
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most of the response elicited against Wolbachia surface protein
in filarial nematode infection is due to the infective larval stage

Citation for published version:
Lamb, TJ, Le Goff, L, Kurniawan, A, Guiliano, DB, Fenn, K, Blaxter, ML, Read, AF & Allen, JE 2004, 'Most
of the response elicited against Wolbachia surface protein in filarial nematode infection is due to the
infective larval stage' The Journal of Infectious Diseases, vol 189, no. 1, pp. 120-7., 10.1086/380490

Digital Object Identifier (DOI):
10.1086/380490

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
The Journal of Infectious Diseases

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1086/380490
http://www.research.ed.ac.uk/portal/en/publications/most-of-the-response-elicited-against-wolbachia-surface-protein-in-filarial-nematode-infection-is-due-to-the-infective-larval-stage(adbe606d-2be8-41ef-8587-afce64bdeaf1).html


120 • JID 2004:189 (1 January) • Lamb et al.

M A J O R A R T I C L E

Most of the Response Elicited against Wolbachia
Surface Protein in Filarial Nematode Infection Is Due
to the Infective Larval Stage

Tracey J. Lamb,1 Laetitia Le Goff,1 Agnes Kurniawan,2 David B Guiliano,1 Katelyn Fenn,1 Mark L. Blaxter,1

Andrew F. Read,1 and Judith E. Allen1

1Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, United Kingdom; 2Department of Parasitology, Faculty
of Medicine, University of Indonesia, Jakarta, Indonesia

Immune responses to the intracellular Wolbachia bacteria of filarial nematodes are thought to contribute to
the pathologic process of filarial infection. Here, we compare antibody responses of subjects living in an area
where lymphatic filariasis is endemic with antibody responses elicited in a murine model of filarial infection,
to provide evidence that the infective larval stage (L3), not adult nematodes, are the primary inducer of
responses against Wolbachia. In human subjects, antibody responses to Brugia malayi Wolbachia surface
protein (WSP) are most often correlated with antibody responses to the L3 stage of B. malayi. Analysis of
anti-WSP responses induced in mice by different stages of the rodent filariae Litomosoides sigmodontis shows
that the strongest anti-WSP response is elicited by the L3 stage. Although adult filarial nematode death may
play a role in the generation of an anti-WSP response, it is the L3 stage that is the major source of immunogenic
material, and incoming L3 provide a continual boosting of the anti-WSP response. Significant exposure to
the endosymbiotic bacteria may occur earlier in nematode infection than previously thought, and the level of
exposure to infective insect bites may be a key determinant of disease progression.

Filarial nematodes are the causative agents of the diseases

lymphatic filariasis (elephantiasis) and onchocerchiasis

(river blindness), which result in severe morbidity and

considerable economic losses in 180 countries where

these parasitic infections are endemic [1]. Infection in-

volves host exposure to both a nematode and its obli-

gate intracellular bacterium, which is most closely related

to Wolbachia pipientis of arthropods but not formally

described as a new species (hereafter referred to as “Wol-

bachia”) [2]. The pathologic process of filarial disease

has long been known to have an immune component,

and recent studies have strongly implicated bacterial

products released after parasite death as a key factor in
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this process [3, 4]. As the potential significance of these

bacterial parasites to the biological processes of filarial

nematodes becomes more apparent [5], understanding

the potential consequences of their interaction with the

mammalian host becomes increasingly important. A key

question is whether the immune response observed dur-

ing filarial infection is directed against both organisms.

We have therefore looked for evidence of immune re-

sponses to the intracellular bacteria of filarial parasites

by investigating the pattern of antibody responses against

the Wolbachia surface protein (WSP). We started the

analysis by evaluating antibody responses of subjects liv-

ing in an area where lymphatic filariasis is endemic. Find-

ings from the human epidemiological study inspired us

to perform an experimental investigation, using mice

infected with the related rodent filaria Litomosoides sig-

modontis. These data from human and murine studies

show that antibody responses against WSP are made

during natural infection and suggest that most of this

response is induced by the L3 stage. This provocative

finding is supported by data showing that, per gram of

nematode, the WSP produced by the L3 stage of L.
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sigmodontis induces the strongest immune response of all the

developmental stages.

MATERIALS AND METHODS

Antigens. Extracts of Brugia malayi and L. sigmodontis were

used to assay antifilarial antibody responses in human or mouse

serum samples, respectively. Somatic extracts of L3-stage larvae,

adult parasites, or microfilariae (Mf) were prepared by homog-

enization. For L3 and Mf preparations, parasites were broken

down further by additional sonication in PBS. ELISAs were

performed by use of soluble somatic extracts after centrifu-

gation at 1000 g for 20 min.

B. malayi WSP (BmWSP) and L. sigmodontis WSP (LsWSP)

homologs were cloned by use of polymerase chain reaction

amplification of a 652-bp fragment from genomic DNA with

degenerate WSP primers, as described by Bazzocchi et al. [6].

Both gene fragments were cloned into pET29b (Novagen) and

expressed in Escherichia coli BL21(lDH3). The recombinant

hexamer histidine-tagged proteins were purified by affinity chro-

matography and dialyzed against PBS before use. Both DNA

fragments have been sequenced and deposited in GenBank (ac-

cession nos. AJ252061 and AF409112, respectively). A Brugia

pahangi ladder protein was generated as described elsewhere [7].

Human serum samples. One hundred four human serum

samples from residents of 2 different areas (Rengat and Palau)

of Sumatra, Indonesia, were selected for testing. These samples

were divided into 3 groups on the basis of parasitological and

clinical status, as described elsewhere [8–10]. European control

serum samples were obtained from volunteers at Edinburgh

University (Edinburgh, Scotland). Informed consent was ob-

tained from all patients before clinical and parasitological stud-

ies and before blood samples were obtained, in accordance with

the Indonesia Department of Health and Human Services. An-

imal experimentation guidelines of the UK Home Office were

followed in the animal studies.

Mouse infection and immunization. For live infection,

BALB/c male mice (6–8 weeks old) were injected subcutane-

ously with 25 L3-stage L. sigmodontis in the lumbar area, as

described elsewhere [11, 12]. Serum samples were collected at

days 10, 20, 40, 60, and 80 after infection. To examine whether

LsWSP is immunogenic within nematode material, mg3 � 10

of total homogenized and uncentrifuged L. sigmodontis material

(L3-stage larvae, mixed adult parasites, or Mf) in an emulsion

with Freund’s adjuvant (FA) was injected subcutaneously into

the lumbar area of BALB/c mice at 4-week intervals. The first

immunization was given in complete FA (CFA), with subse-

quent doses given in incomplete FA. Serum samples were ob-

tained before each injection and 4 weeks after the third injec-

tion. Positive control serum samples for LsWSP were generated

from BALB/c male mice injected 3 times with 10 mg of LsWSP

at 4-week intervals. Serum samples were also collected from

BALB/c mice 3 weeks after they were surgically implanted in-

traperitoneally with 6 live L. sigmodontis adult parasites removed

from the peritoneal cavity of infected jirds [13]. Mice that un-

derwent sham surgery but did not receive parasites were included

for control serum samples.

ELISA. ELISAs were performed as described elsewhere

[14]. In brief, 96-well ELISA plates (Nunc Maxisorp) were

coated with 0.5 mg of antigen resuspended in 100 mL of car-

bonate buffer/well. After blocking with 100 mL of 1% skim milk

powder in carbonate buffer, 50 mL of serum diluted in PBS

with 0.5% Tween (PBST) was plated into each well in 2-fold

serial dilutions of 1:100 to 1:3200. Each sample was plated in

duplicate. A dilution that included the linear range of every

sample in each ELISA was chosen for analysis (see the figure

legends for details). Antibodies were detected with 50 mL of

peroxidase-conjugated goat anti–mouse total IgG (1:1000; Bio-

rad) and rabbit anti–human total IgG (1:6000; Dako) diluted in

PBST. Plates were developed with 50 mL of 2,2′-azinodi(ethyl-

benzthiazo-line-6-sulfonate) (Kirkegaarde and Perry Laborato-

ries) and read at 405 nm.

Statistical analysis. To detect differences among the an-

tibody responses of 3 human clinical groups against BmWSP,

B. malayi L3 and adult extracts, and B. pahangi ladder pro-

tein, 1-way analysis of variance (ANOVA) was performed, fol-

lowed by Tukey’s multiple comparison tests to analyze pairwise

comparisons, by use of GraphPad software (Prism). The Eu-

ropean serum control samples were not included in this analy-

sis. Optical density values multiplied by 100 were logarithmi-

cally transformed before these analyses to normalize the data

and allow parametric analyses to be performed. This transfor-

mation was not sufficient to normalize the values against B.

pahangi ladder protein; thus, equivalent nonparametric tests

were used to analyze the transformed values against this pro-

tein (the Kruskal-Wallis test, followed by Dunn’s multiple-com-

parison test).

Because of the small sample sizes, it was not possible to

determine whether the transformed optical density values for

mouse antibody conformed to the assumptions of parametric

tests; thus, a nonparametric Mann-Whitney U test was used to

analyze differences among mice. was considered to beP ! .05

statistically significant.

General linear modeling (GLM; Minitab) was used to analyze

the logarithmically transformed optical density readings indi-

cating the human antibody responses [15]. GLM uses regression

to partition the variation in an observed response between

different possible variables (in this case, responses to L3 or

adult B. malayi, age, sex, and location of the subjects’ resi-

dences). Analysis of the residuals from the GLM confirmed that

the transformed data accorded with the normality and ho-

mogeneity of variance assumptions of parametric tests. In each
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Figure 1. Total IgG responses to Brugia malayi Wolbachia surface protein (A), B. malayi infective larval stage (L3) extract (B), B. malayi adult
extract (C), and B. pahangi ladder protein (D) in serum (diluted 1:400) obtained from human subjects infected with B. malayi. Subjects were classified
as being endemic healthy (EH; ; with undetectable infection or disease), as having asymptomatic microfilaremia (AM; ; with circulatingn p 40 n p 40
microfilariae and no signs of disease), or as having chronic disease (CD; ) [8–10]. Four European control (EC) serum samples were includedn p 24
for comparison. Each data point refers to 1 person. Bars represent the mean for each group.

model, variables that did not significantly correlate with anti-

BmWSP responses were removed before rerunning the model.

By use of this method, GLM can untangle the noncontributing

variables from the anti-L3 and anti-adult responses that serve

as predictors of responses to BmWSP. Significant P values are

from the minimal model (only including significant variables).

The method used to visualize the GLM results was as fol-

lows: We investigated whether strong responses to BmWSP and

the L3 stage are still correlated after the contribution of anti-

adult responses has been subtracted. When BmWSP responses

were plotted against B. malayi L3, few individuals responded

to BmWSP exactly as predicted by the best-fit line (see Results).

We plotted the distance these responses fall away from the best-

fit line (positive and negative residuals for strong or weak re-

sponses to BmWSP for a given response to L3) against the

positive and negative residuals from a plot of anti–B. malayi

L3 against anti-adult responses. The latter residuals represent

strong or weak responses to B. malayi L3 for a given level of

anti-adult response—the equivalent of subtracting anti-adult re-

sponses from anti-L3 responses. For all plots, the logarithmically

transformed optical density data were used. This method was

repeated to determine whether responses to BmWSP correlate

with responses to adult stages after the anti-L3 responses had

been removed.

RESULTS

Human responses to BmWSP in B. malayi infection. We

investigated whether individuals living in an area where B.

malayi lymphatic filariasis is endemic showed evidence of

immune responses to Wolbachia proteins. First, we examined

total IgG antibody responses to recombinant BmWSP in 3

different clinical groups [10]. Serum samples were collected

in the Rengat and Palau regions of Sumatra, Indonesia, from

24 individuals with chronic disease (20 in Rengat and 4 in

Palau), 40 endemic healthy subjects (20 in Rengat and 4 in

Palau), and 40 subjects with asymptomatic microfilaremia (20

in Rengat and 20 in Palau). The antibody response to BmWSP

was different in these groups ( and , 1-F p 4.237 P ! .052,103

way ANOVA; figure 1A). Subjects with chronic disease had

significantly greater responses to BmWSP than did endemic

healthy subjects ( , Tukey’s test). This trend was similarP ! .05

to the antibody response to the L3 stage of B. malayi (F2,103

p4.825 and , 1-way ANOVA; figure 1B) but not theP � .01

response to the adult-stage extract, which did not differ statis-

tically among the clinical groups ( and , 1-F p 1.069 P 1 .12,103

way ANOVA; figure 1C). As a control, we tested responses to

another recombinant protein (B. pahangi ladder protein) that

is also nematode derived (figure 1D) [7]. The antibody responses
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Figure 2. The total IgG response to Brugia malayi Wolbachia surface protein (BmWSP) plotted against the response to infective larval stage (L3)
extract (A) and B. malayi adult extract (B). White circles, Endemic healthy subjects; squares, subjects with asymptomatic microfilaremia; black circles,
subjects with chronic disease; solid lines, best-fit line through the data points for subjects with chronic disease; dashed lines, best-fit line through
the data points for subjects with asymptomatic microfilaremia; and gray lines, best-fit line through the data points for endemic healthy subjects.
Plotted values in panels C and D are the levels of disproportionate responses of individuals to adult or L3 B. malayi, respectively (X-axes), each plotted
against the respective disproportionate response to BmWSP (Y-axes). The positive and negative values represent whether there was a positive or
negative response (residuals), compared with the best-fit lines through the following plots: C, X-axis, anti-adult responses against anti-L3 responses,
and Y-axis, anti-BmWSP responses against anti-L3 responses; D, X-axis, anti-L3 responses against anti-adult responses, and Y-axis, anti-BmWSP
responses against anti-adult responses. The lines in panels C and D are the best least-squares fits through the plotted points.

to the ladder protein exhibited a distribution similar to those of

the anti-BmWSP and anti-L3 responses, in that they differed

statistically among the different clinical groups tested ( ,P ! .001

Kruskal-Wallis test). Both the subjects with chronic disease and

those with asymptomatic microfilaremia had statistically signif-

icantly higher responses than the endemic healthy subjects (both

, Dunn’s multiple comparison test; figure 1D).P ! .05

GLM was used to examine whether the within-group variation

in the antibody response to BmWSP could best be explained by

responses to B. malayi larvae, B. malayi adults, or the age, sex,

clinical status, or location of the people tested. Anti-BmWSP

responses were positively correlated with responses to both L3

and adult stages of B. malayi (anti-L3 response, F p 22.881,103

and ; anti-adult response, and ; fig-P ! .001 F p 17.75 P ! .0011,103

ure 2A and 2B). However, the slope of these relationships differed

among the clinical groups (anti-L3 response by clinical group

interaction, and ; anti-adult response by clin-F p 3.89 P ! .052,103

ical interaction, and ). In both the chronicF p 2.65 P 1 .052,103

disease and the asymptomatic microfilaremia groups, antifilarial

(L3 or adult) and anti-BmWSP responses were positively cor-

related (both ), with the best-fit lines being similar in theP ! .05

2 groups ( , for differences in slope and intercept). ThisP 1 .5

correlation was significant even when we controlled for the po-

tentially confounding effects of age, sex, and location of subjects

( , for these covariates). However, in the endemic healthyP 1 .05

subjects, responsiveness to BmWSP was not significantly related

to responsiveness to either B. malayi stage (anti-L3 response,

and ; anti-adult response, F1,39 p0.04 andF p 0.25 P 1 .11,39

). The variation was best explained by the geographic lo-P 1 .1

cation of endemic healthy subjects ( and ).F p 5.26 P ! .051,39

Responses to adult and L3 antigens were positively correlated

( and ). Thus, the patterns shown in figureF p 311.45 P ! .0011,103
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Figure 3. Total IgG response to Litomosoides sigmodontis Wolbachia
surface protein (LsWSP; A) and adult L. sigmodontis extract (B) elicited
from BALB/c mice challenged with a primary infection of L. sigmodontis.
At all points after infection, the average response of all the naive mice
was subtracted from the response of each individual infected mouse at
the relevant time point. Two experiments including 5 naive mice and 5
infected mice are represented at each time point examined. Each data
point represents a 1:200 dilution of serum from 1 mouse. The bars on
each graph show the median for each group. Antisera to recombinant
LsWSP (WSP+) were included in all ELISAs as a positive control for WSP.
Five mice implanted with adult L. sigmodontis for 21 days were tested
for antibody responses to adult L. sigmodontis extract and LsWSP (C).
White circles, Naive mice ( ) that underwent surgery but did notn p 5
receive parasites.

2A and 2B could be the result of responsiveness to BmWSP

arising from exposure to L3 stages alone, to adult stages alone,

or to both stages of B. malayi. To test which of these parasite

stages was responsible for responsiveness to BmWSP, we asked

whether anti-L3 responses and anti-adult responses are inde-

pendently associated with anti-BmWSP responses. We removed

the endemic healthy group from this analysis, because, in that

group, there was no correlation between the anti-BmWSP re-

sponses and either the anti-L3 or anti-adult B. malayi responses.

Among parasite-positive subjects, there was no evidence that the

responses to adult B. malayi and BmWSP were associated when

we controlled for the responses to L3 (see Methods) (F p1,63

and ; figure 2C). In contrast, the responses to L3 were0.08 P 1 .1

still associated with responses to BmWSP when we controlled

for the responses to adult B. malayi ( and ;F p 4.29 P ! .051,63

figure 2D). Thus, anti-BmWSP responses were correlated with

responses to L3, over and above the anti-adult responses (figure

2D), but anti-BmWSP responses did not correlate with anti-adult

responses independently of the L3 responses (figure 2C). Thus,

these analyses reveal that anti-BmWSP responses arise through

exposure to L3 stages but find no evidence that exposure to adult

B. malayi independently contributes to anti-BmWSP responses.

The association between anti-BmWSP and anti-adult B. malayi

responses (figure 2B) exists because responses to adult and L3

stages are correlated, possibly as a result of cross-reactivity be-

tween the 2 stages.

Mouse responses to LsWSP in L. sigmodontis infection.

GLM analysis of the human responses to BmWSP led to un-

expected and provocative results with regard to the role of the

L3 stage in immune responses against Wolbachia. To gain more-

specific data regarding the induction and maintenance of anti-

Wolbachia responses, we used a murine model of filarial in-

fection that permits the full developmental cycle of the parasites

[16]. We analyzed the total IgG response to LsWSP in BALB/

c mice infected with L. sigmodontis. We found that, in a primary

infection, most mice had a very low but statistically significant

response to LsWSP ( , Mann-Whitney U test) at 20 daysP ! .05

after infection, in comparison with naive mice (figure 3A). This

significant difference was observed in 2 separate experiments.

The response decreased to background levels at day 40 but

increased again at day 60 as the adult nematodes reached ma-

turity and began reproducing. In contrast, there were significant

responses to L. sigmodontis adult antigen at all time points from

day 20 onward ( , Mann-Whitney U test), which in-P � .01

creased as the infection progressed and peaked at 60 days after

infection, when adult parasites had reached patency (figure 3B).

In the mouse model of L. sigmodontis infection, adult death

also begins to occur at this point [16].

The responses to LsWSP induced by adult parasites in L.

sigmodontis primary infection were highly variable and lower

than might be expected if Wolbachia antigen is released pre-

dominantly after parasite death. One cause of the variability

may be the onset of the production of Mf, because primary

infections with L. sigmodontis result in only 50% of BALB/c

mice becoming microfilaremic [17]. Alternatively, variation in

the number of nematodes surviving to adulthood may contribute

to the variation in these experiments. We therefore decided to

examine the responses to LsWSP by use of a more homogenous

system, in which adult parasites are implanted directly into the
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Figure 4. Antibody responses to Litomosoides sigmodontis Wolbachia surface protein (LsWSP; A), infective larval stage (L3) extract (B), adult
extract (C), and microfilarial extract (D) elicited from BALB/c mice injected subcutaneously with extracts of different stages of L. sigmodontis. For
clarity, only data from serum samples taken 4 weeks after the final dose of extract (see Methods) are shown. A 1:200 dilution of serum is shown.
Each data point refers to an individual mouse. The bars represent the median of each group. Ad, injected with adult extract and Freund’s adjuvant
emulsion ( ); FA, injected with PBS and Freund’s adjuvant emulsion ( ); L, Injected with L3 extract and Freund’s adjuvant emulsion (n p 4 n p 5 n p
); Mf, injected with microfilarial extract and Freund’s adjuvant emulsion ( ).4 n p 4

peritoneal cavity of BALB/c mice [13]. Implantation of Mf-pro-

ducing adult parasites induced a very weak but statistically sig-

nificant response against LsWSP ( , Mann-Whitney U test),P ! .01

compared with that in naive mice, whereas large amounts of

anti-L. sigmodontis adult IgG antibodies were produced (P !

, Mann-Whitney U test; figure 3C). These data indicate that.01

Mf-producing adults alone may not be a major inducer of anti-

LsWSP responses.

Mouse responses to LsWSP in different parasite life cycle

stages. Wolbachia are vertically transmitted and thus are pres-

ent in all stages of filarial nematodes [18]. Our studies thus far

indicated that L3-stage Wolbachia are immunogenic (figures 2A

and 3A) and are potentially the most important stage in in-

ducing anti-WSP responses. In an attempt to further clarify the

contribution of the Wolbachia within adult parasites and Mf

to the observed response to LsWSP, we injected extracts of each

of these stages of L. sigmodontis in emulsions of CFA and mea-

sured antibody responses to LsWSP.

Strikingly, the only mice that had responses to LsWSP sig-

nificantly greater than those of the control mice were those

injected with L3 extract ( , Mann-Whitney U test; figureP ! .05

4A). As controls for this experiment, the serum samples were

tested for antibody responses to the L3-stage larvae, adult par-

asites, and Mf. As expected, all mice injected with L3 extract

produced antibodies to this antigen, as determined by ELISA

( , Mann-Whitney U test; figure 4B). All mice injectedP ! .05

with Mf extract, except for 1, produced cross-reactive anti-

bodies to L3 extract ( , Mann-Whitney U test; figure 4B).P ! .05

The mice injected with adult extract produced antibodies to

adult extract, as well as L3 extract (both , Mann-WhitneyP ! .05

U test; figure 4C), confirming the result of our human studies

that the L3 and adult stage of filarial nematodes are highly

cross-reactive. Mice injected with Mf extract recognized the L3

antigen (figure 4B) better than the Mf antigen ( , Mann-P 1 .05

Whitney U test; figure 4D). This result, although difficult to

explain, was observed in 2 separate experiments. Interestingly,

the single mouse injected with Mf extract that produced a recall

response to Mf extract was the mouse that did not produce a

cross-reactive antibody response to L3 extract. The mice in-

jected with both larvae and adults produced cross-reactive an-

tibodies to Mf extract (both , Mann-Whitney U test;P ! .05

figure 4D), showing that the lack of antibodies to Mf extract

in mice injected with this antigen was not due to failure of the

assay. These results are not surprising, because Mf are juvenile
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larvae that are likely to share antigenic components with the

L3 stage and because the adult extract was made from mixed

adults, including gravid Mf-producing females.

DISCUSSION

The data from the present study demonstrate that Wolbachia are

an immunogenic component of filarial nematodes and that re-

sponses are made against Wolbachia in both human and murine

filarial infection. Anti-WSP responses have recently been shown

to be produced in Dirofilaria immitis infection of cats [19] and

B. malayi infection of rhesus monkeys [20], indicating that re-

sponsiveness to WSP is a feature of filarial nematode infection.

The damaging inflammatory responses that lead to lymphatic

damage and elephantiasis have often been attributed to the

death of adult parasites [21]. Recently, it has been hypothesized

that the death of filarial nematodes is largely responsible for

the release of Wolbachia that subsequently causes the damaging

inflammatory immune responses observed in patients with el-

ephantiasis [22]. Indeed, the death of filarial nematodes sig-

nificantly increases the levels of Wolbachia DNA in the blood-

stream of humans [23]. In support of this hypothesis, our data

indicate that human immune responses to BmWSP are cor-

related with antifilarial adult responses (figure 2B). In addition,

the death of adult parasites in L. sigmodontis infection appears

to induce an immune response to Wolbachia (figure 3A and

3C). However anti-BmWSP responses in humans were also

correlated with anti-L3 stages (figure 2A), and GLM analyses

indicated that responses to BmWSP were more likely to be

generated by the L3 stage than by the adult stage of B. malayi.

Indeed, further experiments with the L. sigmodontis murine

model strongly supported this finding, because, per gram of

nematode, WSP within the L3 stages induced the strongest

response (figure 4A). Thus, the positive correlation between

anti-BmWSP and anti-adult responses are likely to be due to

cross-reactivity between L3 and adult stages of the parasite, as

shown in figure 4C.

We statistically tested other factors—such as age, sex, and geo-

graphic location of the subjects—that could be responsible for

our finding that anti-BmWSP responses are mainly generated

from the L3 stage. Anti-L3 responses increase with age [24], and

it is also well documented that patients with elephantiasis tend

to be older [25, 26]. Therefore, it was possible that variation in

age, rather than responses to larvae per se, could better explain

the observed responses to BmWSP. However, responses to the

L3 stage of B. malayi were more tightly correlated with responses

to BmWSP than any of these variables.

The endemic healthy group was the only clinical group tested

in which responses to BmWSP did not positively correlate with

responses to the L3 stage of B. malayi. This group had the same

amount of within-group variation in antibody responses to the

L3 stage, but less variation in anti-BmWSP responses, compared

with the other 2 clinical groups ( , Bartlett’s test statisticP ! .05

for homogeneity of variance on OD values of 8.53). Because the

variation in responsiveness to L3 antigen and exposure to infec-

tive mosquito bites are comparable in all 3 clinical groups tested,

low biting rate is an unlikely explanation for why there is little

variation in responses to BmWSP among endemic healthy sub-

jects. Instead, it may reflect a very rapid killing of the infective

larvae in this potentially immune population.

Primary L. sigmodontis infection in BALB/c mice indicates

that a response to WSP can be induced before adult exposure

(figure 3B), but this response (observed at day 20 after infec-

tion), although statistically significant, compared with that of

naive mice, was weak. This may be because only a small number

of larvae (25 at the L3 stage) were used to induce primary L.

sigmodontis infection. When adult-stage parasites reached pa-

tency and started to die (at day 60 after infection), some mice

produced stronger responses to LsWSP. The data from the im-

plantation studies with L. sigmodontis, as well as the injection

of parasite extracts, suggest that WSP is not a major immu-

nogen when an individual is exposed to adult or microfilarial

stages in the absence of exposure to L3-stage parasites. The

extract immunization studies would favor the hypothesis that

the L3 stage of the parasite is intrinsically more immunogenic

with regard to WSP, either because it contains the highest

amount of Wolbachia per gram of nematode or because of a

reduced level of competing immunodominant antigens.

Together, the data from human and mouse studies suggest

that exposure to L3-stage parasites is required to generate a

strong anti-WSP response. The requirement for the L3 stage is

supported by the GLM of human antibody responses to WSP

and is made considerably more convincing by murine studies

demonstrating that infective larvae are intrinsically the most

immunogenic when it comes to anti-WSP responses. This is

not to say that the adult parasites and/or Mf do not contribute

to the immune responsiveness. The death of parasites at these

stages may be an important factor in creating the appropriate

immunological environment for full responsiveness. This is

suggested by the lower responsiveness in endemic healthy sub-

jects, who may not harbor adult parasites and are certainly less

likely to be exposed to large numbers of dying parasites, and

is further supported by primary infection of mice with L. sig-

modontis, in which robust responses to WSP were not observed

until mature adults were present. Although the death of adult

parasites may contribute to the development of full anti-WSP

responses, our data support the hypothesis that the incoming

larvae are the major inducers of the response. The significantly

stronger responses to BmWSP in those with chronic disease

may arise because of the immune hyperactivity that is com-

monly observed in this clinical group [27, 28].

The present study, which used a combination of human and
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mouse studies, provides evidence that the L3-stage parasite is

a key player in the generation and maintenance of an anti-

WSP response. If, as recent evidence suggests, exposure to WSP

is an initiator of inflammatory disease [29], our data suggest

that this exposure is most significant in earlier stages of infec-

tion. In the case of lymphatic filariasis, death of postinfective

L3-stage parasites is likely to occur in the lymphatics and may

be a more important driver of disease than the adult-stage

parasite. This notion is supported by epidemiological studies

suggesting that the level of exposure to infective L3-stage par-

asites is directly related to both the acute and chronic disease

associated with lymphatic filariasis [30–32]. Increasing efforts

toward designing vaccines against both elephantiasis and river

blindness are under way. The present study emphasizes the

importance of focusing on transmission-blocking strategies that

reduce exposure to the L3 stages, not only to prevent trans-

mission but, perhaps, as key step in reducing disease.
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