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Abstract 
 
 

The capital requirements formula within the Basel II Accord is based on a Merton one 
factor model and in the case of credit cards an asset correlation of 4% is assumed. In 
this paper we estimate the asset correlation for two datasets assuming the one factor 
model. We find that the asset correlations assumed by Basel II are much higher than 
those observed in the datasets we analyse. We show the reduction in capital 
requirements that a typical lender would have if the values we estimated were 
implemented in the Basel Accord in place of the current values. 
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1. Introduction 
 
 
The aim of this paper is to present estimates of asset correlations for credit card 

portfolios. The recent difficulties of banks throughout the world has focussed 

attention on the amount and detailed nature of regulations that the banking sector 

operates under. Large banks in the G10 countries are obliged by their regulators to 

follow the Basel II Accord (Basel Committee on Banking Supervision: 2006) when 

deciding on the amount of capital to hold to protect their shareholders against 

operational, market and credit risk. Under the Accord banks may follow a 

standardised approach or an IRB approach to calculating their risk capital. Those 

following the latter, probably the majority of large banks, must calculate their capital 

requirements for different loan segments using an equation based on the Vasicek 

formula (Vasicek 1987) with different assumed asset correlation parameters for 

different types of loan portfolio. For many retail segments, such as mortgages and 

qualifying revolving retail exposures, the Accord assumes an asset correlation of a 

specific value: 15% for residential mortgages and 4% for revolving exposures. For 

other types of retail loans, and for other segments, for example corporate loans and 

loans to small and medium sized enterprises, the asset correlation depends on the long 

run probability of default for that portfolio, (as well as maturity for non retail 

exposures).  

 

However the empirical work on which the assumed asset correlation values for 

mortgages and revolving credit portfolios were based has not been published and an 

embryonic literature, mainly examining corporate loans and loans to banks, finds 

asset correlation values, generally, to be  much lower than  the values implied by the 

Basel formula. For example Rösch (2003) estimated corporate asset correlations in 

Germany by modelling the number of bankruptcies over time. He found values 

around 0.86% when macroeconomic variables were omitted and 0.52% when they 

were included. Hamerle et al (2003a) found comparable values for many industries in 

the G7 countries. In other work Rösch (2005) found that corporate asset correlations 

varied according to rating class, where the class was allocated by an external ratings 

agency. In this work Rösch did not include borrower specific effects, however in 

Hamerle and Rösch (2006) this was attempted for a sample of German firms in 
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manufacturing and in commerce. The estimates were even smaller, declining from 

0.6% to 0.04% when company specific variables were included. In contrast McNeill 

and Wendin (2007) find within sector asset correlations for a sample of US corporate 

loans to be around 10.9%. But asset correlations for corporate loans tell us very little 

indeed about those for consumer loans. Estimates of asset correlations for consumer 

loans or for mortgages are rare. Rösch and Scheule (2004) considered three exposure 

classes, residential loans, credit cards and other consumer loans from US commercial 

banks. When, following the Basel Accord, they assume the default probabilities are 

constant over time, asset correlations of 1.0% for credit cards and 0.98% for real 

estate loans were estimated. When macroeconomic variables were included, the asset 

correlations fell to 0.66% and 0.28% respectively.  

 

However there is no published work in which the asset correlations for consumer loan 

portfolios are estimated and where individual specific effects are included, and there 

is no published work that reports asset correlations for UK credit card portfolios. This 

is the aim of this paper. In principle one would expect that the more covariates that 

are used to explain the probability of default by a borrower the lower the computed 

asset correlation and empirical evidence for other sectors appear to confirm this. We 

use two datasets, one relating to individual borrowers and the second relates to all 

credit cards issued in the UK. We find asset correlation values that are very 

considerably below the value assumed in the Accord and that the correlation varies 

systematically with the riskiness of a borrower segment.  

 

The structure of this paper is as follows. In the following section we specify the model 

and estimation strategy that we use. In section three we present our results and in 

section four we discuss some implications of them. Section five concludes. 

 

Notational Conventions 

 
Throughout the paper we adopt the following conventions. We assume time is 

measured in discrete intervals. Let iw  denote a vector of variables whose observed 

values are specific to individual i (i = 1….N), but that do not vary over time. Let itx  

denote a vector of variables whose observed values vary between individuals and 
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between time periods (t = 1…T). Let tz  denote a vector of variables whose observed 

values vary between time periods, but not between individuals. Let tY  denote a 

variable whose values vary over time but which are not observable. We denote 

individual variables in upper case and their realisations in lower case. We use l to 

denote an arbitrary lag. We write )|( tt yYP =•  as )( typ for convenience. 

 

2. The Model 
 

The model follows Hamerle et al (2003b), Hamerle and Rösch (2006) and Rösch 

(2005). Consider the following to apply within a particular risk segment. Let itA  

denote a borrower’s assets and 1−ita  denote the realisation of his asset’s in a previous 

period. These may be in natural logs. Let the return on his assets be denoted itR , so 

.1−−= ititit aAR  We assume itR is an unobserved latent variable and is linearly related 

to its mean, itμ , an unobserved random time specific effect, tY , and a random 

component, itε . Thus we can write 

 

,ittitit cbYR εμ ++=                                                            (1) 

 

where itR  is normally distributed with mean itμ  and standard deviation σ ; 

)1,0(~ NYt  and ).1,0(~ Nitε We assume tY and itε  are independent and tY  is serially 

uncorrelated. The variance of tbY  is 2b  and that of itcε  is 2c  and so, given 

independence of tY  and itε ,  222 cb +=σ . One implication of Equation 1 is that 

conditional on tY  values of R for any two cases, i and j, are independent. Another 

implication is that since itR  is unobserved we cannot  estimate c. 

 

Equation 1 may be standardised to give 

 

itt
itit cYbR ε

σσσ
μ

+=
− .                                                             (2) 
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Now suppose, following Rösch (2005), Gordy (2003) and Hamerle et al (2003b) we 

write Equation 2 as 

 

itt
itit bYb

R
ε

σ
μ 2~1~

−+=
−

,                                                           (3) 

where 
σ
bb =

~ . The correlation between the standardised values of itR and jtR  is 

2
2~

⎟
⎠
⎞

⎜
⎝
⎛=
σ
bb  (Schonbucher: 2000). 

 

Following Merton (1974) a borrower defaults when the value of his assets falls below 

a threshold level. If we denote this threshold as itk , the probability of default for 

borrower i is  

 

( )

,~1~ 2

1

⎟
⎠
⎞⎜

⎝
⎛ <−+=

⎟
⎠
⎞

⎜
⎝
⎛ −−

<
−

=< −

ititt

ititititit
itit

bYbP

akR
PkAP

αε

σ
μ

σ
μ

                                                (4) 

 

where 
σ

μ
α ititit

it
ak −−

= −1 . Thus the probability of default can be written as 

 

,~1

~

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
<

b

Yb
P tit

it
α

ε                                                                          (5) 

and conditional on the realisation tt yY = this probability equals 

 

,~1

~
)(

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
Φ=

b

yb
yp tit

t
α

                                                                              (6) 

 

where Φ  denotes the standard normal cumulative distribution. 

 

Equation 3 assumes that the standardised return does not vary systematically over 

time; instead it varies only randomly according to tY  and .itε  This is the assumption 
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of Basel 2. But now suppose that the standardised return, and so the probability that 

case i defaults, is affected by observable states of the economy, possibly lagged. For 

example if interest rates increase we may expect that an average individual is less able 

to repay his outstanding loans. If, following Hamerle et al (2003b and 2006), we 

assume that the mean of the return depends linearly on observable macroeconomic 

variables, as well as static characteristics of a borrower ( iw ) and time-varying 

characteristics of the borrower ( itx ), we can replace Equation 1 by 

 

,itt
T
t

T
it

T
iit cbYR εβ +++++= δzγxβw0                                                      (7) 

 

where 0β  is a constant and γβ,  and δ  are vectors of parameters to be estimated. By 

substitution Equation 6 becomes  

 

.~
~~~~

︶,,,|︵ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−−−−
Φ====<

21 b

Ybzxw
YzxwkAP t

T
t

T
it

T
iit

tttititiiitit
δγβ

zxw
α

        (8) 

 

where σσ /~,/~ γγββ ==   and   ./~ σδδ =  

To parameterise this model we follow Hamerle et al (2006) Equation 8 and also 

assume itα  is a constant. There the log-likelihood is derived by supposing that we 

observe a particular default pattern across borrowers in period t, and finding an 

expression that equals the probability of observing that pattern, conditional on the 

realisation ty  of tY . Thus if we observe a default pattern ).....,( 2 Nttit ddd  where 

1=itd  denotes that borrower i in period t defaults, the log-likelihood is 

 

∑ ∫
=

+∞

∞−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

T

t
ttt dyyyhLL

1

)()(ln φ ,                                                          (9) 

 

where itit
t

d
ttit

d
tt

N

i
itt yYPyYPyh −

=

=•−=•=∏ 1

1

))|(1()|()(  and φ  denotes the standard 

normal density function. 
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Essentially equation 8, together with the default condition, is a mixed fixed effects - 

random effect probit model where the fixed effects are 

222 1 and 1 1 bbb T
t

T
it

T
i

~~~~,~~ −−− δzγxβw and the random effect is 

tYbb )~1/~( 2− . Notice that unlike more conventional panel models the random effect 

is over time not over cases. Correspondingly the integration in the maximum 

likelihood function (Equation 9) is over the random effect that varies over time.  

 

One can parameterise such a model by maximising the LL function where 
2~1

~

b

b

−
 is 

the variance of the random effect and the asset correlation between any two borrowers 

within the same segment is  

 

2

2

2
2

2

2

2 ~

~1

~1
~1

~

~1

~

b

b

b

b

b

b

b
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⎠
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−
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−
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⎠

⎞
⎜
⎜
⎝

⎛

−=ρ .                                                   (10) 

The value of ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

− 2~1

~

b

b can be estimated as part of the maximum likelihood 

estimation and so we can calculate the asset correlation using Equation 10. We 

parameterised Equations 6 and 8 using maximum likelihood and estimated the 

standard error of rho using the delta method of Billingsley (1986).  

 

Alternatively one can obtain estimates of the asset correlation in a portfolio using 

aggregated data instead of data for individual borrowers. Here we closely follow the 

models of Gordy and Heitfield (2002), Rösch (2003) and Rösch (2005). Define 

∑
=

=
tN

i
itt dD

1

where itd  is defined above and tN  is the number of active borrowers in 

period t. Assume Equation 1 explains returns. By assumption, conditional on the 

realisation tt yY = , the returns of any two borrowers within a segment are 

independent. Therefore the distribution of the number of defaults in period t, 

conditional on the realisation of tY , is binomial with parameters ))(,( tt ypN  where 



 8

)( typ  is given by Equation 6. The probability of tD  defaults in period t may be 

written as 

 

.))(1()()|( ttt DN
t

D
t

t

t
tt ypyp

D
N

YDl −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                                (11) 

 

By assumption tY  and itε  are serially independent so the unconditional marginal log-

likelihood (which we denote LL) can be found by integrating Equation 11 over all 

possible values of tY , taking the product over time periods t=1…T and taking logs. 

This gives  

 

 ∑ ∫
=

−
+∞

∞−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

T

t
tt

DN
t

D
t

t

t dyyypyp
D
N

LL ttt

1

)())(1()(ln φ .                                (12) 

 

Alternatively, if we assume returns are explained by Equation 7 rather than by 

Equation 1, then )( typ  in Equation 12 may be replaced by ),( tt zyp , which is 

Equation 8 with β  and γ  restricted to a vector of zeros.  

 

For an individual risk segment Equation 12 allows one to parameterise Equation 6 (or 

Equation 8 with the above restrictions) using merely data on the number of defaults, 

the number of active accounts and observable time varying covariates. As Rösch 

(2005) states, if  time varying macroeconomic variables are included in Equation 6 the 

proportion of the variance of itR  that is explained by the random effect will be lower 

than if the macroeconomic variables were omitted. 

 

We parameterised Equation 6 using the NLMIXED procedure in SAS. We used 

Gaussian adaptive quadrature (Pinheiro and Bates: 1995) to compute the integral over 

the time varying marginal effects and the delta method of Billingsley (1986) to 

compute the approximate standard errors for rho. Both are standard procedures in 

SAS. 
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3. Results 
3.1 Account Level Data 

 

We use two datasets. The first dataset is a randomly selected sample of  

approximately 200,000 credit card accounts that relate to a single credit card issued by 

a financial institution. We define default as missing a third due monthly payment or 

the account being written off, and the time of default is the first month in which either 

event happens. The observations cover 87 consecutive months from the late 1990s to 

the mid 2000s. The dataset is unbalanced: accounts were opened at different points in 

time. Some defaulted in the observation period, others did not. Due to software 

constraints we took a random sample of 20% of the accounts to estimate the 

parameters of Equation 6 for the portfolio as a whole. The results are shown in Table 

1. These show the estimated asset correlation value of 0.396%. This is considerably 

below the value of 4.00% given in the June 2006 version of the Basel II formula for 

revolving accounts not in default.  

 

Table 1 Here 

 

The Basel Accord states that the risk weight formula is to apply to segments of equal 

risk within a portfolio, (‘risk buckets’). In practice risk segments are often identified 

by borrowers operating in the same country or, in the case of corporate loans, in the 

same industry. In the case of credit cards one could segment a portfolio according to 

very many variables, for example income level, occupation, address region, age and 

so on. To investigate the effect of a segmentation we divided the portfolio into risk 

groups where each group consisted of borrowers in the same decile of generic risk 

score. Each decile therefore consisted of approximately 20,000 accounts. The results 

of estimating Equation 6 for selected deciles is shown in Table 2. The results show a 

systematic relationship between asset correlation and generic risk score. At higher risk 

score deciles (lower risk) the asset correlation is smaller than at higher risk score 
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deciles (higher risk). In decile 10, the asset correlation was not statistically different 

from zero. 

 

Table 2 Here 

 

Another possibility is that the asset correlations in Basel II relate only to periods when 

credit portfolios are stressed. To examine this we re-estimated the asset correlations 

for two separate periods: June 1999 to September 2001 inclusive and October 2001 to 

November 2003 inclusive. The former is a period when UK economic activity is 

above the trend for the index of (real) production and the latter a period below trend. 

We estimated the trend as a 61 month centred moving average. The results are shown 

in Table 3. We find that asset correlations are lower in recession than when the 

economy is not in recession. We could have identified shorter periods when the 

economy was deeper in a recession but that would reduce the number of observations 

so that the results may not be robust – the estimates are derived from the time series 

property of the data. 

 

Table 3 Here 

 

Table 4 shows the effect of additional covariates on the estimated value of ρ . We 

consider two alternative equations; one including a variable that varies over cases and 

over time: balance divided by credit limit and a equation which omits such a variable. 

As expected, in both cases when more covariates are added the value of ρ  declines. 

The equations suggest some collinearity because when balance divided by credit limit 

is included, many of the other variables become insignificant. 

 

Table 4 Here 

 

However a caveat to this section is in order. The account level dataset spans only 87 

months. The second dataset spans a longer period.  

 

3.2 Aggregate Data 
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The second dataset is quarterly time series data relating to the repayment performance 

of all credit card issuers in the UK and was kindly supplied by APACS. The data 

period is from 1990 Q2 to 2007 Q4 and so spans a much longer period than the 

account level data.. This dataset does not show the number of accounts that defaulted 

in each time period, but instead shows the number of accounts that were overdue by 

various periods, for example by  one month, two months and so on. We also had the 

number of accounts that were written off in each quarter as well as the number of 

active accounts. We defined a default event as being when an account became three 

months overdue. The relationship between these concepts can be written as: 

 

,1 ttttt WOORD +−=− −                                                    (13) 

 

where tD  is the number of accounts that became three months overdue in month t; 

tR denotes the number of accounts that were more than 3 months overdue in t-1 that 

repaid sufficient amounts to be just 3 months overdue in period t; tO denotes the 

number of accounts that were three or more months overdue in period t; and 

tW denotes the number of accounts that were written off in period t. The dataset 

contained information on tO and tW  and prior research experience by the authors 

suggests that the number of accounts that are 3 months overdue that repay enough to 

be just three months overdue is very small and so we assume that 0=tR . If this 

assumption is untrue then we are modelling tt RD − , the net change in the number of 

accounts 3 months overdue between t and t-1 rather than tD . The time series of  the 

number of defaults as a percentage of active accounts is shown in Fig. 1. The data 

show a discernable upward trend since around May 1997, albeit with some 

perturbations. Table 5 shows the results of parameterisating Equation 6. These 

suggest that the asset correlation of the portfolio of credit cards made available by UK 

issuers is around 1.8% when estimated in this way. This is considerably higher than 

the 0.4-0.6% which estimates based on the borrower level dataset suggested. Both sets 

of values are considerably lower than the values assumed by the Basel 2 formula. 

Unfortunately because our data is quarterly there would be too few observations in 

each of the two time periods we identified in the previous section as being periods of 

recession or growth to estimate robust values of  ρ for each period separately. 
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Fig.1 Here 

 

Table 5 Here 

 

4. Implications 
 

Considering both sets of results the values of asset correlations that we have estimated 

are similar to those found by other researchers. For example, values around 1% for 

credit cards in the US were found by Rösch and Scheule (2004). Hamerele et al 

(2006) found values around 0.6% for manufacturing and 0.1% for Commerce in 

Germany in the 1990s. However  Rösch (2005) is an exception that finds asset 

correlations for US corporates around 5% when modelling defaults  for three separate 

risk grades, BB, B and CCC. We also found that higher risk segments had higher asset 

correlations. This was not found by Rösch (op cit) who found that whilst the CCC 

grade had the highest correlation the lowest was for the B grade. The reduction in the 

value of rho when other covariates are included in the model is expected and 

consistent with previous studies. 

 

 

 The Basle II Accord gives the capital requirement, K, for a risk segment of a portfolio 

of qualifying revolving retail exposures as 

 

,
1

)999.0()( 11

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
Φ+Φ

Φ=
−−

ρ
ρPDK                                                    (14) 

 

where PD is the mean probability of default. Table 6 shows the implications for 

capital requirements for differing PDs and asset correlations. It can be seen that if the 

mean PD is around 3% and the asset correlations of 0.4% or even 0.6% were applied, 

the capital requirement, as a factor of LGD would be approximately  25% of that 

required by the Accord with its given asset correlation of 4%. The over capitalisation 

is larger if the mean default rate is lower. For example if the mean default rate was 

1% the capital requirement would be around 23% of the value required under the 

Accord. 
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Table 6 Here 

 

Our finding that higher asset correlations occur in higher risk bands might be 

concerning to lenders because it is the higher risk band borrowers who are most likely 

to default. Nevertheless the asset correlations, even in the highest risk band in our 

data, were not as large as the assumed correlation in the Accord, and it is the 

assumptions of the Accord that are currently enforced by regulators. 

 

A further implication is that Equation 14 is effectively Equation 6 with itα  assumed 

constant for the segment and the value of tY  set at )999.0(1−Φ , its extreme expected 

value on 0.1% of occasions. With assumed values of ρ and )( typ  one can estimate a 

mean PD from this equation. This mean PD is unaffected by changes in tY  because 

the value of tY  has been fixed. The estimated value of PD is therefore a through the 

cycle estimate and may yield an estimate for portfolios with very few observed 

defaults. Pluto and Tasche (2009) consider a method which uses Equation 6 with an 

assumed value of ρ to predict upper bounds on PD when there are few defaults in 

each of three risk grades. If one wishes to use this method for credit card loans and if 

one uses a value of ρ  of 4% then the predicted PDs may be considerably in error. 

 

5. Conclusions 

 
Although the Basel II Accord requires banks who wish to follow an IRB approach to 

estimating their capital requirements to use an asset correlation for credit card loans of 

4%, our results suggest that this is considerably larger than the asset correlations that 

occur in practice. Our results suggest a value of around half of the required amount. 

This finding adds to those of other studies which have concentrated on corporate 

loans so that this conclusion applies to both corporate and consumer loans. We have 

found that asset correlations are greater for riskier credit card borrowers and that there 

may be noticeable differences between the correlations of different lenders. We also 
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find that in periods of stress asset correlations for credit cards are lower than in other 

periods.  
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Table 1 

Borrower Level Dataset Parameterisations of Equation 6 

 

  Const  sd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
tY

b

b .~
~

21
   ρ     

============================================================= 

Coeff  na**  0.0630** 0.00396**  

SE    (0.0093) (0.0012) 

Chi Sq(1)     45.35  

_____________________________________________________________________ 

No Groups = 87 

Av no of obs per group 19,879 

Na = not available for confidentiality reasons. 

* denotes significance at 5%; ** denotes significance at 1% 
The significance of the standard deviation is determined by dividing the coefficient by 
its standard error and assuming this has an approximate t-distribution. 

 
Ref: \stata\p3p11.log 
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Table 2 
Parameterisations of Equation 6 for Score deciles 

 

         Const   sd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
tY

b

b .~
~

21
 ρ   Av no of 

             obs per group 
(N x T) 

Decile 1  Coeff  -2.575** 0.0803** 0.0064**      8,089 
  SE  (0.0113) (0.0108) (0.0017) 
  Chi Sq(1)     67.59 
_____________________________________________________________________
Decile 3  Coeff  -2.756** 0.0590** 0.0035**    9,695 
  SE   (0.0097) (0.0097) (0.0011) 
  ChiSq(1)     25.64 
_____________________________________________________________________ 
Decile 5 Coeff  -2.902** 0.0506** 0.0026**    10,759 
  SE  (0.0098) (0.0117) (0.0012) 
  Chi Sq(1)     9.03 
_____________________________________________________________________ 
Decile 7 Coeff  -3.024** 0.0466** 0.0022     11,238 
  SE  (0.0106) (0.0148) (0.0014)  
  Chi Sq(1)     3.88 
_____________________________________________________________________ 
Decile 9 Coeff  -3.333** 0.0334  0.0011     9,598 
  SE  (0.0165) (0.0011) (0.0029) 
  Chi Sq(1)     0.16 
_____________________________________________________________________ 
No groups=87. 
* denotes significance at 5%; ** denotes significance at 1% 
The significance of the standard deviation is determined by dividing the coefficient by 
its standard error and assuming this has an approximate t-distribution 

 
Ref: stata\p3p14.log, stata\p3p15.log, stata\p3p16.log, stata\p3p19.log 
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Table 3 
 

Borrower Level Parameterisation for Different States of the Macroeconomy 
 

            Const   sd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
tY

b

b .~
~

21
 ρ   Av no of 

             obs per group 
(N x T) 

 Above Trend   Coeff    na**       0.1123**             0.0125**               10,757 
June 1999 –    
  September 2001 SE       (0.0278)             (0.0061) 
                                    
   Chi Sq(1)     21.41**        
    
_____________________________________________________________________
Recession   Coeff     na**      0.0183                   0.0003                  24,344 
October 2001-   
  November 2003 SE        (0.0182)           (0.0007) 
 
   ChiSq(1)        0.31  
   
* denotes significance at 5%; ** denotes significance at 1% 
The significance of the standard deviation is determined by dividing the coefficient by 
its standard error and assuming this has an approximate t-distribution. 
 

Ref: \stata\p3p24.log
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Table 4 
Borrower dataset: Parameterisation of Equation 8 

 
    
   Coeff  z-stat  Coeff  z-stat 
 
Const   -2.626  -171.67 -3.870  -109.85 
 
Income  -0.000  -0.030    0.000     0.84   
(Base Age: 18-24) 
Age 25-29  -0.073  -3.82**   0.052     2.14** 
Age 30-33  -0.103  -5.10** -0.005   -0.20 
Age 34-37  -0.078  -3.86**   0.028     1.08 
Age 38-41  -0.138  -6.33** -0.023   -0.84 
Age 42-47  -0.112  -5.46**   0.015     0.59 
Age 48-55  -0.200  -9.15** -0.039   -1.42 
Age 56 plus  -0.286  -11.78**   0.016     0.05 
(Base: non self 
     -employed) 
Self Employed    0.60    3.62**   0.052     2.51** 
Time with bank -0.001  -16.54** -0.0004  -6.42** 
No of cards  -0.008  -1.47  -0.010   -1.73 
 
Balance/credit limit      1.809   66.90** 
 
ΔInterest rate  -0.117  -1.89   0.123   1.55 
ΔUnemployment 0.003    2.06**  0.002   1.23 
ΔReal earnings 1.230    2.54**  0.427   0.70 
ΔHouse price      -0.000  -1.92 
ΔTotal Credit      -0.000  -0.79 
 __________________________________________________________________ 
Sd( tY )   0.047  5.53**  0.050  5.22 
ρ    0.0022   Chi sq 20.38** 0.0024 Ch sq (1)=15.85 
* denotes significance at 5%; ** denotes significance at 1% 
The significance of the standard deviation is determined by dividing the coefficient by 
its standard error and assuming this has an approximate t-distribution 
 
 
Ref: stata\p3p21.log & stata\p3p17.log 
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 Table 5 

Aggregate Level Dataset Parameterisations of Equation 6 

 

  Const  sd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
tY

b

b .~
~

21
  ρ     

============================================================= 

Coeff  -2.642** 0.1379** 0.0187**  

SE  0.0164  0.0116  0.0031     

_____________________________________________________________________ 

No Groups (time periods) = 71 

Av no of obs per group = 1 

* denotes significance at 5%; ** denotes significance at 1% 
The significance of the standard deviation is determined by dividing the coefficient by 
its standard error and assuming this has an approximate t-distribution. 
 
Ref: \APACS\a2.html 
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Table 6 

Capital Requirements as a Multiple of LGD implied by Basel II Accord 

           ______________________________________________________________ 

  PD  ρ   Capital Requirement 

 

  0.01  0.004  0.006373 

  0.01  0.006  0.008163 

  0.01  0.04  0.030621 

                     ___________________________________ 

  0.02  0.004  0.011299 

  0.02  0.006  0.014391 

  0.02  0.04  0.051418 

                   ____________________________________ 

  0.03  0.004  0.015635 

  0.03  0.006  0.019844 

  0.03  0.04  0.068735 

            _____________________________________________________________ 

Basel assumed parameters in italics. 
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Fig.1 
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