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ABSTRACT

A model of tropopause dynamics is derived that is of intermediate complexity between the three-

dimensional quasigeostrophic model and the surface quasigeostrophic (SQG) model. The model assumes that

a sharp transition in stratification occurs over a small but finite tropopause region separating regions of

uniform potential vorticity (PV). The model is derived using a matched-asymptotics technique, with the ratio

of the thickness of the tropopause region to the typical vertical scale of perturbations outside as a small pa-

rameter. It reduces to SQG to leading order in this parameter but takes into account the next-order correction.

As a result it remains three-dimensional, although with a PV inversion relation that is greatly simplified com-

pared to the Laplacian inversion of quasigeostrophic theory.

The model is applied to examine the linear dynamics of perturbations at the tropopause. Edge waves,

described in the SQG approximation, are recovered, and explicit expressions are obtained for the corrections

to their frequency and structure that result from the finiteness of the tropopause region. The sensitivity of

these corrections to the stratification and shear profiles across the tropopause is investigated. In addition, the

evolution of perturbations with near-zero vertically integrated PV is discussed. These perturbations, which

are filtered out by the SQG approximation, are represented by a continuous spectrum of singular modes and

evolve as sheared disturbances. The decomposition of arbitrary perturbations into edge-wave and continuous-

spectrum contributions is discussed.

1. Introduction

Tropopause motion plays a crucial part in the dynamics

of the atmosphere. Important features of the tropo-

spheric and lower-stratospheric circulation at midlatitude

can indeed be well described by considering only bal-

anced motion at the tropopause, near the ground, and

their interactions (Hoskins et al. 1985). Furthermore, the

role of the tropopause as a barrier to transport makes it

crucial for the distribution of atmospheric tracers such as

water vapor or ozone. The simplest model of the tropo-

pause treats it in the quasigeostrophic (QG) approxima-

tion as a rigid lid above a uniform potential vorticity (PV)

environment. The dynamics is then entirely controlled by

the potential temperature anomaly at the tropopause,

which is materially conserved. This model, also suitable

to describe the dynamics of low-level potential temper-

ature anomalies, is the surface quasigeostrophic (SQG)

model (Blumen 1978; Pierrehumbert et al. 1994; Held

et al. 1995), which has attracted renewed attention in

recent years in the atmospheric (e.g., Tulloch and Smith

2006), oceanographic (e.g., Lapeyre and Klein 2006), and

mathematical (e.g., Kiselev et al. 2007) communities.

The rigid-lid assumption was relaxed by Juckes (1994),

who replaced it with the more realistic assumption of

a finite jump in the stratification at the tropopause (see

also Rivest et al. 1992; Rivest and Farrell 1992). The re-

sulting model remains the SQG model, with a relation-

ship between potential temperature and velocity that

involves the Brunt–Väisälä frequency N of both the tro-

posphere and the stratosphere. Among other things, this

makes it possible to relate the potential-temperature

anomalies to vertical displacements of the tropopause.

SQG provides a useful first model of tropopause

dynamics. The approximations on which it relies—

quasigeostrophic dynamics and a sharp jump in N
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separating two regions with uniform PV—are of course

idealizations, and it is of interest to examine the effect of

relaxing them. Weak nonzero interior PV gradients were

introduced by Rivest et al. (1992) and Rivest and Farrell

(1992) in a linearized model. They showed how the edge

(or Eady) waves that propagate along the tropopause in

the SQG model become weakly damped Landau modes

(or quasimodes) as a result of the formation of a critical

layer [see Briggs et al. (1970) and Balmforth et al. (2001)

for analogous effects in two-dimensional fluids]. On the

other hand, Muraki and Hakim (2001) and Hakim et al.

(2002) carried out the Rossby number expansion under-

lying the quasigeostrophic model to one order higher, and

examined the asymmetries between cyclones and anti-

cyclones induced by balanced ageostrophic terms. In the

present paper, we relax the third key assumption of the

SQG model of the tropopause, the assumption of a dis-

continuity in N.

Specifically, to assess the role played by the internal

structure of the tropopause, we replace the (infinitely

sharp) vertical jump in N by a smooth transition. Although

smooth, this transition is assumed to take place over a

vertical scale that is small compared to the typical vertical

scales of the motion (given by f/N times the horizontal

scales, where f is the Coriolis parameter). This assumption

makes it possible to apply a matched-asymptotic tech-

nique and obtain a reduced model describing the dynamics

of a PV anomaly localized in the tropopause region. To

leading order in the small parameter � characterizing the

vertical-scale separation, this model reduces to the SQG

model, with a dynamics controlled by the vertically inte-

grated PV anomaly, which can be interpreted as a poten-

tial temperature. At the next order, however, the vertical

structure of the PV anomaly needs to be taken into ac-

count. This evolves as a result of (i) advection by the

basic shear flow that is present across the tropopause re-

gion and (ii) advection of the basic PV profile (associated

with the basic shear flow and Brunt–Väisälä frequency

profiles) by the altitude-dependent velocity perturbation.

Although the model obtained remains three-dimensional,

it is a reduction of the original three-dimensional quasi-

geostrophic equations in that it concentrates on the thin

tropopause region, removing the need for solving for

the various fields outside that region. Like similar

models in the theory of critical layers (e.g., Stewartson

1981) or PV defects (Balmforth et al. 1997; Samelson

1999), it also involves a simplified inversion relation be-

tween the PV and velocity fields, which results from the

strong anisotropy of the flow.

We confine our applications of the reduced model to

its linear dynamics. In the SQG description, this is lim-

ited to the propagation of edge waves. These are re-

covered here; the frequency of edge waves in the SQG

approximation, which is obtained to leading-order in �, is

corrected at the next order. We find an explicit expression

for this correction, which depends on the stratification

and shear profiles within the tropopause region. We also

provide details about the vertical structure of the edge

waves.

Because our model can represent the vertical structure

of the PV perturbation, its dynamics is much richer than

that of the SQG model. At the linear level, this results in

the existence of a continuous spectrum of singular modes

that represents sheared disturbances localized near the

tropopause. We examine the dynamics of these distur-

bances and show how they coexist with the edge waves.

The plan of the paper is as follows. In section 2, we

derive the simplified model for perturbations to a finite-

thickness tropopause using matched asymptotics. Only

the main steps of the derivation are described there, with

details relegated to the appendixes. The linear dynamics

of the model is then examined in section 3: the two modes

of motion, namely edge waves and continuous-spectrum

perturbations, are identified, and the nature of their dy-

namics is discussed. The main effects of a smooth tropo-

pause on edge waves are to shift their frequency compared

to that obtained in the SQG approximation and to in-

troduce a local minimum of potential energy at the tro-

popause. We analyze the sensitivity of the frequency shift

to the stratification and shear profiles across the tropo-

pause in section 4. The paper concludes with a discussion

in section 5.

2. Derivation

We start with the three-dimensional quasigeostrophic

equation in the form

›
t
q 1 ›(c, q) 5 0 and q 5 ›2

xxc 1›2
yyc 1 ›

z
(S›

z
c)

(2.1)

for the PV q and streamfunction c. Here, ›(c, q) 5

›xc›yq 2 ›yc›xq, and the parameter S is defined as

S 5 f 2/N2.

Note that we have adopted the Boussinesq form of the

quasigeostrophic approximation for simplicity only; it

is not difficult, though somewhat cumbersome, to gen-

eralize our developments to the compressible version

of (2.1).

The tropopause is characterized by an abrupt change

in N, from its tropospheric value N2 to its stratospheric

value N1 as z goes through 0, the altitude we choose for

the undisturbed tropopause. To make this explicit, we
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introduce the small parameter � � 1 and the stretched

vertical coordinate

Z 5 ��1z

and write

S 5 S(Z).

The function S is monotonically decreasing, with O(1)

variations and

lim
Z!6‘

S(Z) 5 S
6

5 f 2/N2
6.

We take into account the presence of a large-scale

zonal shear flow, with streamfunction C 5 2yU(z).

Motivated by observations, this flow is assumed linear in

z outside the tropopause region; this is made explicit by

writing

U(z) 5 �

ðz/�

0

S(Z9) dZ9 5 �y(Z),

where the shear S is assumed to approach constant

values for jZj/ ‘:

lim
Z!6‘

S(Z) 5 S
6

,

so that the velocity satisfies U(z) ; S6z as z / 6‘. The

PV associated with this basic flow is given by

Q 5�y
d

dz
(SS) 5���1ys

Z
, (2.2)

where we have introduced

s(Z) 5 S(Z)S(Z)

and the subscript is used to denote differentiation (i.e.,

sZ 5 ds/dZ). Like S and S, the function s(Z) is bia-

symptotic to constants:

lim
Z!6‘

s 5 s
6

5 S
6

S
6

.

Its derivative, sZ 5 O(1), is the negative of the scaled

meridional gradient of PV.

We examine the dynamics of small-amplitude pertur-

bations to the basic flow. Introducing the decomposition

c 5 C 1 �c9 and q 5 Q 1 q9 into (2.1) and dropping the

primes leads to

›
t
q 1 �y›

x
q� s

Z
›

x
c 1 �›(c, q) 5 0 and

��1q 5 ›2
xxc 1 ›2

yyc 1 ›
2
(S›

z
c). (2.3)

Note that the perturbation streamfunction is taken to be

smaller than the perturbation PV by a factor �; as is shown

below, this is the scaling that emerges naturally from the

inversion relation in the limit � / 0. It is motivated by a

standard dominant-balance argument: with this scaling,

the effects of the nonlinear terms in (2.3) and those as-

sociated with the finite tropopause thickness have the

same order of magnitude.

The system (2.3) can be simplified for � � 1 using

matched asymptotics (e.g., Hinch 1991). The method di-

vides the spatial domain into two outer regions 2z� � and

z� � and an inner region z 5 O(�), and it seeks different

asymptotic solutions in each region. The constants of in-

tegration that arise are then found by matching these so-

lutions to ensure continuity across regions.

In the two outer regions, where jzj � �, we can take

q 5 0 (since SZ 5 0). The perturbation streamfunction c

then satisfies a scaled Laplace equation, where the de-

rivatives with respect to z are scaled by S6
1/2. This equation

is solved by introducing the horizontal Fourier transform

ĉ(k, l, z, t), with

c(x, y, z, t) 5

ð‘

�‘

ð‘

�‘

ei(kx1ly)ĉ(k, l, z, t) dk dl,

to obtain

ĉ(k, l, z, t) 5 f̂
6

(k, l, t)e7kz/S1/2
6 , (2.4)

where k . 0 is defined by

k2 5 k2 1 l2

and the upper (lower) sign refers to z . 0 (z , 0). The as

yet unknown functions f̂
6
ðk, l, tÞ can now be expanded

in power series according to

f̂
6

(k, l, t) 5 f̂
(0)
6 (k, l, t) 1 �f̂

(1)
6 (k, l, t) 1 � � � . (2.5)

The functions f̂
(k)
6 , k 5 0, 1, � � � are determined next by

examining the relationship between c and q in the tro-

popause region z 5 O(�), that is, Z 5 O(1).

In this inner region, we use Z as vertical coordinate,

expand the streamfunction as

c(x, y, z, t) 5 c(0)(x, y, t) 1 �c(1)(x, y, Z, t) 1 � � � , (2.6)

and leave q unexpanded. In writing (2.6), we have an-

ticipated that the leading-order streamfunction is in-

dependent of Z.

In what follows we determine the first two terms in the

expansion of c and therefore approximate the dynamics

up to errors O(�2). The relationship between the outer and

inner expansions (2.4) and (2.6) follows from matching
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conditions. Expanding (2.4) for small Z and comparing

with (2.6) first gives the matching condition

ĉ(0)(k, l, t) 5 f̂
(0)
6 (k, l, t), (2.7)

which shows that the leading-order streamfunction is

continuous across the tropopause. At the next two or-

ders we find

ĉ(1)(k, l, Z, t) ; 7
k

S1/2
6

f̂
(0)
6 (k, l, t)Z 1 f̂

(1)
6 (k, l, t), and

(2.8)

ĉ(2)(k, l, Z, t) ;
k2

S
6

f̂
(0)
6 (k, l, t)

Z2

2
7

k

S1/2
6

f̂
(1)
6 (k, l, t)Z

1 f̂
(2)
6 (k, l, t), (2.9)

as Z / 6‘. The PV–streamfunction relation takes the

form

q 5 ›
Z

(S›
Z

c(1)) 1 �[›2
xxc(0) 1 ›2

yyc(0)

1 ›
Z

(S›
Z

c(2))] 1 � � � ,

giving

›
Z

(S›
Z

c(1)) 5 q and (2.10)

›2
xxc(0) 1 ›2

yyc(0) 1 ›
Z

(S›
Z

c(2)) 5 0. (2.11)

Combining these two equations with the matching

conditions (2.7)–(2.9), it is possible to relate explicitly

c(0) and c(1) to q. Computations detailed in appendix A

lead to

ĉ(0)(k, l, t) 5� û(k, l, t)

k(S1/2
1 1 S1/2

� )
, (2.12)

where û(k, l, t) 5
Ð ‘

�‘
q̂(k, l, Z, t) dZ, and

ĉ(1)(k, l, Z, t) 5
S1/2

1

S1/2
1 1 S1/2

�

ð‘

Z9

dZ9

S(Z9)

ð‘

Z

q̂(k, l, Z0, t) dZ0 1
S1/2
�

S1/2
1 1 S1/2

�

ðZ

�‘

dZ9

S(Z9)

ðZ9

�‘

q̂(k, l, Z0, t) dZ0

� û

(S1/2
1 1 S1/2

� )2

ð‘

Z

S
1

S(Z9)
� 1

� �
dZ9 1

ðZ

�‘

S�
S(Z9)

� 1

� �
dZ9

� �
. (2.13)

These two equations complement the PV Eq. (2.3),

which in the tropopause region reduces to

›
t
q 1 �y›

x
q� s

Z
›

x
(c(0) 1 �c(1)) 1 �›(c(0), q) 5 0

(2.14)

after neglecting O(�2) terms. The closed dynamical

system (2.12)–(2.14) is the first result of this paper. It

provides a simplified model for the quasigeostrophic

dynamics of the tropopause region that takes into ac-

count the fact that the transition in N takes place over

a finite thickness. It does so by including O(�) terms that

are neglected in the standard derivation leading to the

SQG model. This model is recovered formally by the

rescaling (c, q) 1 �21(c, q) followed by setting � 5 0.

The remaining terms in (2.14) can then be integrated

with respect to Z to obtain the two-dimensional system

›
t
u� (s

1
� s�)›

x
c(0) 1 ›(c(0), u) 5 0, (2.15)

closed by (2.12). This can be recognized as the SQG

model (Juckes 1994) in the presence of a background

meridional gradient of potential temperature. Note that

with the definition given in (2.12), u is better interpreted

as the depth-integrated PV than a potential tempera-

ture. The tropopause potential temperature as defined

by Juckes (1994) corresponds to u up to a constant di-

mensional factor.

Another model that can be recovered from (2.12)–

(2.14) is the defect model of Samelson (1999), which

describes the dynamics of a constant shear flow to which

a PV defect (i.e., a small, localized change in stratifica-

tion or shear) is added. This model assumes that the

variations in N2 and hence in S are O(�). In this case,
~S

Z
5 S

Z
/� 5 O(1), and time can be rescaled as T 5 �t.

With the further simplification of constant shear S(Z) 5

constant, we obtain

›
T

q1SZ›
x
q�S ~S

Z
›

x
c(0) 1›(c(0),q)50, (2.16)

closed by (2.12), where S1 and S2 can be taken as the

same value. (The defect model is in fact somewhat more

general since the basic PV gradient, here �S ~S
Z

, can

include a contribution from a localized departure of the

background shear from its constant value S.)

Unlike the SQG model, but like the defect model,

the new model (2.12)–(2.14) retains the three dimen-

sions of its parent, the quasigeostrophic model. Its

main advantage is, of course, that it focuses on the thin

tropopause region, with no need to resolve the far-field

region since this has been treated analytically. The PV

inversion (2.12) and (2.13) is also explicit and hence

substantially simpler than the inversion of the Laplacian

operator that appears in the quasigeostrophic model.

Note that the approximation of this operator involves
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successively higher powers of the horizontal wavenumber

k (with k21 appearing in ĉ(0), k0 in ĉ(1), etc.). This indi-

cates, unsurprisingly, that the model is unsuitable to ex-

amine horizontal scales that are O(�) or smaller; the

dynamics of these is essentially isotropic (in the scaled

coordinates) and can only be described by the full qua-

sigeostrophic model.

One of the interests of the model (2.12)–(2.14) is to

separate explicitly the various terms contributing to the

dynamics within a finite-thickness tropopause. The dom-

inant term in (2.14) is the advection of the meridional PV

gradient 2sZ by the leading-order perturbation velocity

›xc(0). Because this velocity is independent of altitude,

this advection leaves the vertical structure of the pertur-

bation PV unchanged; the leading-order dynamics can

therefore be reduced to the evolution of the vertically

integrated PV—this is the essence of the SQG model. At

the next order, however, the vertical structure of the

perturbation PV changes because of the shear [term �y›xq

in (2.14)] and because of the z dependence of the hori-

zontal velocity advecting the basic PV (term 2sZ›xc(1)).

This results in a much richer dynamics than that of the

SQG model, as we now demonstrate by considering the

linearization of (2.14).

3. Linear dynamics

We examine how the internal structure of the tropo-

pause modifies the linear dynamics of perturbations. We

consider perturbations in the form of plane waves, with

q(x, y, Z, t) 5 q̂(k, l, Z)ei(kx1ly�vt) 1 c.c.,

where v is the frequency. Note that we abuse notation in

using the same hatted variables to denote functions of

time as in the previous section, and time-independent

amplitudes as here; this should not cause confusion. We

expand the PV and frequency in powers of �:

q̂ 5 q̂
0

1 �q̂
1

1 � � � and v 5 v
0

1 �v
1

1 � � � .

The streamfunction is then written as the double ex-

pansion

ĉ 5 ĉ
0

1 �ĉ
1

1 � � � 5 ĉ
(0)
0 1 �(ĉ

(0)
1 1 ĉ

(1)
0 ) 1 � � � ,

where the superscripts (0) and (1) refer to the two in-

version relations (2.12) and (2.13), respectively, so that

ĉ
(0)
0 and ĉ

(0)
1 are Z-independent, while ĉ

(1)
0 depends on Z.

Introducing these expansions into the linearization of

(2.14) gives to leading order

�iv
0
q̂

0
� is

Z
kĉ

(0)
0 5 0 with

ĉ
(0)
0 5 � 1

k(S1/2
1 1 S1/2

� )

ð‘

�‘

q̂
0

dZ.

This equation admits two possible types of solutions.

First, edge waves, with frequency

v
0

5
(s

1
� s�)k

k(S1/2
1 1 S1/2

� )
, (3.1)

which is negative, corresponding to westward propaga-

tion, and vertical structure given by

q̂
0

5 s
Z

, (3.2)

up to a constant factor. The second type of solutions have

zero frequency to leading order, v0 5 0, and a vertical

structure that is only constrained by the conditionð‘

�‘

q̂
0

dZ 5 0. (3.3)

As will become clear, these solutions correspond to the

continuous spectrum admitted by (2.14). This spectrum

is similar, for instance, to the continuous spectrum de-

scribed for the Eady model by Pedlosky (1964), with the

important difference that it occurs here in the presence

of a PV gradient.

Note that the leading-order structure of an edge wave

(3.2) is precisely that obtained when perturbations dis-

place the basic PV profile (2.2) in the meridional direction;

on the other hand, the condition (3.3), which ensures no

leading-order projection on the edge wave, is satisfied by

vertical displacements of the basic PV profile, since these

are proportional to szz. Arbitrary initial PV perturbations

project onto both the edge wave and the continuous

spectrum. To leading order, the decomposition into these

two contributions is written

q̂
0

5
s

Z

s
1
� s�

ð‘

�‘

q̂
0

dZ 1 ~q
0
, (3.4)

defining the contribution ~q
0
, which clearly satisfies (3.3).

At first order in �, we obtain the equation

�iv
0
q̂

1
� iv

1
q̂

0
� is

Z
k(ĉ

(0)
1 1 ĉ

(1)
0 )1 ikyq̂

0
5 0, (3.5)

where

ĉ
(0)
1 5� 1

k(S1/2
1 1 S1/2

� )

ð‘

�‘

q̂
1

dZ (3.6)

and ĉ
(1)
0 is given in terms of q̂

0
as ĉ(1) in terms of q̂ in

(2.13). From (3.5) we can extract not only an O(�) cor-

rection to the leading-order edge-wave frequency (3.1)

but also a correction to their structure (3.2). These cor-

rections are described in detail for both edge waves and

continuous-spectrum perturbations below.
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a. Edge waves

We now consider the edge-wave solutions satisfying

(3.1) and (3.2) in more detail. Introducing these equa-

tions into (3.5) and integrating with respect to Z yields

�iv
1
(s

1
� s�)� ik

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 dZ

1 ik

ð‘

�‘

s
Z

(Z)y(Z) dZ 5 0.

This gives the correction v1 to the frequency as

v
1

5
�k

s
1
� s�

ð‘

�‘

[s
Z

(Z)ĉ
(1)
0 � s

Z
(Z)y(Z)] dZ. (3.7)

A completely explicit form can be obtained by using

(2.13) with q̂ 5 q̂
0

5 s
Z

and û 5 s
1
� s� to compute

ĉ
(1)
0 . Manipulations detailed in appendix B then lead to

the relatively compact expression

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 dZ 5

ð‘

�‘

S(Z)(s
1
� s�)2 � S1/2

1 [s(Z)� s�]� S1/2
� [s

1
� s(Z)]

� �2

(S1/2
1 1 S1/2

� )2S(Z)
dZ (3.8)

for the first term appearing in (3.7). This expression can

be further simplified in the particular case of a constant

shear S 5 constant. With s 5 SS, it reduces to

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 dZ 5 S2

ð‘

�‘

[S
1
� S(Z)][S(Z)� S�]

S(Z)
dZ,

and the complete frequency correction (3.7) takes the

neat form

v
1

5 � Sk

S
1
� S�ð‘

�‘

[S
1
� S(Z)][S(Z)� S�]� ZS(Z)S

Z
(Z)

S(Z)
dZ.

(3.9)

Note that our basic assumption that the basic PV gra-

dient vanishes rapidly outside the tropopause region re-

sults in purely real frequency corrections. If this vanishing

is exponentially fast, in particular, the frequency of the

edge wave remains real to all orders in �. By contrast, if

a gradient of PV outside the tropopause region is taken

into account, the edge waves disappear as strict normal

modes but persist as slowly damped Landau modes or

quasimodes (Rivest et al. 1992; Rivest and Farrell 1992).

With the frequency correction (3.7) determined, the

correction to the vertical structure of the edge-wave

vorticity follows from (3.5). This correction can be chosen

to satisfy

ð‘

�‘

q̂
1

dZ 5 0, (3.10)

which leads to ĉ
(0)
1 5 0 and hence to the vertical

structure

q̂
1
5�

s
Z

v
0

(v
1
1 kĉ

(1)
0 � ky), (3.11)

where c
(1)
0 is given by the right-hand side of (2.13) with

q 5 sZ. Note that the expression (3.7) for v1 ensures

consistency with (3.10).

b. Continuous spectrum

The perturbations with vertically integrated PV van-

ishing at leading order, that is, verifying (3.3), satisfy

v0 5 0. The structure of the next-order correction can be

obtained by integrating (3.5) with respect to Z, which gives

a compatibility condition determining ĉ
(0)
1 in terms of q̂0:

(s
1
� s�)ĉ

(0)
1 5�

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 (Z) dZ

1

ð‘

�‘

y(Z)q̂
0
(Z) dZ. (3.12)

Noting that from (2.13)

ĉ
(1)
0 5

S1/2
1

S1/2
1 1 S1/2

�

ð‘

Z

dZ9

S(Z9)

ð‘

Z

q̂
0
(Z0) dZ0

1
S1/2
�

S1/2
1 1 S1/2

�

ðZ

�‘

dZ9

S(Z9)

ðZ

�‘

q̂
0
(Z0) dZ0,

which determines ĉ
(0)
1 as expected.

In view of (2.12), condition (3.12) provides the con-

straint

ð‘

�‘

q̂
1

dZ 5
(S1/2

1 1S1/2
� )k

s
1
�s�

3

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 (Z)dZ�

ð‘

�‘

y(Z)q̂
0
(Z)dZ

� �
(3.13)

on the integrated PV. This shows that to be dynamically

split from edge waves, perturbations need to have not

only a zero integrated PV at leading order, but also
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a specific vertically integrated PV at the next order. In

the same way as (3.10) could be imposed for the struc-

ture of edge waves, here any vertical profile satisfying

(3.13) can be taken for the structure of these perturba-

tions.

The PV then satisfies

[y(Z)� c
1
]q̂

0
� s

Z
(ĉ

(0)
1 1 ĉ

(1)
0 ) 5 0,

where c1 5 v1/k. Since y ranges from 2‘ to ‘ (if S1S2 .

0), there is a continuous spectrum of (singular) modes,

for 2‘ , c1 , ‘. Thus, assuming that there are no ei-

genvalues embedded in this continuous spectrum, per-

turbations that satisfy (3.3) are represented completely

by a superposition of singular modes parameterized by

c1. The evolution of such perturbations can be expected

to be that typical of sheared disturbances, with a vortic-

ity that is sheared by the basic flow and reduced to small

scales for large times.

The full picture of the linear evolution is then rela-

tively simple. Given an initial distribution of PV, a part

sZ

Ð
q dZ evolves as an edge wave, while the remainder,

with an associated streamfunction that is O(�), evolves

as a sheared disturbance, with the streamfunction (and

energy) decreasing. The energy of the continuous-

spectrum perturbations can be expected to behave in the

same way as in two-dimensional shear flows, namely to

decay as t22, since the PV–streamfunction relationships

are essentially of the same type. Note that transient

growth of the continuous-spectrum energy is possible as

a result of the Orr mechanism (Farrell 1982).

c. Simulated evolution

To illustrate and validate our results for the linear

dynamics, we carry out numerical simulations. Equa-

tions (2.12) and (2.13) are used to invert the potential

vorticity q̂(k, l, z, t), for a fixed wavevector (k, l), and

a standard scheme (fourth-order Runge–Kutta method)

is used to advance the linear part of the prognostic

equation (2.14). The resulting code serves in section 4b

to validate by direct simulation the analytical formulas

for corrections to the edge-wave frequencies. At this

point, we simply illustrate the evolution of an edge wave

and of perturbations from the continuous spectrum.

Figure 1 displays the evolution of an edge wave and of

a perturbation in the continuous spectrum. The basic

flow is chosen to describe a realistic tropopause: we take

� 5 0.1, the stratification profile

S(Z) 5 S�1
S

1
� S�
2

(1 1 tanhZ), (3.14)

and the shear profile

S(z) 5
S� for z , 0

S
1

1 (S� � S
1

)[cosh(z/d)]�2 for z . 0

(
,

(3.15)

where S2 5 1, S1 5 1/4.5, the tropospheric shear S2 5 1,

and the stratospheric shear S1 5 0. Here, d is the

thickness of the transition region in the shear, which is

less sharp than the transition in the stratification (Birner

et al. 2002). Below we use d 5 3�, as in Tomikawa et al.

(2006).

The initial PV profiles, to leading order, are taken as

q̂
0

5 s
Z

and q̂
0

5 ze�z2/�2

so as to satisfy (3.2) and (3.3), corresponding to an edge

wave and to a perturbation in the continuous spectrum,

respectively. Order-one corrections, calculated as de-

scribed in sections 3a and 3b, are added to these profiles

in order that the separation between edge wave and

continuous spectrum be accurate to O(�). For both

simulations the wave vector is chosen as (k, l) 5 (1, 0).

The edge-wave solution (Fig. 1, left panels) preserves

its structure,1 whereas the continuous-spectrum pertur-

bation (right panels) is sheared away to smaller and

smaller scales, as expected. If the order-one corrections

are not included (not shown), the evolution of both

initial conditions becomes ‘‘mixed’’: the first includes

a weak component that is sheared to smaller scales,

whereas the second slowly yields a weak edge-wave

signal emerging above the sheared disturbance. The

reason is, as noted earlier, that the conditions (3.2) and

(3.3) differentiate between edge wave and continuous

spectrum to leading order only. The simulations confirm

the relevance of the corrections calculated above.

The evolution of the energy is shown in Fig. 2, con-

firming the conservation of energy for the edge wave

solution. After an initial adjustment, the sheared dis-

turbance of the continuous spectrum is found to decay

asymptotically as t22, as predicted.

4. Correction to the SQG edge wave

We now examine the impact of the finite thickness of

the tropopause on edge waves. We focus mostly on the

first-order, O(�), correction to their frequency (sections 4b

and 4c) but also present the corresponding corrections

1 With our parameter choice, S(Z) decreases to zero above the

tropopause and S(Z) is much smaller above the tropopause than

below; as a result, sZ and hence the edge-wave amplitude are not

symmetric about the tropopause but are larger below.
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to the vertical structure (section 4d). The correction to

the frequency (3.7) can be split into two contributions,

v
1a

5
�k

s
1
� s�

ð‘

�‘

s
Z

(Z)ĉ
(1)
0 dZ and

v
1b

5
k

s
1
� s�

ð‘

�‘

s
Z

(Z)y(Z) dZ, (4.1)

where v1a results from the first-order correction to the

streamfunction ĉ
(1)
0 , while v1b only involves the profiles

of the basic state in the tropopause region. To obtain

insights regarding the different effects influencing these

corrections, we consider below a number of idealized

profiles. As a preliminary step it is necessary to choose

a definition of the tropopause that is adapted to the

present discussion.

a. Definition of the tropopause reference level

A unique definition of the altitude of the tropopause is

important in order to compare the edge-wave frequen-

cies for different stratification profiles: since we choose

to take z 5 0 at this altitude and use a reference frame

such that U(0) 5 0, different choices for the altitude of

the tropopause lead to apparently different frequencies

for the same stratification profile as a result of a Doppler

shift. We introduce a definition of the tropopause altitude

that eliminates this ambiguity and is adapted to the

present discussion since it separates, in a relevant man-

ner, the effect of the correction to the streamfunction v1a

and those of the profiles of shear and stratification v1b.

Since we use the vertical profile of S(z) throughout

our analysis, we decompose

S(z) 5 S�1 DSH(z� z
t
) 1 R(z),

where H(z) is the Heaviside function, zt the altitude of

the tropopause, the notation DS 5 S1 2 S2 is introduced

(note that DS , 0), and R(z) is a residual. In such a de-

composition, it is natural to impose thatð1‘

�‘

R(z) dz 5 0.

This constraint determines zt and serves as our definition

for the altitude of the tropopause. Note that this defi-

nition can differ from standard definitions or intuitions.

FIG. 1. Evolution of the perturbation q for monochromatic perturbations (k 5 1, l 5 0) in the vertical (x, z) plane, at

times (top) t 5 0, (middle) t 5 115, and (bottom) t 5 230. Initial conditions are for (left) an edge wave q̂ 5 s
Z

1 O(�)

and (right) a perturbation in the continuous spectrum q̂ 5 ze�z2/(2�) 1 O(�). For both cases, the O(�) terms in the

initial conditions are calculated as described in sections 3a and 3b, respectively.
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It is relevant for the present discussion and is not meant

as a novel practical definition the tropopause. As an

example, Fig. 3 illustrates this decomposition for two

stratification profiles with a smooth tanh(z/�) transition.

In the first profile, given in (4.6), tanh(z/�) is in the form

of S(Z), whereas in the second profile it is in the form of

N2(Z) 5 f 2/S(Z). In the second case, our definition leads

to a tropopause slightly below z 5 0.

The comparison of v1 for different stratification pro-

files is meaningful only if the profiles are first shifted so

as to have their tropopause at the same reference level;

otherwise, the comparison would be obscured by the

Doppler shifts due to different reference levels. In what

follows we describe flows with the height coordinate

changed in order to have zt 5 0 and in a frame of ref-

erence such that U(0) 5 0.

b. Constant shear

First, we consider the simple case of a constant shear,

S 5 constant, when v1 reduces to (3.9). To begin with

the simplest stratification profile, the case of a piecewise

linear S is considered:

S(Z) 5

S
1

for �, z,
(S

1
1 S�)/2 1 Z(S

1
� S�)/2 for ��, z , �,

S� for z ,��.

8<
: (4.2)

For this configuration, v1 is explicitly calculated from

(3.9) as

v
1

5�Sk
2

DS

S�1 S
1

2

� 	
1

S
1

S�
DS

log
S�
S

1

� �
. (4.3)

Although it may appear that there are two parame-

ters, S1 and S2, defining the basic stratification, this

is misleading. It is possible to rewrite the correction

(4.3) in terms of the relative jump in stratification Ds 5

DS/S2 as

v
1

5�Sk
2

Ds
1 1

Ds

2
� (1 1 Ds)

log(1 1 Ds)

Ds

� �
. (4.4)

This expression has the advantage of making it easier to

see that, for small stratification jumps jDsj � 1, v1 be-

comes proportional to Ds: expanding the logarithm to

third order yields

v
1

5�Sk
Ds

3
1 O[(Ds)2]. (4.5)

More generally, Ds varies between 0 (hardly any PV

jump across the tropopause) and 21 (infinite stratifica-

tion above the tropopause; i.e., the tropopause is a rigid

lid). For the simple stratification given by (4.2), the

variations of v1 with Ds are illustrated in Fig. 4. This

correction is always positive, corresponding to a slowing

down of the westward phase speed of the edge waves.

FIG. 2. Log–log plot of the energy of the perturbations in Fig. 1 as

a function of time. The energy of the edge wave (solid black line)

and of the continuous-spectrum perturbation (dashed black line)

are displayed. A dashed gray line indicates the 22 slope corre-

sponding to a decay of energy as t22.

FIG. 3. (left) Profiles of S(z) (bold lines) and of their approxi-

mations S2 1 DSH(z 2 zt) (thin lines) for cases with a tanh(z/�)

variation for S (black lines) or for N2 (gray lines). (right) Plots of

R(z) between the profiles and their approximations.
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To illustrate the sensitivity of the correction to the

precise shape of the stratification across the tropopause,

we introduce the two-parameter family of stratification

profiles

S
t
(Z, S�, DS, a) 5 S�1

DS

2
1 1 tanh

Z

a

� 	� �
, (4.6)

where DS is the first parameter and a [with a 5 O(1)] is

the second.

Figure 4 includes the correction v1 predicted for the

stratification St(Z, 1, Ds, a) with a 5 2/3. This value was

chosen so that the v1 values obtained for the stratification

profiles (4.2) and (4.6) are identical in the limit of small

jDsj. It is found that, for reasonable values of Ds, say Ds .

20.80, the correction is not sensitive to the fine details of

S(Z). Hence, the analytical equation (4.4) can be taken as

a good estimate of v1 for such smooth transitions. The

correction v1 does become sensitive to the details of S(Z)

for very strong stratification jumps (i.e., Ds , 20.90).

Finally, we test the result (4.4) using the numerical

code described in section 3c to determine numerically

the frequency of edge waves. The order-one correction to

the structure of the edge wave, as described in section 3a,

is included, and a resolution of 200 points in the vertical

is found to be sufficient. Excellent agreement is found,

as shown in Fig. 4, providing a further validation for the

code and the analytical results.

Although profiles (4.2) or (4.6) are natural candidates

for a simple finite-thickness version of a discontinu-

ous stratification profile, observations may motivate a

different choice for the typical transition at the tropopause:

in a study of 10 years of twice-daily high-resolution ra-

diosonde profiles from two stations in southern Germany,

Birner et al. (2002) analyzed the static stability in the

vicinity of the tropopause. They produced a climatology

by composing a large number of profiles with the thermal

tropopause as a common reference level and showed that

in individual profiles the tropopause occurs as a very

sharp transition in the Brunt–Väisälä frequency, with

a maximum just above this sharp transition. The effect

of such a feature on the frequency of edge waves is now

investigated.

Four basic profiles for the stratification are consid-

ered:

S
1
(Z) 5 S

t
(��1z, 1, Ds, 2/3), (4.7)

S
2
(z) 5 S

t
[��1(z� z

t
), 1, Ds, 2/3] 1 B(z� z

t
),

S
3
(z) 5 S

t
[��1(z� z

t
), 1, Ds, 1/3] 1 B(z� z

t
),

(4.8)

S
4
(z) 5 S�1 DSH(z� z

t
) 1 B(z� z

t
), (4.9)

where B(z) 5 Ds[(1 1 Ds)/(1 2 Ds)]e2z/�H(z) and St

is defined in (4.6). The form of B(z) is chosen such that,

in S4, the jump of N2 across z 5 0 will be twice the dif-

ference N1
2 2 N2

2 . The other two profiles S2 and S3 are

intermediate between S1 and S4. Note that the profiles

now include a discontinuity and that S4 is monotonically

increasing, not decreasing, above the tropopause. The

profiles are shifted vertically as described in section 4a,

hence the presence of zt in (4.7).

FIG. 4. (left) Plot of the correction v1 to the edge-wave frequency [with (k, l) 5 (1, 0)] as a function of Ds for the case

of a constant shear and piecewise linear S(Z) given in (4.2). Vertical profiles of (middle) S(z) and (right) U(z), for the

specific choice of parameters � 5 0.1, S 5 1, S2 5 1, and S1 5 0.5. Two profiles of S(z) are shown: piecewise linear

[thick solid line; (4.2)] and hyperbolic tangent [thin solid gray line; (4.6) with a 5 2/3]. Also shown are the linear

approximation (4.5) for v1 (dashed line) and estimates of v1 obtained in numerical simulations of the linear dynamics

with the piecewise linear profile of S(Z) (symbols).
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The corresponding corrections v1 are shown in Fig. 5.

Examination of v1 for the stratification profile S4(z)

(thick curve in Fig. 5) shows that the effect of the en-

hanced stratification right above the tropopause is to

decrease the frequency of the edge wave (negative v1, or

stronger westward phase speed). This is a fraction of the

decrease that would be obtained if the stratification of

the stratosphere were increased throughout (i.e., if S1

were lowered). The intensity of this correction of course

increases with the thickness over which the stratification

is enhanced. For profiles S2(z) and S3(z), which are in-

termediate, the effect of the smooth transition and of the

enhanced stratospheric stratification compensate each

other to a large extent, leading to weak corrections for

realistic values of Ds.

In practice it is not clear which is the most relevant

choice for the tropopause, that is, whether the edge

waves will be sensitive to this local maximum in strati-

fication or whether this peak will be averaged out in

a description of the tropopause on the typical scale of

edge waves. The above results suggest that if both as-

pects contribute (finite thickness and enhanced stratifi-

cation right above the tropopause), their effects may

cancel out to some degree, making the SQG prediction

for the edge-wave frequency a better approximation

than could be expected.

c. Variable shear

The effect of a profile with variable shear is now in-

vestigated. Profiles similar to those of Tomikawa et al.

(2006; cf. their appendix A) are used: S 5 St(Z, 1, Ds, 2/3)

and S(z) given as in (3.15).

Differences in the stratospheric shear modify the fre-

quency of the edge waves at both order 0 and 1. Hence,

Fig. 6 shows the frequencies v0 (gray lines) and v0 1 �v1

(black lines) as a function of Ds for four values of the

stratospheric shear: S1 5 1, for reference, and S1 5 0.5, 0

and 20.5.

As Ds / 0, the PV jump at the tropopause results

essentially from the discrepancy between S2 and S1.

For the curves with S1 6¼ S2, this sets a finite value for

v0. In contrast, as Ds / 21, the PV jump at the tropo-

pause is dominated by the stratification, and all curves

converge, regardless of S1.

For S1 , S2, the corrections v1 are always positive.

Indeed, the smooth transition at the tropopause leads to

stronger winds in the lower stratosphere than for a dis-

continuous profile, and hence the SQG frequency, based

on the asymptotic values s1 and s2, is too negative. The

order-one correction v1 compensates for this and hence

is positive. Consistently, it is found to increase with d

(not shown) and to increase as S1 decreases. In conse-

quence, for realistic values of Ds, the range of corrected

frequencies v0 1 �v1 is narrower than that of v0 (e.g., for

Ds 5 20.8, these ranges are 0.11 and 0.20, respectively.

Therefore, SQG values for edge-wave frequencies over-

estimate the impact of the difference between tropo-

spheric and stratospheric shear. This is all the more true

as d/� is large (i.e., as the transition at the tropopause is

sharper in the stratification than in the shear), as is the

case in observations (Birner et al. 2002).

d. Spatial correction and energy

Our model for the dynamics of disturbances to a finite-

thickness tropopause also provides the order-one cor-

rections to the vertical structure of the edge waves.

Similar corrections have been the subject of previous in-

vestigations (Rivest and Farrell 1992; Muraki and Hakim

FIG. 5. As in Fig. 4, but for a stratification including a peak in stratification above the tropopause, as defined in (4.7):

S1 (thin solid line), S2 (thin dashed line), S3 (thick dashed line), and S4 (thick solid line).
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2001) and have helped to explain the distribution of ki-

netic and potential energy in edge waves found in analyses

(Tomikawa et al. 2006). Indeed, two observed features

differed remarkably from the distribution expected from

SQG: the potential energy (PE) goes through a minimum

near the tropopause, while kinetic energy (KE) there is

a maximum. This yields a minimum in the ratio PE/KE,

whereas SQG predicts that this ratio should be equal to 1

everywhere. The second feature is that KE in the strato-

sphere is stronger than PE, yielding a ratio PE/KE sig-

nificantly smaller than 1 above the tropopause. We now

show how our model straightforwardly explains the first

feature, while the second is outside its scope.

By construction, our solution contrasts with the SQG

edge wave by having a continuous derivative at the

tropopause, as illustrated in Fig. 7. With PE and KE are

defined as

PE 5
1

2

ð ð
S(›

z
c)2 dx dy and

KE 5
1

2

ð ð
($

H
c)2 dx dy,

the continuity of ›zc, and the fact that c increases in the

troposphere and decreases in the stratosphere immedi-

ately implies that there is a height near the tropopause

where ›zc(z) 5 0, yielding PE(z) 5 0. Hence, the min-

imum in PE and in PE/KE observed at the tropopause is

a direct consequence of the finite thickness of the tro-

popause and the continuity of c and S there, as illus-

trated in Fig. 7. Note that this was shown by Tomikawa

et al. (2006), who calculated numerically the eigenfunc-

tions for a specific stratification and shear, following Rivest

and Farrell (1992). Note also that it is not necessary to go

beyond the quasigeostrophic theory to obtain this re-

sult; we need only take into account the continuity of

the streamfunction. Our model makes it straightforward

to calculate the distributions of PE and KE and describe

precisely the minimum in PE near the tropopause

(Fig. 7).

Regarding the second feature highlighted in the

observations by Tomikawa et al. (2006)—the weaker

PE/KE in the stratosphere—our model does not provide

any insights: indeed, the structure of the streamfunction

outside the tropopause region [see (2.4)] is the same as

in the SQG model, yielding a ratio PE/KE 5 1.

FIG. 6. As in Fig. 4, but for v0 (gray lines) and v0 1 �v1 (black lines), with S(z) and S(z) as defined in (3.15). Four

different values are used for S1: 1 (thin solid), 0.5 (thin dashed), 0 (thick dashed), and 20.5 (thick solid).

FIG. 7. (left) The streamfunction according to SQG (thin gray

line) and to the finite-thickness model (up to order 1; thick line) for

an edge wave with k 5 1, l 5 0, with the stratification and shear

chosen as in section 3c. (right) PE (thin dashed line), KE (thin solid

line), and the ratio PE/KE (thick line) for the finite-thickness

model.
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5. Discussion

In this paper, we use matched asymptotics to derive

a simplified model for the quasigeostrophic evolution of

perturbations localized near the tropopause. This takes

advantage of the separation between the vertical scale

of typical perturbations (estimated as f/N times their

horizontal scale) and the thickness of the tropopause.

To leading order, the SQG model of Juckes (1994) is

recovered. In this two-dimensional model, the depth-

integrated PV of the perturbations, which can be

interpreted as a potential temperature, controls the dy-

namics; the only background property that matters is the

PV jump across the tropopause. The model obtained

at the next order, on which we focus, remains three-

dimensional and depends explicitly on the shear and

stratification profiles of the tropopause. This model con-

sists of the prognostic equation (2.14) for the PV per-

turbation together with the inversion relations (2.12) and

(2.13). Compared to the parent quasigeostrophic model,

the main simplifications are (i) the focus on the tropo-

pause region, which relies on analytic solutions for the

flow outside; and (ii) the one-dimensional, columnar in-

version relation, which results from the anisotropy of the

flow. Compared with SQG, a crucial ingredient that is

added is the vertical shearing of the perturbation PV by

the background horizontal wind. Because of this, and

because of the vertical dependence of the perturbation

streamfunction, the vertically integrated PV is not ma-

terially conserved as it is in SQG.

In the linear regime, the model describes two types of

modes. The first type is the westward-propagating edge

waves. For these, the model provides corrections to

the frequency and vertical structure found in SQG. The

second type corresponds to a continuous spectrum of

singular modes that represent disturbances whose PV is

sheared to ever finer scales by the background flow. The

corresponding streamfunction and energy decrease as

t22. These modes have zero vertically integrated PV (to

leading order), and they are completely filtered out by

the SQG approximation. Our results for the vertical

structure of the edge waves (3.2)–(3.11) and of the

continuous spectrum (3.3)–(3.13) make it possible to

separate arbitrary initial conditions into edge-wave and

continuous-spectrum components. Specifically, for each

horizontal wave vector (k, l), one can find a (complex)

scalar defining the amplitude of the edge wave with this

wave vector and a (complex) function of Z with zero

integral defining the continuous-spectrum contribution

to the PV. These scalar and function can be computed

order-by-order in �, starting with the separation of the

initial PV into vertically integrated and zero-mean parts

as given in (3.4).

The sensitivity of the edge-wave frequency to the de-

tails of the shear and stratification profiles in the tropo-

pause region is examined in this paper by considering

simple model profiles. The leading-order frequency (3.1)

found in the SQG approximation is corrected at O(�) as

a result of the vertical shear and of the Z dependence of

the streamfunction. Evaluating this correction shows that

the SQG approximation overestimates (in absolute value)

the frequency of the edge waves, with smoother stratifi-

cation profiles leading to lower frequencies than sharp

ones. This effect is reduced, however, if the stratification

profile takes into account the overshoot in N that has

been observed just above the tropopause (Birner et al.

2002). Smoothness in the shear also decreases (in ab-

solute value) the frequency of the edge waves, mainly

because the PV jump associated with the change between

tropospheric and stratospheric shears is effectively re-

duced. Spatial corrections to the vertical structure of

the edge wave are also obtained: the presence of a mini-

mum in the potential energy, near the tropopause, is a

consequence of the finite-thickness of the tropopause

(Tomikawa et al. 2006) and the precise structure of this

minimum can be calculated for arbitrary stratification

and shear profiles using our model.

Although we focus our attention on the linear regime,

the asymptotic model derived in this paper is nonlinear

and could be exploited to study a range of phenomena.

Of particular interest, perhaps, is the nonlinear in-

teraction between the edge waves and the continuous

spectrum, since the latter is completely neglected in the

SQG approximation. It should be noted, however, that

the assumption of anisotropic disturbances that un-

derlies our model may not be consistent over long time

scales, in particular if instabilities with small horizontal

scales develop (cf. Haynes 1987).
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APPENDIX A

Derivation of (2.12) and (2.13)

Consider (2.10) first. It is convenient to use the Fourier

transforms of the dependent variables and ignore their

dependencies in (k, l, t) for the moment. Defining

OCTOBER 2010 P L O U G O N V E N A N D V A N N E S T E 3161



P̂(Z) 5

ðZ

0

q̂(Z9) dZ9, (A.1)

we integrate (2.10) once as

S›
Z

ĉ(1) 5 P̂(Z) 1 C
1
, (A.2)

where C1 is a constant (i.e., independent of Z). Dividing

by S and integrating once more then gives

ĉ(1) 5

ðZ

0

P̂(Z9) 1 C
1

S(Z9)
dZ9 1 C

2
. (A.3)

Expressions relating ĉ(0), C1, and C2 to q̂ are found

from the matching conditions. We first note the as-

ymptotics

ĉ(1) 5
P̂

6
1 C

1

S
6

Z

1

ð6‘

0

P̂(Z9) 1 C
1

S(Z9)
�

P̂
6

1 C
1

S
6

" #
dZ9 1 C

2
1 o(1)

(A.4)

as Z / 6‘. Identifying the coefficient of Z with that of

(2.8) then gives

7S1/2
6 kf̂(0) 5 P̂

6
1 C

1
. (A.5)

It follows that

�(S1/2
1 1 S1/2

� )kf̂(0) 5 P̂
1
� P̂�5

ð‘

�‘

q̂(Z) dZ.

(A.6)

Since ĉ(0) 5 f̂(0), this equation determines c(0) in terms

of q as given in (2.12). It also follows from (A.5) that

C
1

5� S1/2
�

S1/2
1 1 S1/2

�
P̂

1
� S1/2

1

S1/2
1 1 S1/2

�
P̂�. (A.7)

Identifying the Z-independent terms in (2.8) and (A.4)

gives

f̂
(1)
6 5

ð6‘

0

P̂(Z9) 1 C
1

S(Z9)
�

P̂
6

1 C
1

S
6

" #
dZ9 1 C

2
. (A.8)

Another equation is needed to determine C2 and

hence ĉ(1). This is derived by integrating (2.11) once,

computing

[S›
Z

ĉ
2
� k2Zĉ(0)]‘

�‘ 5 0,

and using (2.9) to obtain

S1/2
1 f̂

(1)
1 1 S1/2

� f̂(1)
� 5 0.

Combining with (A.8) gives

C
2

5
�1

S1/2
1 1 S1/2

�
S1/2

1

ð‘

0

P̂(Z9) 1 C
1

S(Z9)
�

P̂
1

1 C
1

S
1

" #
dZ9

(

1 S1/2
�

ð�‘

0

P̂(Z9) 1 C
1

S(Z9)
�

P̂�1 C
1

S�

" #
dZ9

)
. (A.9)

With C1 and C2 determined by (A.7) and (A.9), ĉ(1) in

(A.3) is now fully determined. To obtain a simple, ex-

plicit expression for ĉ(1), we start by writing

ĉ(1) 5 � S1/2
1

S1/2
1 1 S1/2

�

ð‘

Z

P̂(Z9) 1 C
1

S(Z9)
�

P̂
1

1 C
1

S
1

" #
dZ9 1

P̂
1

1 C
1

S1/2
1 (S1/2

1 1 S1/2
� )

Z

1
S1/2
�

S1/2
1 1 S1/2

�

ðZ

�‘

P̂(Z9) 1 C
1

S(Z9)
�

P̂�1 C
1

S�

" #
dZ9 1

P̂�1 C
1

S1/2
� (S1/2

1 1 S1/2
� )

Z. (A.10)

Now, we note from (A.1) and (A.7) that

P̂ 1 C
1

5� S1/2
�

S1/2
1 1 S1/2

�

ð‘

Z

q̂(Z9) dZ9

1
S1/2

1

S1/2
1 1 S1/2

�

ðZ

�‘

q̂(Z9) dZ9,

and hence that

P̂
1

1 C
1

5
S1/2

1

S1/2
1 1 S1/2

�
û and P̂�1 C

1

5� S1/2
�

S1/2
1 1 S1/2

�
û.

Introducing these expressions into (A.10), using the

definition (A.1) of P̂ and the expansions

3162 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



P̂ 1 C
1

S
�

P̂
6

1 C
1

S
6

5
P̂ 1 C

1

S
�

P̂
6

1 C
1

S

 !

1
P̂

6
1 C

1

S
�

P̂
6

1 C
1

S
6

 !
,

then leads to (2.13).

APPENDIX B

Derivation of (3.8)

Introducing q̂ 5 q̂0 5 sZ into (2.13) gives

ĉ
(1)
0 5

ð‘

Z

(S
1

S�)1/2[s
1
� s(Z9)] 1 s�[S

1
� S(Z9)] 1 s

1
S(Z9)� s(Z9)S

1

(S1/2
1 1 S1/2

� )2S(Z9)
dZ9

1

ðZ

�‘

(S
1

S�)1/2[s(Z9)� s�] 1 s
1

[S(Z9)� S�] 1 s(Z9)S� � s�S(Z9)

(S1/2
1 1 S1/2

� )2S(Z9)
dZ9,

after some simplification. Introducing this expression into the first term of (3.7) and integrating by parts givesð‘

�‘

s
Z

(Z)ĉ
(1)
0 dZ

5

ð‘

�‘

2(S
1

S�)1/2[s
1
� s(Z)][s(Z)� s

2
] 1 S(Z)(s

1
� s�)2 � S�[s

1
� s(Z)]2 � S

1
[s(Z)� s�]2

(S1/2
1 1 S1/2

� )2S(Z)
dZ,

which can be further simplified into (3.8).
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