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Abstract

We propose a new concept for the analysis of games, the TASP, which gives
a precise prediction about non-equilibrium play in games whose Nash equilib-
ria are mixed and are unstable under fictitious play-like learning processes. We
show that, when players learn using weighted stochastic fictitious play and so
place greater weight on more recent experience, the time average of play often
converges in these “unstable” games, even while mixed strategies and beliefs con-
tinue to cycle. This time average, the TASP, is related to the best response
cycle first identified by Shapley (1964). Though conceptually distinct from Nash
equilibrium, for many games the TASP is close enough to Nash to create the ap-
pearance of convergence to equilibrium. In other games, the TASP may be quite
distant from Nash.
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1 Introduction

At the basis of the theory of learning in games is the question as to whether Nash
equilibria are stable or unstable. The hope is to predict play: if an equilibrium is an
attractor for a plausible learning dynamic, we think that it is a possible outcome for
actual play. On the other hand, if a Nash equilibrium is unstable, we would expect
actual players, for example, subjects in an experiment, not to play that equilibrium or
even to be close to it. Shapley (1964) famously found that there are games for which
learning may not approach the only Nash equilibrium but rather will continuously cycle.
If we take this result seriously as an empirical prediction, then there are games in which
Nash equilibrium play will never emerge. Note that Shapley’s result implies that even
play averaged over time should not be close to an unstable equilibrium.

In this paper, we advance the novel hypothesis that even when learning diverges
from equilibrium, it is still possible to make a precise prediction about play. Surpris-
ingly, in games with a unique unstable mixed equilibrium the time average of play may
converge even when players’ mixed strategies do not. If an equilibrium is unstable
under stochastic fictitious play (SFP) with the classical assumption that players place
an equal weight on all past experience, then both mixed strategies and time averages
must diverge from equilibrium. But we find that if greater weight is placed on more
recent experience, as it is in “weighted” stochastic fictitious play, then although the
players’ mixed strategies will approach the cycle of the type found by Shapley, the time
average will converge. We show that, as the level of noise and the level of forgetting
approach zero, the time average of play approaches the TASP (Time Average of the
Shapley Polygon), that is, the time average of the Shapley cycle under the continuous
time best response dynamics. We find that in many cases the TASP is close to the Nash
equilibrium. Since the time average is much easier to observe than mixed strategies, it
may well appear that play has converged to the equilibrium. We can also identify games
where the TASP and Nash equilibrium are quite distinct, and so offer the possibility of
a clearer empirical test between the two.

Specifically, we look at monocyclic games, a class of games that generalises Rock-
Paper-Scissors and that has only mixed equilibria. We provide a sufficient condition for
the instability of equilibrium in such games under both best response and perturbed
best response dynamics in continuous time and show that in this case there is a unique
Shapley cycle which is an attractor for the best response dynamics. We then show
that this implies that the time average of play in the discrete time weighted fictitious
play process will approach the TASP as its step size approaches zero. Furthermore,
the time average of the smooth dynamics associated with stochastic fictitious play will
also approach the TASP when one simultaneously takes the step size and the level of
noise to zero. This is in contrast to the behaviour of the classical fictitious play process,
under which there is no convergence for these games even in time average.

These results are not of purely theoretical interest. They, in fact, arise in direct
response to recent experimental work on the economically important phenomenon of
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price dispersion. Cason and Friedman (2003) and Morgan, Orzen, and Sefton (2006)
report on experimental investigations of the price dispersion models of Burdett and
Judd (1983) and Varian (1980) respectively. Both studies report aggregate data that
is remarkably close to the price distribution that would be generated if the subjects
had been playing the mixed Nash equilibrium. This is surprising if one takes learning
theory seriously, as earlier results by Hopkins and Seymour (2002) indicate that the
mixed equilibria of these models are unstable under most common learning processes.
Cason, Friedman and Wagener (2005) reexamine the data from Cason and Friedman
(2003) and indeed find that play is highly non-stationary and there are clear cycles
present. They therefore reject the hypothesis that subjects were in fact playing Nash
equilibrium. This is also consistent with the earlier results of Brown Kruse et al. (1994).
They find, in an experimental study of a Bertrand-Edgeworth oligopoly market with
no pure equilibrium, that prices cycle but prices averaged across the whole session
still approximate the mixed equilibrium distribution. Our results explain the apparent
empirical paradox. When mixed equilibria are unstable under learning, we predict
persistent cycles in play. Nonetheless, if players learn placing more weight on recent
experience, the time average of play should converge to the TASP, which in these games
is close to the Nash equilibrium.

It is true that there are existing results in learning theory that show convergence
of time averages without convergence to equilibrium. For example, the evolutionary
replicator dynamics cycle around mixed strategy equilibria of zero sum games, but the
time average of the dynamics nonetheless converge (see, for example, Hofbauer and
Sigmund (1998, pp 79,121,130)). That is, convergence must be to a Nash equilibrium
and then only in a relatively small class of games. In contrast, we obtain convergence
in a wide class of games where there is no convergence of any sort under traditional
assumptions. Furthermore, we show convergence to the TASP which is distinct from
both Nash equilibrium and perturbed equilibrium concepts such as quantal response or
logit equilibrium. Alternatively, Hart and Mas-Colell (2000) propose a learning model
where the time average of play always converges to the set of correlated equilibria.
However, this set can be very large, whereas the TASP is a single point. However, the
set of correlated equilibria can be very large, whereas the TASP is a single point.

Fictitious play was introduced many years ago with the underlying principle that
players play a best response to their beliefs about opponents, beliefs that are constructed
from the average past play of opponents. This we refer to as players having “classi-
cal” beliefs. It was in this framework that Shapley (1964) obtained his famous result.
However, even when fictitious play converges to a mixed strategy equilibrium, it does
so only in time average not in marginal frequencies. This problem motivated the intro-
duction of smooth or stochastic fictitious play (see Fudenberg and Levine (1998) for a
survey), which permits convergence in actual mixed strategies. This more recent work
still employs classical beliefs. However, experimental work has found greater success
with generalisations of fictitious play that allow for players constructing beliefs by plac-
ing greater weight on more recent events (see Cheung and Friedman (1997), Camerer
and Ho (1999) amongst many others). This is called forgetting or recency or weighted
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fictitious play. Despite their empirical success, models with recency have not received
much theoretical analysis, largely because they are more difficult to analyze than equiv-
alent models with classical beliefs. This paper represents one of the few attempts to do
so.1

Many years ago, Edgeworth (1925) predicted persistent cycles in a competitive sit-
uation where the only Nash equilibrium is in mixed strategies. This view was for a
long while superseded by faith that rational agents would play Nash equilibrium, no
matter how complicated the model or market. In the case of mixed strategies, learning
theory provides some support for Edgeworth, persistent cycles are a possibility even
when agents have memory of more than the one period Edgeworth assumed (though in
other games, learning will converge even to a mixed equilibrium). Furthermore, recent
learning models that allow for stochastic choices do not imply the naive, predictable
cycles described by Edgeworth. Cycles may only be detectable by statistical tests for
non-stationarity (see Cason, Friedman and Wagener (2005)). In the absence of such
sophisticated analysis, these perturbed Edgeworth-Shapley cycles may to an outside
observer look indistinguishable from mixed equilibrium.

However, tests for cyclical play may not be sufficient to identify the TASP. Following
Brown and Rosenthal (1990), strictly one should reject the hypothesis of Nash equilib-
rium play by experimental subjects if one finds that their play is non-stationary. But
the TASP is not the only alternative hypothesis. For example, suppose subjects were
learning and this was converging to a Nash equilibrium, only asymptotically would play
approach stationarity. In practice, to identify the TASP from experimental data, one
would have to make a detailed econometric investigation of the dynamics to determine
whether play was convergent. So, it would be convenient to have a simpler way of
separating the TASP and equilibrium play. We therefore give an example where the
TASP and Nash equilibrium are quite distinct. These should make possible a simple
test simply based on average play. We are therefore optimistic that the theoretical
results of this paper can and will be tested.

1Fictitious play with finite memory has been considered (see Young (2004, Ch6)). Other learning
models not based on fictitious play where the speed of learning does not decrease over time include
Benaïm and Weibull (2003) and Hofbauer and Sandholm (2005).
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2 Shapley Polygons and Edgeworth Cycles

We start with a generalisation of the well-known Rock-Paper- Scissors game and two
specific examples,2

RPS =
0 −a2 b3
b1 0 −a3
−a1 b2 0

A =
0 -1 3
2 0 -1
-1 3 0

B =
0 -3 1
1 0 -2
-3 1 0

(1)

Game A and game B both have a unique Nash equilibrium in mixed strategies, for
A, x∗ = (13, 10, 9)/32 = (0.40625, 0.3125, 0.28125) and, for B, x∗ = (9, 10, 13)/32 =
(0.28125, 0.3125, 0.40625). They appear to be very similar. Learning theory, however,
says that they are quite different. Specifically, if a single large population of players
are repeatedly randomly matched to play one of these games, most learning and/or
evolutionary dynamics, such as fictitious play, the replicator dynamics, reinforcement
learning or stochastic fictitious play, should converge to (close to) the Nash equilibrium
in game A, but should diverge from equilibrium in game B.

Shapley (1964) was the first to show that there are games in which a learning process
does not converge to a Nash equilibrium. Instead, the fictitious play process that he
examined converged to a cycle of increasing length. We can recreate Shapley’s result in
the context of a single large population who are repeatedly randomly matched in pairs
to play a normal form game such as A or B above. Fictitious play assumes that agents
play a best response given their beliefs. The vector xt represents the belief at time t,
with xit the probability given to an opponent playing his i-th strategy. That is, xt ∈ SN

the simplex SN = {x = (x1, ..., xN) ∈ RN :
P

xi = 1, xi ≥ 0, for i = 1, ..., N}. An agent
then chooses a pure strategy that is in the set of best responses to her current beliefs,
or b(xt).3 The dynamic equation for the fictitious play process in a single population
will be

xt+1 − xt ∈ γt(b(xt)− xt). (2)

with γt being the step size. Classically, beliefs are assumed to be based on the average of
past play by their opponents, which implies that the step size will be equal to 1/(t+1).
An alternative, that is explored in this paper, is that players place a weight of one on last
period’s observation, a weight δ on the previous period, and δn−1 on their experience n
periods ago, for some δ ∈ [0, 1). Then the step size γt will be 1− δ, a constant.

Suppose that δ takes the extreme value of 0, “Cournot beliefs”, so that players
play a best response to the last choice of their opponent. In RPS, as Rock is the
best response to Scissors which is the best response to Paper, we would see a cycle of
the form P, S,R, P, S,R, P, S,R, ..... This is a very simple example of an “Edgeworth

2We use the evolutionary game theory convention for symmetric games and only give the payoffs
for the row player. That is, for a payoff matrix with typical element aij , if the row player chooses
strategy i, and the column player j, row gets aij and column aji.

3As b(·) is not in general single valued, the dynamics arising from fictitious play present certain
mathematical difficulties. See Benaïm, Hofbauer and Sorin (2005) for a full treatment.
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Figure 1: The Shapley triangle for game B with the TASP (T) and the Nash equilibrium
(N).

cycle” of best responses. Clearly, if players follow this cycle the time average of their
play will converge to (1/3, 1/3, 1/3). Of course, for some RPS games, this will be
equal to or be close to the mixed Nash equilibrium. However, one would not describe
this type of behaviour as equilibrium play, as it involves predictable cycles rather than
randomisation. Or, more formally, there is only convergence of the time average, but
not marginal frequencies.

Under classical beliefs, change will be more gradual. For example, in the case of
game B if beliefs are at a point to the right of A1 in Figure 1, where x1 is relatively high,
the best response will be the second strategy, or b(xt) = e2 = (0, 1, 0). Agents in the
population play the second strategy and beliefs about the likelihood of seeing strategy
2 increase. Beliefs move in the direction of the vertex where x2 = 1, until they approach
near A2, and strategy 3 becomes a best response. Then, beliefs will move toward the
vertex e3 = (0, 0, 1) until strategy 1 becomes the best response. That is, there will be
cyclical motion about the Nash equilibrium. In game A, it can be shown that over time
the cycles converge on the Nash equilibrium, but in game B beliefs converge to the
triangle A1A2A3 illustrated in Figure 1 and the cycles are persistent.
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The easiest way to prove such convergence results is to use the continuous time best
response (BR) dynamics, defined as

ẋ ∈ b(x)− x. (3)

For a class of games including the game B given in (1), Gaunersdorfer and Hofbauer
(1995) show that the best response dynamics converge to the “Shapley polygon” (Gilboa
and Matsui (1991) use the term “cyclically stable set”). In game B this is the triangle
A1A2A3 illustrated in Figure 1, but we can give a more general definition.

Definition 1 A Shapley polygon is a polygon in SN withM vertices A1, ..., AM which
is a closed orbit for the best response dynamics (3).

We can then define the TASP as follows.

Definition 2 The TASP (time average of the Shapley Polygon) is

x̃ =
1

T

Z T

0

b(x(t))dt =
1

T

Z T

0

x(t)dt (4)

where x(0) = x(T ).4 That is, it is the time average of the best response dynamics (3)
over one complete circuit of a Shapley polygon.

In the standard case where the best replies along the cycle are pure strategies, it
is possible to be more specific. We label an edge the ith edge if on that edge the ith
strategy is being played. That is, on that edge, b(x) = ei, that is the vector with 1 at
position i and zero elsewhere. Suppose that at some time t0, the dynamics (3) are at
vertex Ai−1. Denote the coordinates of the ith vertex as xAi. Then, because between
Ai−1 and Ai the best response b(x) is ei, the BR dynamics imply the linear differential
equation ẋi = 1− xi with initial condition xi(t0) = x

Ai−1
i . Thus, we have on that edge

xi(t0 + t) = 1 + exp(−t)(xAi−1
i − 1). Let Ti be the total time spent by the continuous

time BR dynamics on the ith edge. Or, let Ti solve x
Ai
i = 1 + exp(−Ti)(xAi−1i − 1).

Then, over one complete circuit of the Shapley polygon, x̃i is the proportion of time
spent on side i, or,

x̃i =
TiPM
j=1 Tj

(5)

Now, Shapley polygons do not exist for every game. For example, in game A in (1)
the Nash equilibrium is a global attractor for the best response dynamics and there is
no Shapley polygon. But for the game B, there is a Shapley triangle (which is unique
and asymptotically stable) and, following Gaunersdorfer and Hofbauer (1995), we can

4The equality of these two time averages follows by integrating the equation (3) along the periodic
solution x(t) over one period [0, T ] such that x(0) = x(T ).
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calculate that A1 = (6, 1, 3)/10, A2 = (2, 6, 1)/9, and A3 = (1, 3, 9)/13 as shown in
Figure 1. The TASP can be computed numerically as x̃ ≈ (0.29, 0.34, 0.37), marked as
“T” in Figure 1.

Benaïm, Hofbauer and Sorin (2005) recently have extended the theory of stochastic
approximation to set valued dynamics. Their results imply that for the game B under
classical fictitious play beliefs the discrete time dynamic (2) will approach the Shapley
polygon. That is, there will be persistent cycles in beliefs, not convergence to equi-
librium. Now, under such classical beliefs, the speed of learning declines each period
with accumulated experience. So, movement around the cycle is slower and slower.
Observed play might look like this P, S,R, P, P, S, S,R,R, P, P, P, S, S, S,R,R,R, .....
Consequently, the time average of play does not converge, see Monderer and Shapley
(1996, Lemma 1) for a general proof.

But what if players place greater weight on more recent experience, with δ not at the
extreme value of 0? We show in the current paper that, like for classical fictitious play,
beliefs will cycle around the Shapley polygon (or close to it), but at constant speed.
Consequently, we can show that, like for the simple Edgeworth cycles, average play will
converge, and for δ close to one this time average will be close to the TASP.

Now, as we see in Figure 1, the TASP is close to the Nash equilibrium of the game
B. So, if the population of players do in fact learn according to weighted fictitious
play, then average play will be close to the Nash equilibrium because average play will
be close to the TASP. However, beliefs will continue to cycle. In contrast, in game A
both beliefs and average play will converge to the Nash equilibrium. The problem is
that beliefs are not directly observable, whereas average play which can be seen, can be
misleading. It would be very easy for an experimenter to conclude in the case of game
B that play had converged to the Nash equilibrium, when in reality only average play
had converged, and to the TASP and not to the Nash equilibrium.

Talk of convergence to point close to but not identical to Nash may well remind
readers of quantal response (QRE) or logit equilibria. The literature on these per-
turbed equilibria is now extensive and there has been considerable success in explaining
empirical phenomena. See, for example, McKelvey and Palfrey (1995) or Anderson et
al. (2002). While they are certainly a competing explanation for non-Nash play, there
are important differences. The most important is that QRE is an equilibrium concept
and assumes stable play. It is, therefore, not consistent with the cycles described above
or the non-stationary behaviour present in much experimental data.

Furthermore, there are games in which the TASP and any Nash or quantal response
equilibrium are quite different. For example, consider a RPS game with the addition
of another strategy D (for “Dumb” as for c > 0 it is not a best response to any pure
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strategy).

RPSD =

0 -3 1 c
1 0 -3 c
-3 1 0 c
d d d 0

(6)

When c > 0, then this game has no pure strategy equilibrium. For example if c = 1/10
and d = −1/10, the unique Nash equilibrium is fully mixed and equal to (1, 1, 1, 17)/20.
It is possible to calculate that, under the BR dynamics, the Nash equilibrium is a
saddle with the stable manifold being the line satisfying x1 = x2 = x3. Thus for almost
all initial conditions, the BR dynamics diverge. When the weights on the first three
strategies are no longer equal, the fourth strategy is not a best reply, so that any weight
on x4 tends to die out as play diverges from equilibrium. But on the face where x4 = 0,
we have the original RPS game, and with the above parameter values, there will be a
Shapley polygon on the face. Indeed, it is easy to calculate the TASP in this case as
(1/3, 1/3, 1/3, 0). That is, the Nash equilibrium places a weight of 17/20 on the fourth
strategy and the TASP places no weight on it whatsoever. For this game, the Nash
equilibrium and the TASP are quite distinct.

3 The Model

Stochastic fictitious play (SFP) was introduced by Fudenberg and Kreps (1993) and is
further analysed in Benaïm and Hirsch (1999), Hopkins (1999b, 2002), Ellison and Fu-
denberg (2000), Hofbauer and Sandholm (2002), Hofbauer and Hopkins (2005). Models
of this kind have been applied to experimental data by Cheung and Friedman (1997),
Camerer and Ho (1999) among others.

Stochastic fictitious play embodies the idea that players play, with high probability,
a best response to their beliefs about opponents’ actions. With classical fictitious play
beliefs, beliefs are constructed from opponents’ past play with every observation is given
an equal weight. However, the experimental studies cited above all find that players
seem to place greater weight on more recent events than is suggested by the classical
model. We will consider both cases.

Here, we concentrate on the case where a large population of players are repeatedly
randomly matched in pairs to play a two player matrix game with N strategies and
payoffmatrix A. That is, for those familiar with evolutionary game theory, we analyse a
single population learning model, rather than the two population asymmetric case (see
Benaïm, Hofbauer and Hopkins (2005) for some discussion of the asymmetric case).
Time is discrete and indexed by t = 1, 2, ..... We write the beliefs of a player as
xt = (x1t, x2t, ...., xNt), where in this context x1t is the subjective probability in period
t that the next opponent will play his first strategy in that period. That is, xt ∈ SN .
This implies that the vector of expected payoffs of the different strategies for any player,
given her beliefs, will be Axt. We write the interior of the simplex, that is where all
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strategies have positive representation, as intSN and its complement, the boundary of
the simplex as ∂SN . We also make use of the tangent space of SN , which we denote
RN
0 = {ξ ∈ RN :

P
ξi = 0}.

Given fictitious play beliefs, if a player were to adopt a strategy p ∈ SN , she would
expect payoffs of p ·Ax. Following Fudenberg and Levine (1998, p. 118 ff), we suppose
payoffs are perturbed such that payoffs are in fact given by

π(p, x) = p · Ax+ λv(p) (7)

where λ > 0 scales the size of the perturbation. One possible interpretation is that the
player has a control cost to implementing a mixed strategy with the cost becoming larger
nearer the boundary. In any case, given appropriate conditions on the perturbation
function v(·) (again see Fudenberg and Levine), for each fixed x ∈ SN there is a unique
p = p(x) ∈ intSN which maximizes the perturbed payoff π(p, x) for the player. Note
that the original formulation of SFP due to Fudenberg and Kreps (1993), see also
Fudenberg and Levine (1998, p. 105 ff), involved a truly stochastic perturbation of
payoffs. As Hofbauer and Sandholm (2002) show, the truly stochastic formulation is a
special case of the deterministic approach. In either case, the solution to the perturbed
maximisation problem is a smooth function p(x) which approximates the best reply
correspondence. The best-known special case is the exponential or logit rule.

We now turn to the dynamic process by which beliefs are updated. We look at a
large population: each period the whole population is randomly matched in pairs to
play. After each round the vector Xt ∈ SN of actions chosen by those who play is
publicly announced. The law of large numbers ensures that, given current beliefs xt,
realised play is Xt = p(xt). For example, in Cheung and Friedman (1997), a finite
of number of subjects were repeatedly randomly matched in pairs. In the “history”
treatment, after each choice they are then informed of the play of all subjects. This
treatment, in which all agents play every period and all see the same information is
similar to the formal model described above.5

In either case, each individual then updates her belief according to the rule,

xt+1 = (1− γt)xt + γtXt. (8)

The step-size γt will play an important role in our analysis. Under classical fictitious
play one sets γt = 1/(t+ 1). That is

xt+1 =
Xt +Xt−1 + · · ·+X1 + x1

t+ 1
,

or all observations and initial beliefs x1 are given equal weight.6 Here, we explore the
implications if players place an exponentially declining weight on past experience with

5Note that a full treatment of actual experimental protocols would allow for finite numbers, subject
heterogeneity in initial beliefs and each player making different observations. The only papers that
tackle these problems analytically rather than by simulation are Hopkins (1999a) and, more recently,
Fudenberg and Takahashi (2007).

6One can give a different weight to initial beliefs and more generally still one can simply say the
step size is of order 1/t.
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δ being the forgetting factor. This implies that γt = 1− δ, a constant, as

xt+1 = δxt + (1− δ)Xt = (1− δ)
¡
Xt + δXt−1 + · · ·+ δt−1X1

¢
+ δtx1, .

Setting δ = 0 induces “Cournot” beliefs, only the last period matters, while as δ ap-
proaches 1, the updating of beliefs approaches that of classical fictitious play.

If we assume that all agents have the same initial belief and use the same updating
rule then, in the large population case, the beliefs in the population will evolve according
to

xt+1 − xt = γt(p(xt)− xt) (9)

where γt is the step size. We will also need the continuous time equivalent to the above
discrete dynamic. We have already seen the BR dynamics (3) which corresponds to (2).
For the perturbed process (9), we clearly have

ẋ = p(x)− x, (10)

which we can call the perturbed best response (PBR) dynamics.

As is now well known, the steady states of SFP and, equally, the PBR dynamics are
not Nash equilibria. Rather, they are perturbed equilibria known as quantal response
equilibria (QRE) or logit equilibria. Specifically, a perturbed equilibrium x̂λ satisfies

x̂λ = p(x̂λ). (11)

Of course, what this equilibrium relationship implies is that beliefs must be accurate
or equilibrium beliefs x̂λ are equal to the equilibrium mixed strategy p(x̂λ). However,
how close a resulting equilibrium will be to Nash depends on the parameter λ, with the
set of perturbed equilibria approaching the set of Nash equilibria as λ approaches zero.
See McKelvey and Palfrey (1995) or Anderson et al. (2002) for further details.

4 Results

In this section we analyse the behaviour of SFP in games with unstable equilibria. We
first examine the behaviour of weighted SFP and then contrast our results with the very
different behaviour that occurs under classical beliefs. The learning processes that we
analyse unfold in discrete time. However, to understand their asymptotic behaviour, it
will be crucial to look at some associated continuous time dynamics, the BR (3) and
PBR (10) dynamics. Clearly, these are the continuous time analogues of (2) and (9)
respectively.

We consider a class of games that Hofbauer (1995) calls monocyclic (see also, Hof-
bauer and Sigmund (1998, Chapter 14.5)) that generalises the RPS game given in (1).
They are two player normal form games with a payoff matrix A that has the following
properties:

10



1. aii = 0

2. aij > 0 for i ≡ j + 1 (mod N) and aij < 0 else.

The first condition is only a convenient normalisation. Clearly, the strategic proper-
ties of these games would not be altered by the addition of a constant to a column. The
second condition is much stronger and it ensures that, as the name suggests, monocyclic
games have a unique cycle of best responses. Monocylic games do not have equilibria
in pure strategies, only mixed equilibria. However, the equilibria of monocyclic games
are not necessarily unique and do not have to be fully mixed (see Example 1 below).

Equilibria of monocyclic games can be stable or unstable under learning. For exam-
ple, under the continuous time BR dynamics, there is a knife-edge. In particular, if x∗

is a completely mixed Nash equilibrium, so that x∗ ·Ax∗ is the equilibrium payoff, then
if x∗ ·Ax∗ < 0, the equilibrium is unstable, but if x∗ ·Ax∗ ≥ 0, then the equilibrium x∗

is globally asymptotically stable (see Hofbauer (1995)). For the particular case of 3× 3
monocyclic games with an unstable mixed equilibrium, Gaunersdorfer and Hofbauer
(1995) show that the best response dynamics converge to the “Shapley triangle” intro-
duced in Section 2. The essence of the proof is that it establishes that the best response
dynamics in monocyclic games move toward the set defined by max(Ax)i = 0. That
is, the set where the best payoff against the current population state is zero. In games
where equilibrium payoffs are negative, this set is distinct from the Nash equilibrium
and so the dynamics must diverge from equilibrium. In contrast, the Shapley polygon
is contained in this set.7 In fact, in the 3 × 3 case the Shapley triangle and the set
max(Ax)i = 0 are identical. Proofs are in the Appendix.

Proposition 1 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium
x∗ and x∗ · Ax∗ < 0. Then the mixed Nash equilibrium x∗ is unstable under the best
response dynamics (3). Furthermore, there is a Shapley polygon, and from an open,
dense and full measure set of initial conditions, the best response dynamics converge
to this Shapley polygon. The time average from these initial conditions converge to the
TASP x̃. That is,

lim
T→∞

1

T

Z T

0

x(t)dt = x̃

For more than 3 strategies, there are games that have cycles of best responses but
which are not monocyclic. The problem is that in such games there may be multiple
Shapley polygons. Even worse, the best response dynamics may not converge to either
to a Nash equilibrium or a Shapley polygon and instead follow a chaotic orbit. This
is why results for N × N games on convergence to equilibria are rare and to periodic
orbits rarer still. Thus, what is remarkable about Proposition 1 is not that it employs
restrictive assumptions, it is that there are any such results at all. Note that the above
proposition does not claim that there is convergence to the Shapley polygon from all

7This relies on the assumption that A is normalised so that Aii = 0 for all i.
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initial conditions. For example, there may be mixed strategy equilibria that are saddle
points, and thus attract some initial conditions.8

We now consider what the above results on continuous time systems imply for the
underlying discrete time learning process. Consider a monocyclic game, with a mixed
equilibrium unstable under the best response dynamics. Clearly, we would expect beliefs
for the discrete time best response dynamics (2) to diverge as well. However, what
happens to the time average of play and of beliefs? Remember that under fictitious
play xt the state variable represents beliefs. The pure strategy that is actually played
is given by b(xt). Let wt be the time average of play, and ŵt the time average of beliefs,
under this process. That is,

wt =
1

t

tX
s=1

b(xs), ŵt =
1

t

tX
s=1

xs.

For the perturbed process (9) corresponding to SFP, we can examine similar averages.
We can write them as, respectively,

zt =
1

t

tX
s=1

p(xs), ẑt =
1

t

tX
s=1

xs.

Remember that in weighted (stochastic) fictitious play the step size of learning γt is
equal to a constant, 1− δ, where δ is the recency parameter (in contrast to the classical
case where γt is decreasing). We examine what happens to the time averages of play as
δ approaches 1 and thus γ approaches zero.

Proposition 2 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium
x∗ and x∗ · Ax∗ < 0. Assume the step size γt = γ, a constant. Then, for the discrete
time best response dynamics (2), for almost all initial conditions x

lim
γ→0

lim
t→∞

wt = lim
γ→0

lim
t→∞

ŵt = x̃.

Now the upper-semicontinuity result in the proof covers also the discretizations (9)
since all limit points of p(y) as y → x and λ→ 0 are contained in b(x). Therefore, we
obtain a similar result for SFP.

Proposition 3 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium
x∗ and x∗ · Ax∗ < 0. Assume the step size γt = γ, a constant. Then, for the discrete
time perturbed best response dynamics (9) from almost all initial conditions x

lim
λ→0,γ→0

lim
t→∞

zt = lim
λ→0,γ→0

lim
t→∞

ẑt = x̃.

8See Benaïm, Hofbauer and Hopkins (2005) for some examples of monocyclic games with mixed
equilibria that are saddle points and of games that are not monocyclic.
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The importance of this result is that the time average of play in the large population
model of weighted SFP converges to the TASP.

Corollary 1 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗

and x∗ ·Ax∗ < 0. Then, in the large population model of weighted SFP, for any ε > 0,
for all values of λ sufficiently small, t sufficiently large and δ sufficiently close to one,
the time average of play zt and the TASP x̃ satisfy ||zt − x̃|| < ε.

Furthermore, cyclic play actually leads to higher payoffs than playing the Nash
equilibrium. Specifically, on the TASP in monocyclical games, the average payoff in
the population b(x) · Ab(x) is zero whereas the condition for the Nash equilibrium to
be unstable is that the equilibrium payoff is strictly negative. Hence, since play will be
close to the TASP for λ small, the average payoff under weighted SFP p(xt) · Ap(xt)
will be close to zero and hence higher than in equilibrium.

Corollary 2 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗

and x∗ ·Ax∗ < 0. Then, in the large population model of weighted SFP, for any ε > 0,
for all values of λ sufficiently small, t sufficiently large and δ sufficiently close to one,
average payoffs satisfy |p(xt) · Ap(xt)| < ε.

We can compare the result of fictitious play under recency with what happens to
fictitious play under classical beliefs, where every observation is given an equal weight
and so the step size γt is not constant but decreases. Under classical beliefs, the time
average of playwt and beliefs ŵt are asymptotically identical. When a mixed equilibrium
is unstable, typically neither will converge. That is, the limits, rather than being equal
to the Nash equilibrium or to the TASP, simply do not exist.

This follows as Proposition 1 establishes that in a class of monocyclic games mixed
equilibria are unstable under the BR dynamics (3), and by the stochastic approximation
results of Benaïm, Hofbauer and Sorin (2005), beliefs under fictitious play should also
diverge from these equilibria. Since by definition classical beliefs are formed from the
time average of play, the time average, as for the BR dynamics, for most initial condi-
tions should approach the Shapley polygon. That is, there will be persistent cycles in
the time average of play and not convergence.

In contrast, in stable games, like example A in (1), there is relatively little difference
in behaviour under classical and weighted SFP. The game A is included in the class
of games for which Hofbauer and Sandholm (2002) show that the (perturbed) mixed
equilibrium will be a global attractor for the perturbed dynamics (10). Thus, play will
converge to equilibrium under classical SFP. While this is not the case for weighted SFP
for all values of the recency parameter δ, standard results from the theory of stochastic
approximation (for example, Theorem 3, p44, Benveniste et al. (1990)) imply that
asymptotic play will approach the perturbed equilibrium, as one takes the limit δ → 1.
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5 Conclusions

Much of the recent work on learning in games has been concerned with selection be-
tween different Nash equilibria, or with providing an adaptive basis for equilibrium play.
In this paper, we take a completely different approach. We found that in some games
learning under stochastic fictitious play has a non-equilibrium outcome, which never-
theless gives a precise prediction about play. We introduced the TASP (time average of
the Shapley polygon), building on earlier results by Shapley (1964) and Gaunersdorfer
and Hofbauer (1995), as an outcome for the time average of play. This we suggest
could be useful in understanding behaviour in a number of economically interesting
models, including the Varian (1980) model of price dispersion and Bertrand-Edgeworth
competition.

This also represents one of the few attempts at analysis of learning in games when
players place greater weight on more recent experience. Most previous work on stochas-
tic fictitious play and reinforcement learning has examined models with learning that
slows over time. This is despite the fact that most empirical work fitting learning mod-
els to experimental data has found that weighting recent experience more highly gives a
better fit. The two types of models do give similar predictions when considering games
that have Nash equilibria that are stable under learning. The finding here, however, is
that they give radically different results when considering equilibria that are unstable.

However, there are other learning models besides fictitious play (see Young (2004)
for a recent survey) which do not predict divergence. One is due to Hart and Mas-
Colell (2000). In their model, the time average of play converges to the set of correlated
equilibria of the game in question. In the RPS games the only correlated equilibrium is
the Nash equilibrium (see Viossat (2005)) and so the Hart—Mas-Colell model predicts
learning should always converge in this class of games, something that is in distinct
contrast with the learning models considered here.9 Equally, Foster and Young (2003)
introduce a learning model where each player forms hypotheses about the strategies of
her opponents and plays (almost always) a best response given her beliefs. When her
observations of her opponents’ play are sufficient to reject her current hypothesis, she
forms a new hypothesis. Foster and Young show that there are parameter values of the
model such that players’ mixed strategies will be close to some Nash equilibrium for most
of the time in any game. It thus offers a different prediction from stochastic fictitious
play, which predicts that players’ mixed strategies should diverge from equilibrium in
some games.

In this paper, we have obtained a series of theoretical results on learning. These are
asymptotic results that also depend on taking limiting values of two key parameters
that determine the level of noise and recency respectively. This may generate some

9In contrast, Shapley’s original game is an example of a game where if beliefs cycle on the Shapley
polygon, play would be consistent with a correlated equilibrium. In such games the model of Hart and
Mas Colell is not in conflict with the weighted version of SFP. However, the set of correlated equilibria
is typically large, whereas the TASP is a single point, and thus as a prediction it offers greater precision.
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skepticism about the results’ empirical relevance, firstly because real phenomena occur
in finite time, and second, because estimates of these parameters from experimental data
are not close to these limit values. However, if the TASP is to be dismissed on this basis,
so should Nash equilibrium. If one takes stochastic fictitious play or its variants such as
EWA learning (Camerer and Ho (1999)) seriously as models of human behaviour, Nash
equilibrium play only occurs as the asymptotic limit of learning behaviour, and then
only if the appropriate parameters are at their limit values. Indeed, recent research
has found that perturbed equilibria, such as quantal response equilibria (McKelvey
and Palfrey (1995)), that allow the noise parameter not to be at its limit, often fit
experimental data better.

The point is that the TASP, like Nash equilibrium, offers a qualitative prediction
about behaviour in games that can be made without any parameter estimation. Thus,
these concepts can still be empirically useful as an initial hypothesis. One can then
go on to make their predictions more precise by using richer models that employ more
parameters. In the case of the TASP, it can be generalised by looking at the time average
of stochastic fictitious play for which there are two parameters, noise and recency, that
can affect the long run outcome. However, these parameters have been jointly estimated
in existing attempts to fit stochastic fictitious play to experimental data (see Cheung and
Friedman (1997), Camerer and Ho (1999) among others). Thus, there is no fundamental
barrier to taking the TASP to the data.

Appendix

Proof of Proposition 1: Let Bi be set of points x ∈ SN with i being the unique best
reply, and Bij be set of points x ∈ SN with precisely two pure best replies i and j. The
union of all Bi is open, dense and has full (N−1) dimensional Lebesgue measure in SN .
Let B =

Sn
i=1B

i∪
Sn

i=1B
i−1,i. We will show that B is strongly forward invariant under

the best response dynamics and all orbits there approach a unique Shapley polygon
contained in B.

Suppose x ∈ B1, i.e., (Ax)1 > (Ax)j for all j 6= 1. Then x(t) = e−tx + (1 − e−t)e1
and (Ax(t))1 = e−t(Ax)1 and for j 6= 1, 2,

(Ax(t))j = e−t(Ax)j + (1− e−t)aj1 < e−t(Ax)j < e−t(Ax)1 = (Ax(t))1. (12)

So along the ray from x to e1, the best response can only switch from 1 to 2 which
indeed must happen for some t > 0, since a21 > 0.

Hence the orbit hits B12. The only way to continue is towards e2. Repeating the
above argument shows that orbits in B12 move into B23, etc, and finally from BN1 back
into B12. This defines a continuous return map f : BN1 → BN1. f is single-valued as
solutions starting in B are unique. f is a composition of projective maps and hence
a projective map itself. Being uniformly continuous, it can be extended to the closure
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B̄N1 of the convex polyhedron BN1. A fixed point of f in BN1 generates a closed
orbit under the best response dynamics, an invariant N-gon, i.e., a Shapley polygon.
However, since B̄N1 contains the interior equilibrium x∗ we cannot directly apply a fixed
point theorem to prove the existence of the Shapley polygon.

Define V (x) = maxi(Ax)i. As shown above for x ∈ B1, along any solution x(t) ∈ B,
V (x(t)) = e−tV (x). Hence V (x(t))→ 0, as t→∞.

The set B0 = B ∩ {x ∈ SN : V (x) = 0} is forward invariant and its closure contains
no equilibrium, since V (x∗) = x∗·Ax∗ < 0 holds for each equilibrium x∗ (by assumption
for the interior equilibrium x∗, and automatically for each boundary equilibrium of a
monocyclic game). Since V (x∗) < 0 and V (ei) = ai+1,i > 0, each ray from x∗ to a
point x near ei hits the set {V = 0} in a unique point which is thus contained in
Bi+1
0 = Bi+1 ∩ {x ∈ SN : (Ax)i+1 = 0}, a convex (N − 2)—dimensional set. The
sets Bi,i+1

0 are therefore (N − 3)—dimensional. The closure B̄N1
0 is a closed and convex

polyhedron, mapped by f into itself. So by Brouwer’s fixed point theorem, it contains
a fixed point (which cannot be an equilibrium). Its orbit is a Shapley polygon Γ.

To prove uniqueness and stability of this Shapley polygon, we use the projective
metric d, as in Gaunersdorfer and Hofbauer (1995). The distance between two points
x, y ∈ intBN1

0 (the relative interior10 of BN1
0 ) is given by the logarithm of the double

ratio

d(x, y) = | log
µ
xp

xq
:
yp

yq

¶
|

with p, q being the intersection points of the line through x, y with the relative boundary
of BN1

0 . Since f(B̄N1
0 ) ⊆ B̄N1

0 , we have d(f(x), f(y)) ≤ d(x, y) for x, y ∈ intBN1
0 . Now

(12) holds for j 6= 1, 2 with a strict inequality even under the weaker assumption
(Ax)1 ≥ (Ax)j for all j and (Ax)1 > (Ax)2. This shows that for x ∈ bdBN1

0 (with at
least a third best reply j besides N and 1), f(x) ∈ intBN1

0 = BN1
0 ∩ intSN . Hence

f(B̄N1
0 ) ⊆ intBN1

0 , and hence d(f(x), f(y)) < d(x, y) for x, y ∈ intBN1
0 with x 6= y.

Hence, by a variant of Banach’s fixed point theorem, the fixed point of f is unique and
attracts all orbits in B̄N1

0 .

Hence all orbits in B approach the Shapley polygon Γ, and Γ is Lyapunov stable.

Remark. The complement of B consists of all points with at least two non—
successive pure best replies (or more than two best replies). The behavior of orbits
starting outside B depends in an intricate way on the payoff matrix. Typically, solu-
tions starting in x /∈ B are not unique. From every x /∈ B (except possibly x∗) there
exists at least one solution that enters B and hence converges to Γ. The solutions stay-
ing in SN \B can converge to a Nash equilibrium or, for N ≥ 5, to an unstable Shapley
polygon contained in SN \B.

Proof of Proposition 2: The Shapley polygon Γ with corners A1, · · · , AN is an

10The relative interior intC of a convex set C ⊆ RN is the interior of C within the affine space
spanned by it. The relative boundary of C is then given by bdC = C̄ \ intC.
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attractor (= asymptotically invariant set) for (3) whose basin of attraction B is open
and dense in SN , and the complement SN \ B has zero Lebesgue measure. For small
γ > 0, the map (2) has an attractor nearby with basin of attraction exhausting B as
γ → 0. (This is well-known for discretisations of differential equations, see e.g. Stuart
and Humphries (1996) or Garay and Hofbauer (1997). The corresponding result for
differential inclusions needed here for the BR dynamics follows readily by combining
their results and methods of proof with those in Benaïm, Hofbauer and Sorin (2005)).
The time average ŵt converges to a space average over the attractor of the map (2)
with respect to some invariant measure, which tends to the unique measure invariant
under the BR dynamics concentrated on the Shapley polygon in the limit as γ goes to
zero (Miller and Akin (1999)). The space average with respect to this unique invariant
measure equals the time average given by the expression (5). The other limit follows
from the relation

wt − ŵt =
1

t

tX
s=1

(b(xs)− xs) =
1

t

1

γ
(xt+1 − x1)→ 0,

as t approaches infinity.
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