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M A J O R A R T I C L E

Malaria-Filaria Coinfection in Mice Makes Malarial
Disease More Severe unless Filarial Infection
Achieves Patency

Andrea L. Graham, Tracey J. Lamb,a Andrew F. Read, and Judith E. Allen
Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland

Coinfections are common in natural populations, and the literature suggests that helminth coinfection readily
affects how the immune system manages malaria. For example, type 1–dependent control of malaria parasitemia
might be impaired by the type 2 milieu of preexisting helminth infection. Alternatively, immunomodulatory
effects of helminths might affect the likelihood of malarial immunopathology. Using rodent models of lymphatic
filariasis (Litomosoides sigmodontis) and noncerebral malaria (clone AS Plasmodium chabaudi chabaudi), we
quantified disease severity, parasitemia, and polyclonal splenic immune responses in BALB/c mice. We found
that coinfected mice, particularly those that did not have microfilaremia (Mf�), had more severe anemia and
loss of body mass than did mice with malaria alone. Even when controlling for parasitemia, malaria was most
severe in Mf� coinfected mice, and this was associated with increased interferon-g responsiveness. Thus, in
Mf� mice, filariasis upset a delicate immunological balance in malaria infection and exacerbated malaria-
induced immunopathology.

Helminth infections are prevalent throughout tropical

regions where malaria is transmitted [1–5]. Interactions

among infections commonly alter disease severity [6,

7], and malaria-helminth coinfection can either exac-

erbate [8, 9] or ameliorate [10] the severity of disease

in human hosts. Various immunological mechanisms

can be invoked to explain these diverse outcomes. For

example, type 1 effector mechanisms that clear intra-

cellular pathogens and type 2 effectors induced by hel-

minths are mutually inhibitory [11, 12]. In addition,

cells and molecules that down-regulate both types of

responses can be induced by helminths [13]. Helminth

coinfection might thus impair the mechanisms neces-

Received 29 June 2004; accepted 18 August 2004; electronically published 21
December 2004.

Financial support: Wellcome Trust (grant 064121/Z/01/Z); Medical Research
Council; European Commission (grant ICA4-CT1999-10002).

a Present affiliation: Division of Parasitology, National Institute for Medical
Research, The Ridgeway, Mill Hill, London, England.

Reprints or correspondence: Dr. Andrea L. Graham, Institutes of Evolution,
Immunology and Infection Research, School of Biological Sciences, University of
Edinburgh, King’s Bldgs., Ashworth Laboratories, Edinburgh, Scotland EH9 3JT
(andrea.graham@ed.ac.uk).

The Journal of Infectious Diseases 2005; 191:410–21
� 2004 by the Infectious Diseases Society of America. All rights reserved.
0022-1899/2005/19103-0013$15.00

sary to control malaria parasitemia and/or to prevent

immunopathological malaria. Before antihelminthics are

widely administered in malarious areas, it is critical to

understand these interactions [14].

A protection-pathology balance is at the heart of our

understanding of immunity to malaria. A robust im-

mune response is necessary to control parasite repli-

cation, but too robust a response can result in severe

immunopathology [15, 16]. Malaria infection might

thus be particularly sensitive to the immunological ef-

fects of coinfection. In malaria caused by Plasmodium

chabaudi chabaudi in rodents, the severity of disease is

minimized by a rapid and type 1 biased [17–19] but

modulated [20–23] immune response that kills para-

sites and yet avoids hyperinflammation. Because co-

infection with helminths can reduce type 1 effector

function [24–30] and/or alter systemic levels of inflam-

mation [25, 31] in mice, we have investigated whether

preexisting filariasis alters the immunological protec-

tion-pathology balance in murine malaria.

Filarial nematodes co-occur with malaria in human

populations [4, 5] and can even be carried by the same

individual vector [32]. An important feature of human

lymphatic filariasis is that not all hosts develop micro-
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filaremia (Mf+; patent, transmissible infection) [33]. Similarly,

in immunocompetent rodents, including the natural hosts of

Litomosoides sigmodontis [34], only some hosts become Mf+. In

the laboratory, ∼50% of L. sigmodontis–infected BALB/c mice

become Mf+ on day ∼50 after infection [35, 36]. The mecha-

nisms that determine Mf status are not fully understood, but

the down-regulated immune responses in Mf+ individuals [37–

41] made us expect that Mf+ mice and those that do not have

microfilariae circulating in blood (Mf�) would cope with ma-

laria infection differently. We therefore introduced P. chabaudi

chabaudi malaria infection at day 60 of L. sigmodontis infection,

once the Mf status had been established.

Critically, we used epidemiology-grade quantitative analytical

methods to distinguish immune-mediated disease from par-

asite-mediated disease and specifically assessed the respective

contributions of cytokines and parasitemia to malarial severity.

Quantitatively relating immune responses to clinical outcome

has elucidated the course of malaria [42–45], filariasis [46],

ascariasis [47], and schistosomiasis [48] in humans. Helminth-

malaria coinfection, however, has yet to be addressed this way.

Although it is seldom used in murine immunology, robust

quantitative analysis combines powerfully with controlled lab-

oratory experiments to improve scientific understanding [49].

With such methods, we were able to explain much of the se-

verity of disease seen in malaria-filaria coinfection.

MATERIALS AND METHODS

Parasite life cycles and infection protocols. The filarial nem-

atode L. sigmodontis, a natural parasite of the cotton rat (Sig-

modon hispidus), was maintained by cyclical passage between

gerbils (Meriones unguiculatus) and mites (Ornithonyssus bac-

oti), as described elsewhere [50]. Stage L3 larvae taken from

mites were used to inoculate mice for these experiments. The

malaria parasite P. chabaudi chabaudi was originally isolated

from thicket rats (Thamnomys rutilans) and was cloned by serial

dilution and passage [51]. Red blood cells (RBCs) infected with

clone AS parasites [52] were passaged once through C57BL/6

mice, to provide experimental inocula.

In 3 experiments, 6–8-week-old male BALB/c mice (Harlan

UK) were divided into 4 treatment groups: uninfected, infected

with filaria only, infected with malaria only, and coinfected.

For the filarial infections, 25 L3 larvae were injected subcuta-

neously. Sixty days later (with 150% of the filaria-infected mice

being Mf+), malaria-infected RBCs were injected in-61 � 10

traperitoneally [52] into each mouse scheduled to receive ma-

laria inoculation. Mice were maintained in individually venti-

lated cages, with a 12-h light/dark cycle, autoclaved diet 41b

(Harlan UK), and water. After 78–80 days of filarial infection

(18–20 days of malaria infection), mice were killed, and their

spleens were removed. Adult filariae in the thoracic cavity were

counted as described elsewhere [53]. This time line and the

measured variables are summarized in figure 1.

Parasitemia and disease severity data. P. chabaudi cha-

baudi parasitemia was quantified as the percentage of infected

RBCs in Giemsa-stained thin-blood smears, as described else-

where [52]. The presence or absence of circulating L. sigmo-

dontis microfilariae was determined by light microscopy of thick

circular smears of 10 mL of tail blood obtained on days 60–80

after filarial infection. Dried smears were rinsed in water, fixed

in methanol, and stained in 5% Giemsa stain for 45 min. Mice

in which no microfilariae were seen on 6 smears were consid-

ered to be Mf�.

Disease severity was quantified in terms of loss of RBC den-

sity (a measure of anemia) and loss of body mass. RBCs were

counted by use of flow cytometry of tail blood, as described

elsewhere [52]. Body mass was measured on a top-pan elec-

tronic balance. Changes in RBC density and body mass were

then calculated in relation to the initial measurements made

for each mouse. Zeroes thus represent no change, positive val-

ues represent gains in RBC density or body mass, and negative

values represent loss. Starting from day 60 (figure 1), disease

severity was sampled every second day (at the same time each

day), except for daily sampling during peak malaria parasitemia

in 1 experiment.

Such data can be formulated in several different but strongly

correlated ways: maximal, repeated, and cumulative measures

of malaria parasitemia and disease severity [52]. The results

below focus on the maximum percentage of RBCs parasitized

(peak malaria parasitemia) and the area under the severity-

versus-time curve (cumulative disease severity). Disease severity

data thus capture cumulative effects of infection and are ex-

pressed in RBC-days/mL (for anemia) and gram-days91 � 10

(for body mass). Analyses of peak disease severity, cumulative

parasitemia, and peak or cumulative parasite density (per mil-

liliter of blood) all yielded conclusions identical to those pre-

sented below.

Cytokine data. Splenic production of interferon (IFN)–g

and interleukin (IL)–4, the signature cytokines of type 1 and

2 immune responses, respectively, was quantified by ELISPOT.

Briefly, ELISPOT plates (Millipore) were coated with 750 ng/well

of anti–IL-4 11B11 or anti–IFN-g R4-6A2 (both from Phar-

mingen) and incubated at 4�C overnight. Plates were washed

with Tris-buffered saline with 0.5% Tween-20 (TBST), blocked

with 2% milk at 37�C, and washed again. After RBC lysis,

splenocytes were suspended in Dulbecco’s modified Eagle me-

dium (Sigma) supplemented with 100 U/mL penicillin, 100 mg/

mL streptomycin, 2 mmol/L l-glutamine (all from Gibco), and

0.5% mouse serum (Sigma). Splenocytes were plated at con-

centrations of /well and cultured in duplicate with media55 � 10

alone or with 1 mg/mL concanavalin A (ConA) added. Plates
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Figure 1. Time line for malaria-filaria coinfection in BALB/c mice and summary of variables measured. Three replicate experiments were performed,
and data on a total of 102 mice were analyzed. These included 14 uninfected, 37 filaria-infected (27 that had microfilaremia [Mf+]), 13 malaria-infected,
and 38 coinfected (21 Mf+) mice. IFN, interferon; IL, interleukin; RBC, red blood cell.

were incubated at 37�C (in 5% CO2) for 72 h. After TBST and

ddH2O washes, biotinylated antibody was added (for IFN-g,

50 ng/well of clone XMG1.2; for IL-4, 5 ng/well of clone BVD6–

24G2; both from Pharmingen). Plates were incubated at 37�C

for 2 h and washed with TBST, and then 50 mL/well of Ex-

travidin AP (Sigma), diluted to 1:25,000, was added, and the

plates were incubated for 30 min. After TBST and ddH2O

washes, splenocytes were stained with 100 mL/well of bromo-

chloroindolyl phosphate/nitroblue tetrazolium substrate (Moss).

Developed plates were photographed by ImmunoSpot (CTL).

Spots (i.e., cytokine-producing cells) were counted and mea-

sured by use of ImmunoSpot software (version 2.08; CTL). The

number of cytokine-producing cells and the total number of

cytokines (in square millimeters per well) were highly correlated

(data not shown).

Statistical analyses. Analyses were conducted in SAS (ver-

sion 8), by use of mixed, logistic, or general linear models [54].

Analyses focused on 102 mice: 14 uninfected, 37 filaria infected

(including 27 Mf+), 13 malaria infected, and 38 coinfected (21

Mf+). Data from duplicate ELISPOT wells were averaged, and the

number of cells producing cytokines in medium was subtracted

from the number responding to ConA, before trans-log (n + 1)10

formation. Counts of adult filariae were square-root transformed.

No other transformations were necessary.

Qualitative differences due to infection and Mf status were

consistent across experiments, but quantitative differences were

strong. In other words, all experiments yielded the same con-

clusions, despite variations in the mean number of, for example,

IL-4–producing cells or RBCs observed. Inclusion of experi-

mental block as a factor in all analyses, plus the inclusion of

initial body mass as a covariate (to account for differences among

mice in initial conditions [55]), controlled for these confounding

factors. (They were removed from the model whenever they were

insignificant.) Experiment and infection were fitted as fixed fac-

tors, and their interaction was tested for significance. Mf status

was fitted within infection. Maximal models (including inter-

actions) were always assessed, but covariates were best fitted with

common-slopes models [56]. Quadratic terms were never sig-

nificant. Reported parameter estimates, including slopes (for con-

tinuous variables) and least-squares mean estimates of differences

(for categorical variables), were taken from the relevant minimal

model (which included significant terms only). The cutoff for

significance was , but this was adjusted by use of Tukey’sP ! .05

test when necessary.

Disease severity data were analyzed in 3 rounds. The first

round tested for infection-related differences in anemia and

loss of body mass across all treatment groups. The specific

hypothesis that the severity of coinfection was an additive func-

tion of malarial plus filarial severity was also tested. The next

round focused on mice infected with malaria, with a peak par-

asitemia covariate added to the first-round model. This ad-

dressed whether mice infected with malaria only, Mf+ coinfected

mice, and Mf� coinfected mice had differential disease severity

for a given malaria burden. The final round explored whether

cytokine responsiveness was further predictive of severity of

malaria in Mf+ or Mf� coinfected mice. Peak malaria parasi-

 at E
dinburgh U

niversity on July 15, 2013
http://jid.oxfordjournals.org/

D
ow

nloaded from
 

http://jid.oxfordjournals.org/


Malaria-Filaria Coinfection • JID 2005:191 (1 February) • 413

Figure 2. Anemia and loss of body mass in coinfected mice. Representative data are shown from 1 of 3 experiments of malaria-filaria coinfection
(the same pattern was observed in all experiments). The initial red blood cell (RBC) density or body mass for a given mouse was subtracted from
each observation, so the data are presented in terms of change from initial condition. Symbols indicate means (�SE), which were compared by use
of analysis of variance. Filariasis by these measures was avirulent—filaria-infected mice were indistinguishable from uninfected mice. Coinfected
mice lost more RBC density ( ; A) and body mass ( ; B ) than did mice with malaria.P ! .05 P ! .05

temia, IFN-g–producing cells, IL-4–producing cells, and adult

filarial counts were included as predictor variables. Minimal

models were confirmed via backward and forward stepwise

regression methods.

RESULTS

Severe disease in coinfected mice. To assess the effect of pre-

existing filariasis on the severity of malaria, we measured RBC

density and body mass of uninfected, filaria-infected, malaria-

infected, and coinfected mice. Across all experiments, coin-

fected mice had more severe disease, in terms of anemia (figure

2A) and loss of body mass (figure 2B) than did mice infected

with malaria only ( ). These differences are discussedP ! .05

below. Filarial infection was avirulent as measured by its effect

on RBC density and body mass ( and , vs. un-P ∼ .95 P ∼ .40

infected mice).

Severe disease in coinfected mice partially independent of

parasitemia. The percentage of RBCs infected with malaria

was analyzed in relation to disease severity. The exact extent

of anemia and loss of body mass differed significantly in the

experiments, but all 3 experiments showed that a high level of

parasitemia was associated with low RBC density and low body

mass (table 1). However, for a given parasitemia level, co-

infected mice had more severe disease than did mice infected

with malaria only (figure 3A and 3B and table 1). The difference

in the severity of anemia ( RBC-days/mL)96.03 � 2.66 � 10
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Table 1. For a given malaria parasitemia, coinfected mice, particularly those
that did not have microfilaremia (Mf�), had severe malaria.

Source df F ratio P 1 F

Slope
or LS mean

difference (SE)

Anemia (R2 p .63)
Experiment 2, 47 39.53 !.0001
(Initial body mass) (1, 46) (2.57) (∼.12)
Peak parasitemia 1, 47 7.47 !.01 �0.48 (0.17)
Infection 1, 47 5.15 !.05 �6.03 (2.66)
(Microfilaremia) (1, 45) (0.71) (∼.40)

Loss of body mass (R2 p .66)
Experiment 2, 45 7.24 !.005
Initial body mass 1, 45 8.21 !.01 �1.56 (0.54)
Peak parasitemia 1, 45 27.74 !.0001 �0.60 (0.11)
Infection 1, 45 7.63 !.01
Microfilaremia 1, 45 10.02 !.005 �7.55 (1.91)

�5.89 (1.86)

NOTE. Comparison of the severity of malaria during single-species infection vs. coinfection
with filaria, summarizing results for cumulative anemia and cumulative loss of body mass. The
least-squares (LS) mean difference represents the difference between groups of mice after
effects of experiment and the covariates (initial body mass and peak parasitemia) were taken
into account. Microfilaremia was nested within infection status. Both slopes and LS mean
estimates are derived from the minimal model, which excluded nonsignificant terms. The level
at which nonsignificant terms were dropped from the model is shown in parentheses. Mf+,
had microfilaremia; RBC, red blood cell.

translates to a ∼25% reduction in RBC density in coinfected

mice (95% confidence interval [CI], 3%–46%). Mf� coinfected

mice lost more body mass than did Mf+ coinfected (5.89�

1.86 g-days) and mice infected with malaria only (7.55�1.91

g-days). This translates to a ∼106% more severe loss of mass

in Mf�, compared with mice infected with malaria only (95%

CI, 54%–159%). Neither the number of adult filariae nor any

quadratic effects of malaria parasitemia significantly predicted

the severity of disease in coinfected mice.

These results suggest that coinfection, particularly in Mf� mice,

altered disease severity partially independently of parasite burden.

In addition, parasitemia was marginally higher among Mf� co-

infected mice ( ) than among Mf+ coinfected mice28.5 � 1.7%

( ) ( ; ), although levels did not23.8 � 1.4% F p 4.14 P p .051,33

differ in mice infected with malaria only versus coinfected mice

overall. Mf� coinfection may thus have slightly impaired anti-

malarial effectors. Still, the striking effect remains that, for a given

parasitemia, disease severity was exacerbated by coinfection.

Enhanced splenic cytokine responsiveness in coinfected

mice. Malarial severity has an immunopathological compo-

nent, so we measured the number of IFN-g– and IL-4–pro-

ducing cells (as an indicator of cytokine responsiveness) by use

of ELISPOT. Taking precise quantitative differences among ex-

periments into account, the cytokine responsiveness of mice

with filariasis was significantly higher than in those without

filariasis, regardless of whether they also had malaria (figure

4A). Cytokine responsiveness of coinfected mice and in those

infected with filaria only was thus indistinguishable, and cy-

tokine responsiveness in mice infected with malaria only was

indistinguishable from that in uninfected mice. Given that post-

peak murine malaria is characterized by splenic apoptosis [57],

this finding was not surprising. Importantly for the present

study, both IFN-g responsiveness ( ; ) and IL-t p 3.53 P ! .0590

4 responsiveness ( ; ) was higher in coinfectedt p 4.61 P ! .00190

mice than in those infected with malaria only. Cytokine re-

sponsiveness in Mf+ versus Mf� mice was also assessed. Mf+

and Mf� coinfected mice did not differ in IFN-g responsiveness

( ; ) or in IL-4 responsiveness ( ;F p 0.47 P ∼ .50 F p 0.011,34 1,34

; figure 4B), whereas responsiveness of both IFN-g (F1,34P ∼ .93

p3.89; ) and IL-4 ( ; ) tended to beP ∼ .06 F p 3.34 P ∼ .071,34

greater in Mf� mice infected with filaria only than in Mf+ mice

infected with filaria only (figure 4C).

More severe disease with increasing IFN-g in Mf5 coinfected

mice. Finally, the variation in cytokine responsiveness was

used to explore variance in the outcome of coinfection. IL-4

responsiveness was not predictive, but IFN-g responsiveness

was significantly related to disease severity—the greater the

number of splenocytes producing IFN-g, the more severe the

disease in Mf� mice, in terms of both anemia (figure 5A) and

loss of body mass (figure 5B). As the minimal models indicate

(table 2), experimental effects on the number of RBCs or grams

of body mass lost remained apparent, but the qualitative con-

clusions were identical, and, overall, IFN-g responsiveness ex-
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Figure 3. More severe disease in coinfected mice for a given level of malaria parasitemia. Disease severity vs. peak parasitemia for all malaria-
infected mice is shown. The y-axes represent cumulative severity of malaria in terms of changes in red blood cell (RBC) density (anemia, in

RBC-days/mL, A) or body mass (in gram-days, B ), after the effects of experiment and initial mass were removed. High peak parasitemia levels91 � 10
were associated with low RBC density and low body mass for all mice. For a given peak parasitemia level, coinfected mice had more severe disease
than did mice infected with malaria only. Furthermore, coinfected mice that did not have microfilaremia (Mf�) had significantly more severe loss of
body mass than did coinfected mice that had microfilaremia (Mf+). For detailed results of analysis of covariance, including effects of initial mass, see
table 1.

plained 10% of the variance in anemia and 28% of the loss of

body mass in Mf� coinfected mice.

DISCUSSION

Malaria causes disease through parasite- and immune-mediated

damage. For example, daily rounds of parasite replication lead

directly to RBC lysis and anemia [58], but the severity of disease

frequently exceeds the effects that are directly attributable to

parasitemia [25, 59]. Immune-mediated damage is a likely cause

of the decreases in temperature and body mass that are associ-

ated with malaria in mice [22, 23], and anemia itself is also

partially immunopathological [15, 58]. Malaria infection thus

requires a delicate immunological balance [15, 16] that might

be readily upset by helminth coinfection. Indeed, we found that

coinfected mice were more anemic (figure 2A) and lost more

body mass (figure 2B) than mice infected with malaria only.

Filariasis itself did not cause anemia or loss of body mass, yet

malaria-filaria coinfection resulted in severe emergent disease.

How? On the one hand, helminth coinfection can impair type

1 effector mechanisms, such that the host loses control of path-

ogen replication [24–30]. On the other hand, immunomodu-

latory effects of helminths [13] might prevent immunopath-

ology: the best response to infection is often predominantly

antiinflammatory, even if it impairs parasite killing [12]. Dis-
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Figure 4. Enhancement of splenic cytokine responsiveness in coinfection, compared with infection with malaria alone. The no. of cells per 500,000
splenocytes producing interferon (IFN)–g or interleukin (IL)–4 is shown. The no. of cells that made cytokine in media alone was subtracted from the
no. that made cytokines in response to in vitro stimulation with concanavalin A. After log transformation, the data were subjected to analysis of
variance, to remove experimental effects. The data shown were back-transformed and represent the mean (�SE) no. of cells producing each cytokine.
A, Significantly higher production of cytokines in coinfected vs. malaria-infected mice, for both IFN-g ( ) and IL-4 ( ). Cytokine responsesP ! .05 P ! .001
of uninfected mice were not distinguishable from those of malaria-infected mice, and cytokines of filaria-infected mice were similar to those of
coinfected mice. B, No relationship of cytokine responses to microfilaremia (Mf) status in coinfected mice ( for IFN-g; for IL-4). C,P ∼ .50 P ∼ .93
Tendency of greater mean cytokine responsiveness in Mf� than in Mf+ filaria-infected mice ( for IFN-g; for IL-4).P ∼ .06 P ∼ .07

tinguishing the pathogenic effects of immune exuberance from

the pathogenic effects of parasite replication is a major chal-

lenge, especially when they lead to the same symptoms (e.g.,

anemia) [58]. By sequentially adding parasitemia and IFN-g

production to statistical models, we were able to demonstrate

that filarial exacerbation of malarial disease was not entirely

driven by parasite levels.

Malaria parasites do damage their host directly, so it is no

surprise that disease severity increases with increasing parasi-

temia, for both natural [60, 61] and experimental (figure 3)

[52, 61] cases of malaria. For a given parasitemia, however, we

found that coinfected mice had more severe anemia than did

mice infected with malaria only (figure 3A) and that Mf� co-

infected mice lost the most body mass of all groups (figure 3B).

A considerable proportion of this difference in severity of dis-

ease was explained by splenic IFN-g responsiveness: both ane-

mia and loss of body mass of Mf� coinfected mice were more

severe as the number of IFN-g–producing cells increased (figure

5). We propose that the high IFN-g responsiveness of these

mice was symptomatic of systemic, pathological inflammation.

Serum cytokines and antibody isotypes measured in a subset

of the mice supports the hypothesis that their inflammation

was systemic (data not shown). Furthermore, the proposed link

between high IFN-g responsiveness and immunopathological

malaria is in keeping with the well-documented, negative path-

ological effect of excessive or late production of proinflam-

matory cytokines in murine malaria [21–23, 62]. The present

results thus provide quantitative (albeit nonmechanistic) support

for the idea that the immune system, to fight malaria optimally,

must strike a delicate balance—to kill parasites yet modulate the

pathological overproduction of inflammatory cytokines.

Malaria did not become more severe because of filarial co-
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Figure 5. More severe loss of body mass with increasing production of interferon (IFN)–g in coinfected mice that did not have microfilaremia
(Mf�). Residuals of disease severity versus back-transformed IFN-g–producing cells, for all malaria-infected mice. The y-axes represent cumulative
severity of malaria in terms of changes in red blood cell (RBC) density (anemia, in RBC-days/mL) or body mass (in gram-days) after effects91 � 10
of experiment, initial body mass, and peak parasitemia were removed. High IFN-g responsiveness was associated with low RBC density (A) and low
body mass (B) in coinfected Mf� mice. IFN-g production did not explain variance in severity of disease in mice that had microfilaremia (Mf+; see
table 2 for detailed results of analysis of covariance).

infection per se but because of coinfection without microfila-

remia. Were Mf+ mice, simultaneously equipped with inflam-

matory and down-regulatory immune machinery in the blood,

better prepared to cope with malaria? Conversely, were Mf�

mice made prone to severe disease by their combination of type

2 bias and insufficient immunomodulation? This would be con-

sistent with known immunological differences between Mf+ and

Mf� individuals. For example, Mf+ people down-regulate im-

mune responses, often via IL-10, such that overall responsive-

ness is markedly [37–40] and persistently [63] suppressed. Im-

portantly for coinfection, Mf+ people have suppressed responses

to bystander antigens [64, 65]. For L. sigmodontis–infected

mice, cytokine data have not yet been broken down by Mf

status in the literature. What is clear, however, is that Mf in

mice is controlled by IL-4 and IL-13: depletion or knockout

of these cytokines [66, 67] or their common receptor (IL-4R�/�

BALB/c mice; data not shown) increases microfilariae levels

�10-fold, compared with levels in wild-type. These results are

paralleled by evidence that Brugia malayi microfilariae injected

into mice are cleared by type 2 [68, 69], not type 1 [70], effector

mechanisms. Of further interest, injected Mf induce IFN-g pro-

duction on their own [71, 72]. Mf+ filariasis in mice thus entails

increased IFN-g and low IL-4 levels, compared with levels in

Mf� mice. At the same time, IL-10 is required for the long-

term survival of L. sigmodontis microfilariae [41]. The idea that

Mf+ L. sigmodontis filariasis is down regulatory is also consistent

with the results shown in figure 4C. In any case, malaria par-
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Table 2. Disease became more severe with increasing interferon (IFN)–g re-
sponsiveness in coinfected mice that did not have microfilaremia (Mf�).

Source, by Mf status df F P 1 F Slope (SE)

Anemia
Mf+ (R2 p .54)

(Experiment) (2, 17) (0.26) (∼.77)
Initial body mass 1, 19 22.15 !.0005 �4.56 (0.97)
(Peak parasitemia) (1, 18) (0.01) (∼.94)
(Log10 IFN-g cells) (1, 18) (0.06) (∼.81)

Mf� (R2 p .77)
Experiment 2, 13 14.27 !.0005
(Initial body mass) (1, 12) (0.04) (∼.85)
(Peak parasitemia) (1, 12) (0.06) (∼.81)
Log10 IFN-g cells 1, 13 5.53 !.05 �16.79 (7.14)

Loss of body mass
Mf+ (R2 p .66)

Experiment 2, 17 5.59 !.05
(Initial body mass) (1, 16) (0.24) (∼.63)
Peak parasitemia 1, 17 16.17 !.001 �0.81 (0.20)
(Log10 IFN-g cells) (1, 16) (0.08) (∼.79)

Mf� (R2 p .75)
Experiment 2, 13 19.23 !.0005
(Initial body mass) (1, 12) (3.67) (∼.08)
(Peak parasitemia) (1, 12) (0.01) (∼.94)
Log10 no. of IFN-g–producing cells 1, 13 14.51 !.005 �16.55 (4.35)

NOTE. Comparison of the severity of malaria in coinfected mice that had circulating microfilariae
(Mf+) vs. coinfected mice that did not have circulating microfilariae (Mf�), summarizing results for
cumulative severity of anemia and cumulative loss of body mass. For Mf+ mice, only initial body
mass was predictive of anemia, and experiment and peak parasitemia were predictive of loss of
body mass. In Mf� mice, IFN-g was a significant predictor of both anemia and loss of body mass,
which suggests that Mf� coinfected mice are prone to immunopathological malaria. The level at
which nonsignificant terms were dropped from the model is shown in parentheses. Slopes were
determined as in table 1.

asites entering mice with preexisting Mf+ versus Mf� filariasis

were entering rather different immune environments.

The cytokines that determine Mf status could indeed have

affected how well coinfected mice struck the necessary com-

promise between controlling parasitemia and minimizing im-

munopathology. In Mf� mice, the type 2–associated cytokines

that keep microfilariae at bay would tend to impair [73] or

delay [74] the control of malaria, whereas IFN-g in Mf+ mice

would promote the clearance of malaria [17–19]. This differ-

ence in the balance of type 1 cytokines could explain the lower

levels of malaria parasitemia in Mf+ mice, compared with those

in Mf� coinfected mice (23.8% vs. 28.5%). Then, down-reg-

ulatory cytokines in Mf+ mice could have prevented the strik-

ingly more severe disease seen in Mf� mice—cytokines such as

IL-10 [22, 23] and transforming growth factor–b [21, 23] are

critical for preventing malarial immunopathology, particularly

after parasitemia is controlled. In other words, the Mf� co-

infected mice may have had dual factors increasing the severity

of their disease, first effector impairment and then the absence

of immunomodulation. IFN-g and IL-4 are probably not the

only important factors in this system; we will next use multiplex

assays to identify the role of additional cytokines in determining

the severity of malaria during filarial coinfection. Another fu-

ture direction is to assess the effect of the timing of coinfection.

For example, would introducing malaria before day 50 of L.

sigmodontis infection (when all mice are Mf�) make the out-

come of coinfection uniformly severe? Would the introduction

of malaria after day 90 of infection (when most filariae are

cleared) ablate the effects of preexisting filariasis on malarial

severity? Alternatively, if malaria came first, would the severity

of malarial disease be altered by incoming filariae? Because the

timing of coinfection is likely to affect clinical outcome, it de-

serves future study.

In other systems, preexisting antihelminth immune re-

sponses affect the management of malaria in similarly complex

ways. For example, pretreatment with irradiated Brugia pahangi

larvae ameliorated cerebral malaria (and was thus to the net

benefit of the mouse), even though anemia was exacerbated

[25]. If antiinflammatory properties of helminths [13] can pre-

vent cerebral malaria or other immunopathological symptoms,

then the excess anemia associated with effector impairment may

be a price worth paying. Different helminth-malaria combi-

nations, however, appear to result in diverse outcomes [25, 26,

29, 75, 76], depending on, for example, the type of mouse
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studied [29]. With further work in diverse systems, generali-

zations may begin to emerge, and the relevance of animal mod-

els of coinfection to field studies may become clear.

In any case, steps toward understanding coinfection out-

comes are urgently needed. In this regard, field studies on the

clinical consequences of helminth-malaria coinfection in people

[2, 6, 8–10] would do well to take the lead from recent mul-

tivariate analyses of malaria immunoepidemiology [42–45].

Several of these previous studies have suggested that ratios of

pro- to antiinflammatory factors predict disease severity [42,

43, 45], and one goes further to demonstrate that quantifiable

relationships among proinflammatory cytokines, their soluble

receptors, and malaria parasitemia together determine clinical

outcome [44]. Such approaches, like the statistical methods

used here to distinguish parasite- from immune-mediated dis-

ease, should prove to be powerful tools for understanding the

severity of malaria in helminth-infected people. If further work

reveals that Mf+ filariasis is generally protective against severe

malaria, however, application of the findings will be difficult.

The immune modulation induced by Mf+ filariasis can, for ex-

ample, impair the success of antimycobacterial [64] and tetanus

[65] vaccinations. In a coinfected world, health workers may

have to choose which disease to prevent.
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