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Alternative Association Analyses on Boar Taint using 
Discordant Sib Pairs Experimental Design

B. Karacaören*, D.J. de Koning*, I. Velander+, S. Petersen+, C.S. Haley†* and 
A.L. Archibald*

Introduction
Boar taint (BT) is an unwanted odour that may occur when cooking meat of male pigs. It has 
been shown that high levels of androstenone and skatole are the main cause for boar taint.
Boar taint can be prevented through castration of male piglets but this also reduces feed 
efficiency. Furthermore, castration is currently being banned in many countries on welfare 
grounds. Using marker assisted selection following a genome-wide association study
(GWAS) would be a sustainable way to reduce the occurrence of boar taint. In standard case-
control GWAS studies, contingency tables are used to detect disease-marker associations. 
However, if the genetic relationships between individuals are not taken into account this may 
lead to false positives (Siegmund, D.O. and Yakir, B. (2007)). The main aim of this study 
was to search for SNP affecting BT using GWAS while taking the genetic structure into 
account using GRAMMAR (Aulchenko, S.Y., Ripke, S., Isaacs A. et al. (2007)) and 
discordant sib pairs test (DSP) (Boehnke, N. and Langefeld, C. (1998)).

Material and methods
Phenotypic and Genotypic Data. A Discordant Sib-Pair design was implemented for a 
commercial pig population. The population for the genome scan comprised 1,000 Danish 
Landrace boars selected from animals subjected to an in-line skatole test by Danske 
Slagterier. Five hundred boars with high skatole levels, together with 500 full sibs with low 
skatole levels were chosen from over 6,000 tested animals. We used 0.3 mg as the threshold 
to define cases for skatole levels. Animals were genotyped using the 7K porcine SNP chip. 
This is the first SNP chip in pigs and it contains 6,523 Illumina iSelect/Infinium II assays.
During quality control, markers with a minor allele frequency (MAF) <0.01 or a call rate 
<93% were excluded. Also markers deviating from Hardy-Weinberg equilibrium (p<1x10-10) 
using GenABEL (Aulchenko, S.Y., Ripke, S., Isaacs A, (2007)) were excluded. Animals 
with a call rate < 95% were omitted as well as potential genetic outliers on the basis of the 
genomic kinship matrix.
Statistical analyses. Trait scores for androstenone and skatole levels were normalised using 
log transformations to provide trait distributions that were close to normality. To estimate 
heritabilities and genetic correlations between skatole and androstenone, the following 
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animal model was used in ASREML (Gilmour, A.R., Cullis, B.R., Welham, S.J. et al.
(2002))

y = Xb + Za + e
where y represents the log transformed observations for skatole and androstenone, b is the
vector of fixed effects, a is the additive genetic effect, matrices X and Z are incidence 
matrices, and e is a vector containing residuals. For improved fit and convergence we used 
the full data with 6178 records for skatole of which 1000 also had androstenone 
measurements. For the GWAS with pedigree information, we applied the GRAMMAR 
approach (Aulchenko, S.Y., de Koning, D.J., and Haley, C.S. (2007)): firstly, we obtained 
corrected residuals using polygenic and fixed effects for log transformed skatole and 
androstenone levels using Asreml. After that we used the residuals in the GenABEL as 
response variables for detecting possible associations. We used permutation tests to set 
empirical thresholds with 100,000 replicates. We also performed principal component 
analyses (Price, A.L., Patterson, N.J., Robert, M.P. et al. (2006)), to account for possible 
population stratification, as implemented in JMP Genomics 7 (SAS, 2007) using categorical 
case/control response variables without pedigree information. The number of PCP to include 
in the model was chosen from visual inspection of the scree plots. For the top 3 markers 
coming out of the preceding analyses, we performed further analyses using the comparison 
of allele counts as proposed for discordant sib pairs by Boehnke, N. and Langefeld, C. 
(1998). We used both the chi-square and Pearson homogeneity statistic to detect possible 
association. The Pearson homogeneity statistic could be estimated from a 2 x m table as 
follows:
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where ijn stands for counted alleles among cases and controls, i=1,2 for cases and controls, 

respectively and j=1…m (number of markers). We used 100,000 randomizations where we 
switched or not switched the phenotype labels of each DSP independently with probability ½ 
as defined in Boehnke, N. and Langefeld, C. (1998) to asses the significance levels of T1

under a null hypothesis of no association.  Pigs without a genotype and their corresponding
sib were removed from the analyses. To estimate the genotypic effects of significant SNPs, 
they were included in Model (1) as a fixed effect. These estimates were also used to 
determine the proportion of phenotypic variance explained by the SNPs.

Results and discussion
Visual inspection of the data showed that both androstenone and skatole were highly

skewed and significantly deviate from normal distribution. Therefore log transformation was 
applied to obtain normality for these variables., The statistical model included meat 
percentage, slaughter weight, herd born, slaughter week and year born as covariates for 

androstenone ( 2R =9.94) and slaughter weight, meat percentage, weight at end of test and 

litter size (total born) for skatole ( 2R =3.74) chosen by stepwise regression (Minitab, 2006).
The heritability for androstenone was estimated between 0.47 (0.10)-0.49(0.08). Our 
estimates of heritability of level of skatole from 0.54(0.04)-0.56(0.04) were lower compared 
with the estimates of Varona, L., Vidal, O., Quintanilla, R., et al. (2005) (0.74 to 0.89) but 



corresponded well to estimates from Tajet, H., Andresen, O., and Meuwissen, T.E. (2006)
(0.23 to 0.55). The estimated phenotypic correlations between skatole and androstenone were 
between 0.27(0.03)-0.29(0.03) while the genetic correlations were between 0.40(0.10)-
0.41(0.10). Genetic correlations between androstenone and skatole were estimated as 
0.40(0.10)-0.41(0.10) which is in agreement with Tajet, H., Andresen, O., and Meuwissen, 
T.E. (2006) who reported genetic correlations among skatole and androstenone as 0.36 for 
Landrace pigs.

A genome-wide association scan using 6523 SNPs was carried out using 993 individuals. 
Following QC, 1701 SNPs were excluded because their call rate was < 93%, 2037 SNPs 
were excluded with minor allele frequency <1% and a further 150 SNPs due to extreme 
deviation from Hardy-Weinberg equilibrium (p < 1x10-10).On the animal side, 107 pigs were 
excluded with low call rates (<93%), 2 animals had too high IBS (>95%) and 7 animals had
too high heterozygosity (FDR<1%). Another 48 animals were excluded because their 
genotypic kinship formed a cluster that deviated from the main population, suggesting they 
may be from a different breed. Following QC, we did association analyses with 2635 SNPs 
and 829 individuals. We applied the GRAMMAR approach to take the pedigree structure 
among sibships into account for detecting possible associations. The results show a 
significant effect of SNPs in the CYP2E1 region on chromosome 14. We did not find any 
significant markers in association with androstenone levels. The phenotypic variance 
explained by CYP2E_1, CYP2E_2, TXNL and STSG was 4.79%, 5.19%, 4.11% and 5.97%, 
respectively, Using the methodology of Price, A.L., Patterson, N.J., Robert, M.P. et al
. (2006), as implemented in JMP Genomics 7, we found that the first 3 principal components 
explain most of the variation in genotype diversity. These principal components were 
included for the subsequent case-control analyses. The top ten markers include CYP2E, 
TXNL and STSG (p<0.056). For the most significant SNPs we also applied the DSP test to 
take the sampling strategy into account. Genotype counts are given in Table 1, based on 
affection status of the sibs. We obtained both chi-square and Pearson homogeneity statistics
(Table 2) and applied 100,000 permutations to obtain significance levels for the top markers 
found from previous approaches.

This analysis confirmed the highly significant effects of STSG, CYP2E and TXNL. The 
different methodologies showed that markers in CYP2E region had significant effects on 
boar taint. These associations should now be confirmed in other populations. Previous 
linkage studies on QTL from similar population sizes, genotypes and measurements for 
skatole levels reported on different chromosomes from researchers in United Kingdom and 
France (Robic, A., Larzul, C., and Bonneau, M. (2008)). Three markers that we found 
significantly associated with BT from Chromosome 14 are consistent with the finding of a 
QTL affecting boar taint reported by Lee, G.J., Archibald, A.L., Law, A.S. et al. (2004)
although they reported on markers that were not present in this study. Varona, L., Vidal, O., 
Quintanilla, R., et al. (2005) did not analyse SSC14 but they found a QTL on SSC6. Skinner,
T.M., Doran, E., McGivan, J.D. et al. (2005) found evidence for association of CYP2E1 and 
back fat skatole levels in commercial pigs but not in experimental crosses for the marker and 
skatole levels.



Conclusion
One of the assumptions of GWAS case-control studies is independence among and between 
cases and controls. This assumption will be violated in most animal breeding datasets. In this 
study we used various approaches to correct the BT data for pedigree effects treating skatole 
levels as both a quantitative and a categorical trait. Test statistics were higher for the DSP 
test than for GRAMMAR p values (1.0e-04) because the DSP test explicitly exploits the sib-
pair nature of data. Although results showed that the STSG, CYP2E and TXNL were found 
associated with BT, results should be confirmed independently in other populations. 

Table 1: Genotype counts for the CYP2E marker on pig chromosome 14.
AFFECTED-SIB GENOTYPE

UNAFFECTED-SIB 
GENOTYPE

AA AB BB

AA 125 40 3
AB 110 121 17
BB 9 22 16

Table 2: Test statistics for the top-3 markers from the GRAMMAR analyses using 
different tests in the discordant sib-pair analyses . 

All Alleles (P value) DSP allele count (P value) Genotype (P value)
CYP2E 18.71 (4e-05) 27.48 (<10-6) 25.28 (3.23e-06)
TXNL 17.92 ( <10-6) 24.60 (<10-6) 23.76 (6.91e-06)
STSG 18.80 (< 10-6) 32.13 (<10-6) 22.69 (1.17e-05)
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