas directly involved in airways inflammation, without
confounding effects of, for example, inflammation of the liver or
pancreas. This technology has recently been applied to BAL in
chronic obstructive pulmonary disease, in a small number of adult
patients to demonstrate specific biomarkers [10] and findings
have also now been reported in CF BAL [16].

Even with the application of very restrictive parameters on data
analysis (in order to avoid excessive claims of significance) we
have ascertained a large number of potential biomarkers. These
require specific identification. Thus far we have identified three
using a combination of reverse phase chromatography, one di-
mension gel electrophoresis and trypsin digestion. The finding
that s100A8 (calgranulin A) was the most abundant and one of the
most significant markers of CF was not predictable prior to this
study being performed although it has since been reported in the
literature [16]. We believe that this finding highlights the value of
the proteomics approach. However, > 15 years ago s100 A8 and
A9 (calgranulins A and B), as heterodimers, were described in the
serum of patients with CF and in the mouse model of CF [17,18],
and were referred to as CF antigen. S100AS is known to regulate
neutrophil, monocyte and lymphocyte migration [19-21], and CF
antigen has been reported in non-CF diseases, including
squamous carcinoma of skin, rheumatoid arthritis and dermatitis.
In addition, plasma calprotectin (heterodimeric s100 A8/9) has
been suggested as a marker of inflammation in CF [22]. It is
produced by macrophages, epithelial cells and neutrophils and is a
potent chemoattractant of neutrophils. It therefore appears to be a
good candidate biomarker in CF airways inflammation.
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We have applied very restricting limits on the data we have
acquired using SELDI-TOF. This was deliberate, in order to avoid
making unsustainable claims about the number/value of biomar-
kers thus identified. The utility of SELDI-TOF mass spectrometry
as a diagnostic test for ovarian carcinoma has been criticised [23—
26]. In Petricoin’s original paper problems with reproducibility
in data analysis related to sample and data processing were
suggested and furthermore the most discriminating proteins were
in the mass range of <500 Da, a range where mass spectrometry is
less effective in discriminating genuine protein peaks from
background noise. Baggerly et al. [25] drew particular notice to
the impact of different modes of data preparation and analysis on
eventual results following SELDI-TOF mass spectrometry. They
demonstrated that inaccuracies in sample collection protocol and
mass calibration as well as inconsistent data manipulation could
lead to misinformed results. Therefore, to ensure uniformity in our
study we ensured that all sample preparation was uniform and that
all data in our analyses were subject to the same steps of pre-
paration prior to statistical testing.

We excluded proteins below 4 kDa from our analyses. This is
almost certainly overly cautious and “misses” proteins that may be
relevant. For example, at the lower MW ranges there were visible
on the spectrographs the typical patterns of the neutrophil defensins.
We also set a limit of a signal to noise ratio of <5, which more than
excludes the potential for over interpretation of small peaks. The
absolute number of potential biomarkers demonstrated by this
approach is not critical, although it is clearly very large. The
numbers we indicate in Table 1 could be altered if we applied other
restrictions. For example, the technology allows further exclusion
from analysis proteins with relatively low absolute signal intensity
(even ifthe signal to noise exclusion we used has already eliminated
the possibility of over interpretation of small peaks). If we had
imposed such a filter at a mean signal intensity of <4 we would
have excluded another 30—40% of the markers we list. We also
recognise that some markers, such as s100 A8, will bind on to, and
therefore be detected on, more than one chip surface/condition.
Thus, some peptides may appear (falsely) twice or more. A
proportion of some proteins may be doubly protonated. Since the
“time of flight” is related to both MW and charge, such peptides will
appear “twice”, once with half the MW of the original peptide.
Nevertheless, despite all these restrictions this approach appears to
be a very powerful tool in revealing potential biomarkers of lung
disease in a completely non-biased fashion. We must however
consider that different peaks may represent cleavage products of the
same protein and contribute to higher numbers of potentially
differentiating markers being recorded in the CF group.

A further criticism of this present study may be the failure to
utilise a protease inhibitor during the preparation of BALF samples
for storage prior to analysis as has been performed in other studies
[16]. This may lead to breakdown products of proteins rather than
true protein biomarkers to be identified. In spite of this all samples
in this study were processed in uniform fashion an exposure to
such factors as repeated freezing and thawing was minimized. We
do draw the reader’s attention however to the importance of
sample preparation in any proteomics study. As SELDI-TOF is a
relatively new technology the reproducibility of this method is still
to be fully assessed. Reproducibility was not formally assessed in

this study but has been previously described for other body fluids
serum (intra-assay CV of 15.6%, inter-assay variation of 24.4%
[15]; urine (intra-assay CV 8—-30%) [27]; and saliva (intra-assay
CV 18% and inter-assay CV 31%) [28].

The biomarkers discovered in this study suggest disease
specificity for CF vs. control, but may in reality reflect markers
that are related to airways inflammation rather than CF per se,
although the control group did contain subjects with other
inflammatory airways conditions, including primary ciliary
dyskinesia which also leads to bronchiectasis. Nevertheless we
believe that further validation of these markers should be pursued in
respect to other inflammatory lung diseases, in particular, non-CF
related bronchiectasis.

We believe this proteomics approach to identification of speci-
fic disease/inflammation biomarkers is valid and effective. To
allow translation into clinical practice we appreciate that bron-
choalveolar lavage has limited potential for repeated sampling. We
have preliminary data suggesting that many of the biomarkers can
be identified by SELDI-TOF in induced sputum. These data are,
therefore, complimentary to recent studies that have demonstrated
the presence of specific biomarkers in the sputum of patients with
CF, as demonstrated with 2D PAGE [9] and more recent data from
CF BAL fluid [16]. If further studies confirm this there is indeed a
firm base for clinical application of the markers identified. This
may lead to the development of assays to monitor the effects of
new therapies, including gene therapy in Cystic Fibrosis lung
disease, and clearly has the potential for application to a wide
range of lung diseases in general.
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