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Abstract 
 
We review the incorporation of time varying variables into models of the risk of 
consumer default. Lenders typically have data which is of a panel format. This allows 
the inclusion of time varying covariates into models of account level default by 
including them in survival models, panel models or ‘correction factor’ models. The 
choice depends on the aim of the model and the assumptions that can be plausibly 
made. At the level of the portfolio, Merton-type models have incorporated 
macroeconomic and latent variables in mixed (factor) models and Kalman Filter 
models whilst reduced form approaches include Markov chains and stochastic 
intensity models. The latter models have mainly been applied to corporate defaults 
and considerable scope remains for application to consumer loans. 
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 Time Varying and Dynamic Models for Default Consumer 

Risk in Consumer loans 

 

1 Introduction 

The aim of this paper is to critically review alternative dynamic approaches to 

consumer credit risk modelling. By ‘dynamic’ we mean models that relate aspects of 

credit risk to determining factors that vary over time. We use the term ‘consumer 

credit’ generically;  we mean both unsecured credit, such as that extended on credit 

cards, personal loans, payment after use of utilities, and secured loans such as 

mortgages. Virtually all application risk models used by lenders have, until very 

recently, been static in the sense that they have related the probability that an 

applicant defaults in the first 12 or 18 months of holding a fixed term loan or a credit 

card to an applicant’s characteristics which were known at the time of application 

only. Behavioural models include predictors that vary over time, notably recent 

repayment and account activity, but they rarely, if ever, include indicators of the 

macroeconomy. However there is considerable evidence that the state of a country’s 

macroeconomy affects, on average, the chance an applicant will default in the future 

and the ranking in terms of risk of individuals who apply for a loan (Crook & Banasik 

2005, Whitely et al 2004). It may also affect the value at risk of a portfolio of loans. 

The importance of such concerns is evidenced by the recent banking crises throughout 

the world. Consumer default modelling shows parallels with other statistical 

application areas such as medicine or educational attainment at the level of an 

individual but differs at the aggregate level. For example at the level of the individual, 

survival of credit worthiness parallels cancer survival in medicine. At the aggregate 

level (for example loan portfolio versus cancer prevalence), unlike medical 

applications default models have been used in regulatory requirements and  this has 

led to different statistical models. 

 

In this paper we firstly discuss models that predict the risk of default of an individual 

account and secondly, models of the risk associated with portfolios of loans. We 

conclude that consumer risk models can be made more accurate in their predictions of 

the probability a borrower will default and more informative about the level of value 



 3 

at risk when states of the economy and dynamic behaviour are included, 

appropriately, in models of consumer risk.  

 

2. Notational Conventions 

 

Throughout the paper we adopt the following notational conventions. The letter t 

denotes calendar time and t = iia τ+  where ia  is origin time (date of account 

opening) and iτ  is duration time for borrower i, i = 1…N. Time has different possible 

granularities, for example, typically, monthly or annually. A term with a subscript i 

varies between cases but not over time; a term subscripted t varies over calendar time 

but not cases; and a term subscripted it may vary both over time and between cases. 

The term itx   denotes  a vector of characteristics of an applicant i in time period t that 

are observed to vary over time, e.g. balance outstanding on a credit card. The term iw  

denotes a vector of characteristics that are specific to a borrower but which are 

observed at only one point in time, and are not observed to change over time, e.g. 

variables from an application form (even if de facto their values do change over time). 

The term tz  denotes a vector of variables that vary over time, but which are not 

specific to an individual borrower e.g. macroeconomic variables. The term i0β    

denotes  an individual borrower specific constant. The term kβ  is a vector of 

parameters to be estimated with the convention 1β  relates to vector iw , 2β relates to 

vector itx , and 3β  relates to vector tz . The terms 321 γ,γ,γ  denote matrices of 

parameters to be estimated. With one exception, a single variable is represented by a 

letter in upper, non-bold, case and its realisation in lower, non-bold, case. The 

exception is capital letter K which will refer to a constant. Later in the paper we write 

the general form )|(. tt zZP =  as )( tzp  for convenience. Whilst we express 

relationships mathematically, the finance literature sometimes uses imprecise terms. 

One example is to use capitalised symbols because of the mnemonic. We have 

followed this usage, for example PD, in section 3, albeit sparingly.  

 

3 Credit Risk Models at the Level of the Individual Account 

3.1 Generic Model 
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We begin by describing a very general and simplified statistical model of the 

probability of default of a borrower, i, during a discrete time period t. Let *
itd  be a 

latent continuous variable that represents ‘utility from default’ of borrower i, in period 

t. Define the default event 1=itd  if 0* >itd  and  non-default 0=itd  if 0* ≤itd . 

Suppose 

itt
T
it

T
iti

T
it

T
t

T
it

T
iiitd ηβ +++++++= zγwzγxwγxβzβxβw 3213210

* ,           (1) 

and define 

tiititit dPPD z,wx ,|1( == ),                                                    (2) 
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T
t

T
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T
iitiitit FdP zγwzγxwγxβzβxβwzwx ++++++== β , 

(3) 

where F is a cumulative distribution function of η . The i
T
it wγx 1 , t

T
it zγx 2  and t

T
i zγw 3  

terms are linear combinations of interaction terms multiplied by their coefficients . 

The time subscripted variables may involve lags of differing lengths.  

  

Suppose we know this model. By imposing restrictions, or making assumptions about 

various aspects of this model, we can show how various predictive models that 

currently are, or might be, used by lenders are encompassed within it (for a review of 

current methods see Crook et al: 2007 and Thomas et al: 2002). For example, by 

restricting the elements in each of the γ  matrices and each of the β vectors, except for 

those in 2β , to be all zeros and restricting i0β to be a constant for all i, we gain a 

typical application risk model  

 

)( 10)|1( βww T
iiiit FdP +== β ,                                           (4) 

 

where in this case, t is a period extending, typically, from 0 to 12 months into the 

future, the iw  vector is of application characteristics, or credit bureau variables 

measured only at the time of application for credit, and itd  is as in equation (3). The 

function F is typically logistic (see Hosmer and Lemeshow 2002). Practitioners often 

apply a linear transformation to the term on the left hand side of equation (4) to gain a 



 5 

‘score’, known as a ‘credit score’. Alternatively they may gain a score by multiplying 

a predicted logit value by a constant. 

 

In general there are three types of reasons why a borrower defaults. One reason is 

strategic, where the value of the debt outstanding exceeds the value of the asset which 

the debt was incurred to buy, plus transaction costs. The second is that an unexpected 

negative net income shock occurs, for example loss of job, divorce, health expenses, 

increases in interest payment etc. The third is simply mismanaging one’s expenditure 

(see Chakravatti and Rhee (1999)). Equation (3) decomposes the variance of PDit into 

that due to (a) variables  the values of which may vary between cases  but not over 

time, and variables whose values may vary between cases and over time but in 

practice are observed only at one point in time – the variables in iw ; (b) variables that 

vary over time, are observed to do so and whose values are specific to the case – the 

variables in itx ;  and (c) time varying variables that are not specific to the case – the 

variables in tz . Examples of category (a) variables are time at address and net 

income. It is possible that both affect the chance that a borrower will default and both 

vary over time. But in practice neither is observed, except at the time of application. 

Examples of category (b) variables include, in the case of credit cards, balance 

outstanding in the previous period. Examples of category (c) variables include 

measures of the state of the economy.  Thus if interest rates rise and this affects all 

borrowers, and we do not have a variable in itx  that describes the interest rate paid at 

time t by case i, then the increase in the interest rate is likely to affect all borrowers 

including i and so should be included. Similarly a rise in the unemployment rate is 

likely to be correlated with the chance that any one case becomes unemployed and 

less able to repay his/her debts. In addition, when macroeconomic variables change 

this may affect some applicants differentially and so interactions between iw and tz  

and between itx  and tz  are appropriate. 

 

Returning to equation (4), the assumption that the variables in iw  can appropriately 

represent the effects of the itx , tz  variables and interaction terms is highly unlikely to 

be valid, yet in practice is often made.  
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Now consider equation (3) but suppose we restrict the elements in the β  vectors and 

γmatrices that relate to tz to be zero, so that the right hand expression includes only 

the covariates in iw  and itx , and restrict i0β to be a constant for all i . If the variables 

in iw  and itx  include covariates that represent aspects of the applicant’s borrowing 

behaviour in periods prior to that for which we wish a prediction of PDit, then we 

have a typical behavioural model. The covariates, as used in practice, consist of two 

types of variables: exogenous, like income and interest rates on borrower i’s loans, 

and also endogenous behaviour. Note also that this type of model, which is used 

extensively by banks for borrowers of some standing (Thomas et al: 2002), omits the 

effects of changes in the economy, which may not be directly represented by variables 

in itx .  

 

It is important to notice that the model represented by equation (3) can be applied to 

an unbalanced panel dataset albeit with many variables, the variables in iw , 

remaining constant across all time periods and with the variables in tz  remaining 

constant across all of the cases. This is, of course, exactly the format of data typically 

held by lenders. The panel is unbalanced in that over calendar time some borrowers 

will be charged off and their subsequent performance will be missing and some will 

enter the data set at different calendar times. There are alternative ways of estimating 

the model represented by equation (3) and using it for prediction. One possibility is to 

use survival analysis (see Kalbfeisch and Prentice 2002 and Cox and Oakes 1984). 

 

3.2 Survival Models 

 

On the rare occasions in which survival analysis is used in practice for consumer 

credit risk modelling, time is regarded as continuous, whilst de facto it consists of 

discrete intervals. We begin by discussing the continuous time case. In a continuous 

time survival model we are interested in the probability at an instant in time of leaving 

one state, such as ‘being up to date with payments’, and moving into another state 

such as ‘90 days overdue’. Let Ti denote the amount of time until a borrower defaults. 

The probability of default during the next instant, conditional on not having defaulted 

before, is given by the hazard function (where τ  is duration time) 
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The probability of surviving (i.e. not being in the default state) can be written in terms 

of the hazard function 
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Several papers have used Cox proportional hazard (PH) models to model the hazard 

function and associated survival probabilities. The PH model can be written as  

 

)exp()(),( 101 βwβ,w T
iii τλτλ = ,     (7) 

 

where the baseline hazard, )(0 τλ  is a function only of duration time and is the same 

for all borrowers. This is dynamic only in the sense that the predicted hazard value, 

and corresponding predicted survival probability, vary with duration time, with the 

entire baseline hazard function being shifted according to the static iw variables, 

which in the credit risk modelling context are determined at the time of application 

(see Banasik et al: 1999, Stepanova & Thomas: 2001, Andreeva et al: 2005, 2007, Ma 

et al: 2009). However Cox PH models also allow the inclusion of time varying 

covariates. Then such a model can be written as 
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where covariates )τ(x i  take on values specific to the case and vary over duration 

time, and )z( iia τ+  are covariates that vary over calendar time, such as 

macroeconomic variables. The terms 1β , 5β and 6β are vectors, and 654  and γ,γ,γ  are 

matrices, of parameters to be estimated. In this specification predicted changes in the 

economic environment after the opening of an account affect the predicted hazard and 

survival probability in each future time period. Interaction terms, involving tz , for 
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example )(1 ii
T
i a τ+zγw , allow changes in the macroeconomic variables to alter the 

ranking of the hazards and of the survival probabilities.  

 

This model, albeit without the )(τix  variables, has been used by Bellotti and Crook 

(2008). Using a range of costs of type I and of type II errors they compared the 

predictive performance of three types of model when used to predict whether an 

applicant defaulted within 12 months of opening a credit card account. The three 

types of model were a survival model with seven macroeconomic variables, a survival 

model and a logistic regression, each without such variables. They found that the 

survival model with the macroeconomic variables outperformed the other two models. 

The most influential variables were interest rates, real earnings and consumer 

confidence respectively. 

 

Survival models have a number of advantages over static logistic regression (LR) 

models. First they allow the prediction of the probability of default over any time 

horizon not just that for which the dependent variable for the LR was defined. In 

addition they predict the probability of default conditional on not having defaulted 

before, static LR does not do this. Third, because the survival probability for each 

period can be predicted it can be used to predict profitability (see Ma et al: 2009). 

 

3.3 Panel Models 

 

Equation (3) is a binary choice panel model where the time periods are discrete. As 

mentioned earlier, financial institutions typically have data which is in panel format. 

One might then use the time variation in the panel to incorporate time varying 

covariates. 

 

In panel models, the dependent variable can have very different definitions compared 

to survival models or models of the occurrence of a once only event  (See Diggle et al, 

2002 and Baltagi, 2008 for explanations of panel models). In a panel we may attempt 

to predict whether a borrower will miss a single payment in a time period, conditional 

on iw , itx  and tz  covariates (though not necessarily conditional on the event never 

having happened before). Missing a single payment does not necessarily imply being 
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three payments behind, a common definition of default, though it would if in the 

previous period the borrower was already two payments behind. Conventional 

predictions from random effects models assume the out of training sample random 

effects term ( i0β  in equation (1)) is zero. 

 

Another possibility is that the dependent variable indicates whether the borrower 

reached 3 payments overdue in a month, and we model the occurrence of a missed 

third payment (though not necessarily in successive months) conditional on never 

having missed a third payment before. 

 

Given that panel data are measured at discrete time intervals, with an appropriately set 

up data matrix we can estimate a discrete survival model. To see this, (and omitting 

the z variables for simplicity), the discrete hazard function is 

 

),,1(

),,(
1)1|),1[(

1−−
−=−≥−∈=

τ

τ

τ
ττττ

ii

ii
ii

d
i S

S
TTPh

xw
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 ,                 (9) 

 

where d
ih denotes the discrete hazard for case i, and S(•) denotes the probability of 

survival. One specification of this relationship is due to Cox (1972): 

                              

 ,))((logit)),,((logit 210 βxβwxw T
i

T
i

d
ii

d
i hh ττ ττ ++=                                 (10) 

 

where )(0 τdh  is a discrete baseline hazard function. 

 

One way of estimating the parameters in the first term on the right hand side is to 

represent it by a series of dummies, one for each time interval (Jenkins 1995), but 

functions of the duration time index itself are also legitimate (Singer and Willett: 

1993). The value of the default indicator is set to zero for all intervals in which default 

is not observed. The value of the indicator is equal to one in the single period in which 

default is observed and the case is removed from the dataset thereafter. 

 

The papers referred to in the previous section have all estimated survival models 

assuming time is continuous. But lenders hold data that is measured over discrete time 
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intervals, typically months. Despite this Stepanova and Thomas (2002) found very 

similar results when they compared models that assumed continuous time with those 

based on discrete time. Note also that as the discrete time intervals tend to zero the 

discrete time model tends to the continuous time model (Kalfeisch and Prentice 

2002). 

 

No parameterisations of these two models have been published using consumer loan 

data. A variant, followed by Saurina and Trucharte (2007), is to use yearly time 

periods and to model the probability of missing the third monthly payment in a year. 

Saurina and Trucharte used as predictors whether the borrower had defaulted in the 

past, whether the borrower is liquidity constrained and the GDP growth rate, all of 

which vary with time. They used a sample of 2.94 million mortgages in Spain, but 

pooled the data across cases and time. A further limitation of this work is that to 

predict risk, lenders typically require monthly rather than annual predictions. 

Nevertheless they gain an area under the receiver operating characteristic curve 

(AUROC) of 0.78. (This curve plots the proportion of defaulters predicted to default 

against the proportion of non-defaulters who are predicted to default, for every 

possible cut-off score. That is default) |( ∈isF i against )default-non |( ∈isF i . (See 

Crook et al: 2007). 

 

In another example Vallés (2006) used a random effects panel estimator to model the 

probability of default (90 days overdue) in a year using corporate data. A random 

effects model has the form of equation (3) but where i0β  is a random variable with an 

assumed common distribution. GDP growth and the inflation rate were significant and 

negatively related to default probability whereas the unemployment rate was 

positively related. She found that there was too much variation in the estimated model 

parameters between years to build a Through-The-Cycle (TTC) model (where PDit 

does not vary over the business cycle – see section 4.5). However she did not include 

interaction terms between borrower characteristics and macroeconomic variables and 

it is not clear how well her model would predict out of sample. 

 

We estimated a model of the first definition: missing a single payment in a month. 

The data, from a financial institution, were a random sample of holders of a credit 
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card that were issued with the card sometime between the late 1990s  and early 2000s. 

The duration in the panel per borrower varied from under 10 to around 100 months. 

The cases joined and departed the panel at various times and so it is unbalanced. Since 

we wished to make predictions for borrower i we assumed a random effects model. 

The results for a model which has, as covariates, only information known at the time 

of application ( iw variables), linear and quadratic terms for duration time, and 

macroeconomic variables that could, in principle, be predicted at the time of 

application. The variables were chosen for inclusion based on a priori reasoning and 

previous estimates of credit scoring models. The results showed that the 

macroeconomic variables all have the expected sign and are significant. When interest 

rates or unemployment are high, so is the probability a borrower will miss a payment. 

We found that when house prices are high the probability of missing a payment is 

low. This may reflect the state of the economy more than the value of wealth 

householders have, since houses are not normally liquidated to pay a credit card bill. 

Duration time (and squared) were both highly significant. The proportion of variance 

which was explained by the random effect was large (49%) and highly significant 

indicating that pooling the data across time and cases would have resulted in 

inefficient estimates. 

 

We subsequently also added behavioural, itx ,  variables, for example (balance/credit 

limit). These were all highly significant and had plausible signs. Again high interest 

rates and unemployment index increase the chance a payment is missed. The 

estimated value of ρ  indicated that pooling the data would have resulted in 

inefficiently estimated parameters. Further details of these results are available from 

the authors on request. 

 

3.4 Correction Factor Models 

 

The common characteristic of these methods is that they involve taking a score that 

has been predicted from an estimated model and subsequently applying a “correction” 

which is specific to the state of the economy at the time the predicted PD is required. 

Two approaches have been suggested. Zandi (1998) suggested estimating a two stage 

model:  
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)}({ 210 βxβw T
it

T
iit FgCS ++= β  

and                                     ititit XCSPD 987 βββ ++= ,                                        (11) 

 

where itCS  is the predicted ‘credit score’ for borrower i , beginning of period t and 

itX is a leading regional macroeconomic indicator for borrower i  at time t with 

821 ,, βββ  and 9β to be estimated. The g function is typically a linear transformation of 

a itPD  into a ‘credit score’. F would typically be logistic. Here an additive correction 

factor, itX9β , for the economy is a term which is separate from the predicted credit 

score. The first equation is parameterised before the second. A weakness of this 

functional form is that it does not allow a re-ranking of probabilities when there are 

changes in the macroeconomic indicators; instead only the intercept for all cases 

changes. In addition it is highly likely that the model is misspecified since time 

varying macroeconomic variables should be included directly in the function that 

represents CS. 

 

In a second approach de Andrade (2007) built upon de Andrade and Thomas (2007). 

Here the estimated probability of default for case i in segment s, in time t, PDist , 

conditional on the state of the economy, is modelled as  
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where std  denotes  the estimated default rate in a risk segment s e.g. mortgage loans, 

period t; stPD  equals the mean predicted PD for a portfolio in segment s, period t; 

istx     is a  vector of covariates in the scoring model; F is the cumulative logistic 

distribution function. Both std   and stDP  are parts of the tz  vector defined in section 

2. 

 

The sβ  vector, if estimated conventionally, will be affected by the economy in several 

ways (Kelly et al 1999, de Andrade 2007). For example the sβ  values may vary with 
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the cycle as, conceivably, previous repayments become more influential in a 

macroeconomic downturn than in a period of growth or stability. Second, the 

distribution of the observed covariate values may change over the cycle, affecting the  

stPD . Third, the average level of the predicted istPD values may change, analogous to 

a change in the prior probabilities of default. Equation (12) effectively alters the 

intercept of the logistic regression according to whether, for a specific segment, the 

observed default rate relative to the predicted default rate (predicted using 

macroeconomic variables) is high or low. 

 

De Andrade (2007) estimates an autoregressive distributed lag (ADL) function of 

correction factors for each segment using up to 14 macroeconomic variables to gain 

PDist by applying the factors to the scores gained from unknown models (the 

βxT
ist terms).The predicted values of PDit, using equation (4), were applied to Brazilian 

small and medium sized enterprises and tested on the training sample of 12 segments 

(in this case industries) to reveal an increase in the AUROC when macroeconomic 

variables were included. This particular approach has some scope for improvement. 

For example the ADL was not a co-integrating relationship, simultaneity between the 

variables was ignored and the equation does not allow the economic variables to alter 

the ranking of the borrowers, interaction being only at the level of the segment. 

 

4 Portfolio Models 

 

4.1 Loss Distributions 

 

Lending institutions hold capital in case of losses resulting from unexpected default 

behaviour. According to the Basel II Accord (BIS 2006) (see below) for any segment 

s of similarly risky borrowers, the expected loss in period t,  ELst , may be calculated 

as the product of the average predicted probability that a borrower in segment s 

defaults in period t, denoted PDst;  the expected proportion of the debt outstanding by 

a typical borrower in segment s at time t that is never recovered by a lender, denoted 

stLGD ; and  the average expected exposure or debt outstanding by a borrower in 
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segment s at the time of default, denoted stEAD .A necessary condition for this to be 

correct is that the random variables explaining all three terms are uncorrelated.  

 

Realised losses may exceed these predicted amounts. For each borrower there is a 

distribution of possible values of EAD, LGD and PD. Taking every possible value of 

each, finding their product and summing over all borrowers gives a distribution of 

losses (see Bluhm et al 2003). Lenders are interested in this distribution for each 

segment of a portfolio. This distribution is often called the ‘loss distribution’ and its 

mean ‘expected loss’, The ‘unexpected losses’ from a segment of a portfolio may be 

represented by the difference between expected loss and the value of losses such that 

the probability of gaining a smaller loss than this value is α (other definitions are 

possible). This particular value of losses, the α-percentile of the loss distribution, is 

known as value at risk  (VaRα). Figure 1 illustrates. In this section we are concerned 

with the distribution of losses (or default fractions if EAD and LGD are fixed for each 

borrower) and in particular with VaRα. 

 

In attempts to reduce the chance of systematic bank failures, the G10 countries have 

adopted various capital requirements regulations, the latest being the Basel II Accord 

(BIS 2006). This allows banks to estimate the minimum amount of capital 

(‘regulatory capital’) they are required to hold, subject to regulatory approval. 

Potential contributory factors to the current banking crisis include the possibility that 

the Accord did not require lenders to hold sufficient capital in the event of their assets 

falling in value. We note some theoretical weaknesses of the Merton model which 

may underlie the Basel II formula, below. 

 

The amount of regulatory capital that a bank must hold to cover for defaults on loans 

differs according to the types of loans held. For retail loans, the subject of this paper, 

the regulatory capital to cover for credit risk is: 

 

})]999.0().()().([{** 1
2

1
1 ststststst PDgPDgLGDEADRC −Φ+ΦΦ= −− ρρ ,  (13) 

 

 where ρ  is said to be the correlation between asset values over borrowers and 1−Φ . 

denotes the inverse of the cumulative distribution function for a standard normal 
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random variable. The value ][•Φ  represents the VaR99.9 (as a multiplier of EAD, 

LGD). The specified values of ρ  are 0.15, 0.04 and a function of PD for mortgages, 

revolving credit and other retail exposures, respectively. The final term of equation 

(13) is included because banks are expected to price loans to include expected losses. 

A bank then aims to build statistical  models to predict ,, stst LGDPD  and stEAD if it 

uses the Basel II advanced internal ratings based (IRB) approach. 

 

We can classify empirical models that are concerned with the distributions of 

probabilities of default and/or of default rates into Merton-type models, econometric 

models, actuarial models, markov chain models and stochastic intensity models. 

Actuarial models yield closed form distributions of losses and are exemplified by 

Credit Risk+ (Credit Suisse:1997). We know of no published applications of actuarial 

models to consumer loans and for space reasons we omit them here. Merton-type 

models are generally called ‘structural’ models and the remaining models are known 

as ‘reduced form’ models. 

 

4.2 Merton-type Models 

4.2.1 The Vasicek Formula 

 

Following Merton’s model for a bond (Merton 1974), Schonbucher (2000) assumes a 

borrower, i, defaults at the end of a given time horizon, T*, if at that time the value of 

his assets, *iT
V , a random variable, falls below a threshold iK . That is iiT

KV <* . 

Suppose the end of the horizon occurs in a calendar time period t. Default then occurs 

when iit KV < . Suppose the current value of assets is indexed at zero. Then a value of 

itV  implies a return over periods 0 to t, and many recent papers are expressed in terms 

of the return ( ))( 11 −−− ititit VVV rather than itV . We explain them in terms of itV  rather 

than return, for simplicity. We initially assume Ki to be the same for all borrowers.  

 

A potentially major determinant of the default rate for a portfolio of loans is the 

correlation between the default probabilities of the individual borrowers. Default 

probabilities may be correlated because of indirect links between them, for example 

several borrowers may be employed by the same employer or by employers in the 
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same industry. They may also be subject to the same interest rate changes or 

legislative or bank policy changes. Many of these shocks can be represented by 

observed changes in the state of the macroeconomy or by different regional 

identifiers. We call a group of borrowers that are subject to variations in the same risk 

drivers a segment. From a pragmatic perspective, a typical retail portfolio simply has 

too many borrowers for a lender to specify and evaluate the complete set of joint 

probabilities of default. Instead a simulation model may be used. 

 

It is assumed that the value of the borrower’s assets is determined by a common 

factor, Zt , and a borrower specific noise component, εit as follows: 

 

ittit ZV ερρ  1−+= ,     (14) 

 

where tZ  and itε  are independent of each other and  standard fnormally distributed 

with mean of zero and unit variance, iε  are i.i.d. and tZ  is serially uncorrelated. 

Following Hamerle et al (2003, Hamerle et al 2004, Hamerle and Rosch (2005) we 

make Z explicitly time dependent and we also treat time as discrete. Notice that given 

tZ , itV  is independent between borrowers.  Zt could be an observable macroeconomic 

variable, ][o
tZ , or an unobservable latent variable, ][u

tZ , that affects all borrowers 

equally. The correlation between  itV  and  jtV  is ρ  (known as ‘asset correlation’) and 

between itV  and  tZ  is ρ . Of course the assumption that the itε  values are iid is 

unlikely to be realistic. Note that if the right hand side of equation (1) equals the right 

hand side of equation (14) then itit Vd =* . 

 

Assuming that all borrowers in a risk segment have an equal probability of default and 

the same threshold, KK i =  i∀ , Schonbucher proves that the probability that 

borrower i defaults, conditional on the realisation tz of Zt in period t, is 















−
−

Φ==<=
ρ

ρ
1

 
)|()( t

ttitti

zK
zZKVPzp ,  (15) 

where the denominator is due to a scale change in itε . 
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If, as is usually the case in a portfolio of retail borrowers, the total number of 

borrowers, N, is very large indeed it may be more useful to work with the fraction of 

borrowers that default. We now redefine B, a random variable, to be this fraction. 

Conditional on the realization of tZ , when N tends to infinity the law of large 

numbers implies that the proportion of borrowers who default equals the probability 

that any individual will default, PD, so PD = B = n/N.  It can then be shown 

(Schonbucher op cit) by integrating over the density function of tZ that the cumulative 

distribution of B, F(b), is given by 

 

)(













−Φ−Φ=≤= − KbbBPbF )( 1

1
)()( 1ρ

ρ
,   (16) 

from which, by differentiation, the density function can be derived. 

 

Lenders, policy makers and researchers are typically interested in the probability that 

the fraction of loans that default is less than a particular number, αb , and, as shown 

bySmithson (2003), by inverting equation (16) one can derive an expression for αb : 

 















−
Φ+Φ

Φ=
−−

ρ
αρ

α
1

)()( 11 PD
b ,                                             (17) 

 

where K in equation (15) is )(1 PD−Φ . Equation (17) is the Vasicek formula (Vasicek: 

1987)  in the Basel II Accord (BIS 2006), the ][•Φ  function in equation (13), and 

when multiplied by the proportion of loans that is not recovered gives, after the 

deduction of expected losses, the capital requirement for unexpected losses per dollar 

of exposure at default. In the Accord, for retail exposures, α=0.999. This type of 

model is similar to the commercial product CreditMetrics which is used extensively 

by commercial banks. Both assume that a borrower will default when the value of his 

assets falls below a threshold where the value of assets is related to a common risk 

factor and an idiosyncratic, i.e. itε , term (Finger 1999, Bucay and Rosen 2001, 

Gupton 1997). 
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The model can be extended to include multiple latent factors, non-homogeneous 

borrowers and multiple observable factors to gain variants of equations (15) and (17) 

(see Schonbucher: 2000) .For example Rösch (2003) makes the default threshold a 

function of observable systematic factors – macroeconomic variables, ][o
tz . Thus he 

writes the default condition as ][
0

o
t

T
it KV zK+< . where K  is a (M x 1) vector of 

parameters, and ][o
tz  is a (M x 1) vector of observable systematic factors. Then, 

conditional on the realisation of  ][u
tz  for  ][u

tZ , the probability of default is  
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.                               (18) 

The [u]
tZ  represents omitted correlations between borrower defaults and omitted 

observables.  

 

4.2.2 Estimation 

 

Following Hamerle and Rösch (2006) we assume borrowers may not be 

homogeneous. We write the probability of default, conditional on the realisation of 

][u
tz  for ][u

tZ , equation (15), including lagged observable macroeconomic factors and 

allowing the threshold to depend on lagged observable individual risk factors, 1−itx , as 

well as time invariant individual factors, iw , thus 
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Notice that this is of the same form as equation (3) with an additional term: ][u
tZ  and 

scaling factor ρ−1  . 

 

The  probability of default, unconditional on ][u
tz , is 

 

∫
∞

∞−

= ][][][ )()( u
t

u
t

u
titit dzzzpP φ ,     (20) 
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where )( ][u
tit zp  is as equation (19), and where we integrate over all possible 

realisations of ][u
tZ . 

 

If we observe a default pattern over individuals in time period t of { }....,....1 tNitt t
ddd , 

each itd  taking on a value of 1 if borrower i  defaults, and zero otherwise, which must 

be conditional on the realisation ][u
tz  of ][u

tZ , we can write 

 

it

t

it

t

du
tit

N

i

du
tit

u
t

u
ttNt zpzpzZddP −

=

−== ∏ 1][

1

][][][
1 )](1][)([)|,......( .               (21) 

 

By integrating over the realisations ][u
tz , taking logs  and summing over t we gain the 

log-likelihood function. 

 

Equation (20) is a random effects probit model (see Liang and Zeger:1986 and 

Verbeke and Molenberghs: 2000 for a description of random effects probit models). 

But unlike conventional panel random effects models where the random effect 

concerns the case, here it concerns the time period. In general terms this is a 

Generalised Linear Mixed Model, GLMM, (McNeil and Wendin 2007) and the 

likelihood can be optimised using ML techniques from which estimates of 

210 ,,, KKKρ and 3K and the likelihood can be derived.  

 

Given estimates of 210 ,,, KKKρ  and 3K  in period t+1, forecasts of individual 

default probabilities conditional on values of iti xw ,  and ][o
tz  can be made using 

equation (19) (where ][
1

o
t−z has been included instead of ][o

tz ). The forecasts are 

functions of ][
1

u
tZ +  since ][

1
u

tZ +  is unknown in period t. Unconditional expected default 

probabilities can be found by integrating over realizations of ][
1

u
tZ +  as in equation (20). 

 

The predicted loss distribution can then be estimated for period t+1. To do this we 

require values of 1+itEAD  and 1+itLGD as well as the predicted relative frequency of 
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defaults. Hamerle and Rösch (2006) assume these fixed at 1 and 100% respectively 

for convenience. 

 

In period t+1 the number of defaults, 1+tn , is ∑
=

+

tN

i

itd
1

1 so the relative frequency of 

defaults, or default rate, is 111 +++ = ttt NnB and its distribution is found by integrating 

equation (21) over all realizations of ][u
tZ  (with t+1 replacing t) 

 

( ) ][
1

][
1

1][
11

1

][
11

1

1

1 )](ˆ1][)(ˆ[ u
t

u
t

du
tit

N

i

du
tit dzzzpzp it

t

it
++

−
++

=
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+ − φ .   (22) 

Notice this distribution depends on both the observed macroeconomic variables and 

the unobserved factor, ][uZ , because )(ˆ ][
11

u
tit zp ++  is given by equation (19) but with t+1 

replacing t. This distribution can be simulated by Monte Carlo simulation. 

 

A weakness of Merton type models applied to consumer loans is that the assumption 

that a consumer will default on, say, a credit card loan, when his/her assets fall below 

a threshold is questionable. It may be more applicable to a mortgage loan. However 

one might restore the plausibility of the barrier condition by interpreting it as 

occurring when a borrower’s ‘credit worthiness’ falls below a certain level. 

 

An alternative Merton-type model was proposed by de Andrade and Thomas (2007) 

who assumed the ‘creditworthiness’ of a borrower followed a jump diffusion process 

of Zhou (1997) and where default occurred if a borrower’s credit worthiness fell 

below a threshold. They simulated probabilities of default corrected for states of the 

economy, where the latter were assumed to follow a first order Markov chain between 

four states. However the condition for default is questionable and there are difficulties 

in the empirical application of this model. The identification of jumps is difficult and 

the assumption the economy is in one of only four states might be rather inaccurate. 

 

4.3 Econometric Models 

 

This type of model is a regression model with the right hand side of similar form to 

equation (3) but the dependent variable is the default rate in a market segment, 
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00 ββ =i  and all of the coefficients in the β vectors and γ  matrices are constrained 

to be zero except for those relating to the tz  vector. The tz  vector contains 

macroeconomic variables, possibly lagged. The link function could be logistic. 

However the analysis is typically carried out at the level of a segment of borrowers, 

which we assume here. Credit Portfolio View  is an example of this type of model 

(Wilson 1997a and b).  

 

An autoregressive distributed lag function for each macroeconomic variable is 

parameterised to give 

stl

L

l
lstst ZZ ηγ +=∑ − ,                                               (23) 

where lstZ −  is the value, for segment s,  normally distributed, with lag l and stη   is a 

random value assumed N(0,∑). 

 

The default rate in a market segment in period t, Bst, is related to the vector of 

macroeconomic variables using a logit link function. Thus  
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=

sβz

                                                        (24) 

where Yst is a ‘credit worthiness index’ 

 Bst is a default rate in segment s period t (see previous section) 

 stz   is a [M x 1] vector of M macroeconomic variables for segment s, in  

 period t; 

 ββββs is a [M x 1] vector of parameters to be estimated; 

 stε  is a random variable assumed N(0,∑). 

 

The ββββs vector is estimated for each segment separately using time series data on 

default rates and Zst values. See Hamilton (1994) for a review of time series analysis. 

 

Variants of this model are outlined by Bucay and Rosen (2001). One variant is that Yst 

is additionally made a function of variables that are specific to the segment. 
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Alternatively the entire analysis could be performed for an individual borrower 

whereby each s subscript would be replaced by an i subscript and Bit becomes the 

individual borrower’s probability of default. A third variant is that Zst in equation (24) 

could be replaced by a vector of principal components extracted from the 

macroeconomic variables. The distribution of losses can be gained by Monte Carlo 

simulation (Koyluoglu and Hickman: 1998) of the ηst and εst terms whilst preserving 

their covariance. 

 

A further variation is to relate a segment’s default rate to both observable and 

unobservable latent factors, but without assuming the Merton model. The Kalman 

Filter (see Harvey: 1990) may be used to estimate values of the latent factor 

recursively and the default rate model subsequently parameterised (Jiménez and 

Menciá: 2007). To explain briefly, consider an observation equation, where tB  is a 

vector of default rates and  

 

tt
Tu

t
T
tt υγzβzB ++= )( ][

3 ,     (25) 

where                            t
Tu

t
u

t ωθzz += − )( ][
1

][                                                              (26) 

 

is called a state equation because it represents how states of the system in t-1 

transition into states in t, and θ  is a transition matrix. The terms tυ  and tω  are vector 

white noise. We observe tB  but not ][u
tz . Under suitable assumptions, the parameters 

of the model can be estimated by ML (see Hamilton 1994). 

 

Notice that in econometric models the correlation between default probabilities of 

borrowers is not modelled as a separate term, but is implicit in the model because 

borrowers in a segment are subject to the same macroeconomic variables. 

 

4.4 Empirical Results 

4.4.1 Merton type models 

 

Whilst almost all of the applications of these methodologies have related to corporate 

loans (Hamerle et al: 2004, Hamerle and Rösch: 2006, Rösch: 2003, Dullman and 
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Trapp: 2004) there are several examples of their application to consumer loans. They 

estimate asset correlations and VaR values. Concerning the former Rösch and Scheule 

(2004) applied the Merton type model to the charge-off rate (the proportion of loans 

that are written off by lenders) for 100,000 borrowers from US commercial banks. 

Using data from 1991 to 2001 the asset correlation ( ρ  in equation (14)) was 0.012, 

0.0098 and 0.0073 for credit card loans, real estate loans and other consumer loans 

respectively when macroeconomic variables were omitted. Clearly all are well below 

the correlations assumed in the Basel II Accord. When macroeconomic variables were 

included (so giving PiT correlations) the correlations were even lower. 

 

Parameterisations of Merton-type models for consumer loans generally suggest the 

VaR values of  predicted loss (or default rate) distributions are lower than are implied 

by the Basel II formula. This was found by Rosch and Scheule (op cit) and by De 

Andrade and Thomas (2007) who applied their jump diffusion process model to a 

sample of Brazilian consumer credit loans. On the other hand, Perli and Nayda (2004) 

. considered six market segments from two credit cards issued by Capital One. They 

calculated economic losses making each term in their calculation a function of 

macroeconomic variables. They found the predicted VaR was much lower (higher) for 

the higher (lower) risk segments than was the required capital under Basel II. 

 

4.4.2 Econometric Models 

 

Different studies have addressed different issues. Bucay and Rosen (2001) estimated 

econometric models for a sample of credit cards issued between 1995 and 1999.  The 

portfolio was divided into 11 risk segments based on application score. They found, 

using segment specific variables as well as macroeconomic variables that the  

proportion of the variance in the credit worthiness index that was explained by the 

latter varied between 38% and 73% depending on the segment. Macroeconomic 

variables generally explained a greater proportion of this variance in lower risk 

segments. Values of the macroeconomic variables were simulated and the predicted 

loss distribution constructed for the portfolio. They found that the estimated 

VaR(99.9%) was 12.5% higher when the model included only segment specific 

variables rather than both these and macroeconomic variables. They also estimated a 
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Merton type model and found the VaR(99.9%) was the same as predicted by the CPV 

model, but the expected loss was lower. 

 

An example of the application of the Kalman Filter (KF) in a credit risk model is 

Jiménez and Menciá (2007). Jiménez and Menciá assume a vector autoregressive 

(VAR) model for the growth in the number of loans in month t and for the increase in 

default frequency in month t. In both cases lagged endogenous variables were 

included as was an unobserved factor. Values for the factors were estimated using the 

KF and the parameters of the VARs estimated using these values. Quarterly data, 

1984 to 2006, relating to all loans over Є6,000 in Spain for each of ten commercial 

sectors plus consumer loans and mortgages were used. For each sector the growth in 

default rates was significantly negatively related to lagged GDP and significantly 

positively related to the latent factor; but real interest rates, even with three lagged 

terms, were not related. They then simulated the loss distribution and found that when 

the latent factors were included the VaR (99.9%) after three years was 5% and 2% 

lower, respectively, for consumer loans and mortgages than when latent factors were 

omitted.  

 

Rodriguez and Trucharte (2007) follow Carey’s non-parametric simulation method 

(Carey: 1998, 2001) to generate loss distributions for Spanish mortgages First they 

pool the simulated loans across all years (1990 – 2004) and compare the loss rate as a 

percentage of exposure at the 99th, 99.5th and 99.9th percentiles to find that the 

simulated rates were higher, except at the 99.9th percentile, than the rates implied by, 

and so covered by, the Basel II formula. When looking over an economic cycle the 

distribution of losses implied by Basel had a fatter tail than the simulated distribution 

above the 99.5th percentile. Second, they take a reference portfolio, 2004, and stress 

values of the predictors to gain a new distribution of PDits and so of losses. They 

found that the loss rates, at all the percentiles, for the worst year in the data period are 

considerably larger than those implied by the Basel II IRB approach using average PD 

estimates over the cycle.  

 

4.5 Point in Time versus Through The Cycle Ratings Systems 
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As Brough (2007) notes when calculating economic capital under an IRB advanced 

approach, ‘a firm must estimate PDs by obligor grade or pool from long-run averages 

of one year default rates (BIRU4.6.24)’ and the long run average must be calculated 

from default rates in a representative sample of years from throughout an economic 

cycle. However there are alternative ways of calculating the long run average PDs. A 

lender is required to classify borrowers into risk grades according to the predicted 

probability of default itDP̂ . Two methods are possible. A TTC rating system is one 

where the itDP̂  used to allocate a borrower to a grade does not depend on the state of 

the macroeconomy because this state has been hypothetically fixed at a stressed level 

representing a severe recession. We denote this TTCs
itPD ],[ . A PiT rating system is one 

where the itDP̂  used to grade a borrower does depend on the likely future state of the 

macroeconomy. We denote this PiTus
itPD ],[ .  To explain further (following Heitfield: 

2004 and 2005) we write equation (1) (omitting interaction terms for simplicity) as 
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where dρ  denotes the correlation between itPD  and jtPD , the tz vector has been 

partitioned into observed and unobserved components and the sensitivity of *d  to the 

unobserved time varying variable is determined by the value of dρ . We can represent 

a stressed state of the economy by setting ςρ =+ ][][ )( u
td

T
t

o zβz  where ς  is a 

constant. Then the itPD  in a TTC system used to grade a borrower can be written as 
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and in a PiT system it is 
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So a PiT risk grade is defined as 
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where ϖ  denotes a constant and a TTC risk grade is defined as 
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In each case, all members of a grade have the same corresponding PD. 

 

Suppose that for each type of system a risk grade is defined as a range of the 

corresponding above probabilities. Consider borrowers that are rated using a PiT 

system. If the economy went into recession, PiTus
itPD ],[  for each borrower would 

increase and borrowers would be allocated to a lower grade. But the mean observed 

PD in any one grade would be unchanged; the grade simply has a different set of 

borrowers. The risk of the portfolio has increased and by equation (13) the capital 

requirement has risen. Now consider borrowers that are rated using a TTC system. 

The economic downturn does not affect TTCs
itPD ],[  so no borrower would change 

grade, but the mean observed PD in each grade increases. In practice, according to 

Heitfield, for corporate ratings, agencies often use a TTC system where the grade is 

altered in the light of the likely future states of the economy. 

 

Heitfield (2004) uses the above models to show the expected pooled PDs for each 

combination of rating methodology and stressed or unstressed scenarios. He shows 

that if a TTC system is used then the expected stressed pooled PDs will be stable over 

an economic cycle as will expected unstressed pooled PDs if a PiT system is used. 

However pooled PDs, which are estimated in a way that makes their expected values 

unstable, are difficult to estimate using observed past default rates.  

 

The FSA (2006) suggest that in practice lenders often try to transform PDs estimated 

by PiT models for a portfolio into long run average PDs, instead of estimating long 

run average default rates for individual grades, as intended in the Basel II Accord. 

One possible reason is a lack of long term historical data on default rates by grade. 
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According to the FSA (2006) the most common approach to this transformation is to 

use a variable scalar method. 

 

The general variable scalar method is to predict itDP̂ over time and for each period 

apply an appropriate multiplier to transform PDt into the long run PD. An example is 

Ingolfson and Elvarson (2007) who use a Kalman Filter technique whereby they have 

an observation equation relating to observed ‘serious’ defaults (defaults that 

subsequently are written off), ty : RυAzy T
t

Tu
tt += )( ][  and a state-space equation 

Qωθzz T
t

Tu
t

u
t 1

][
1

][ )( −− +=  where ][u
tz  represents the time series pattern of the 

unobserved default ’cycle’ and tv and 1−tω  are vectors of random terms. The structure 

of the θ  and Q matrices were set up assuming that the default ‘cycle’ i.e. state 

equation, has a cyclical component following a sine wave, a long term trend and a 

random element. The parameters of the matrices are estimated using the usual KF 

algorithm. The result is an extrapolative model of the time series of defaults (as a 

percentage of the number of loans). The predicted tDP̂ s of the portfolio, where the 

predictions are based on a PiT logistic regression model, is then multiplied by a scalar 

for that time period which is derived from a past relationship between the predicted 

default cycle and that predicted  by the PiT logistic regression models. The model was 

fitted for loans to an Icelandic bank during 1990-2000 with a high degree of fit. A 

weakness of this paper is that it does not make corrections for each market segment 

separately as preferred by the FSA (2007). A general challenge for scalar methods is 

that according to the FSA (2007) they should adjust for changes in the macroeconomy 

only. Changes in the observed default rates due to changes in the mix of borrowers, 

changes in the propensity to default or changes in the acceptance policy of the lender 

should not be averaged away. See Loffler (2003) and Oung (2005) for applications of 

the KF to TTC ratings for corporate loans. Gordy and Howells (2006) discuss how 

regulators might adjust a PiT rating system to derive the minimum acceptable capital 

required over time using a smoothed AR(1) function.  

 

4.6 Markov Chain Models 
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Now suppose td  is not restriced to (0,1) but can take on a range of nominal positive 

integer values, each indicating a state of repayment delinquency such as the number 

of scheduled payments that are overdue. Let there be C = 1, 2, …V possible states. (In 

the credit risk modelling context the states could alternatively be aspects of a  

borrower’s behaviour such as account balance, but then we would need a symbol 

other than d to denote these). Consider a matrix, Pt, of transition probabilities for a 

borrower, i, between delinquency state u at time t, and delinquency state v at time t+1. 

A possible application is to have two of the V possible states as absorbing states, these 

being the loan is paid off and the loan has missed so many payments it is in default 

(Cyert et al 1962). If   
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,        (32) 

 

 then 
gt

dd .....1  is a first order MC. See Putterman (1994) or Stock (2005) for 

discussions of markov chains. 

 

The transition matrix may be pre-multiplied by a vector of the number of accounts in 

each state to gain the expected distribution of accounts across all states in a future 

period. If the matrix is stationary the probability that an account moves from state u to 

state v over t steps is given by the u.v cell in the Pt matrix. 

 

Notice that  panel data that contains a nominal measure of repayment behaviour (i.e. 

delinquency) can be represented as a transition matrix. Observed values of the 

delinquency state are recorded in successive time periods, t = 1 …tg, for each 

borrower. Notice also that the MC represented by equation (32) is analogous to a 

linear model with an endogenous variable lagged by one period. 

 

Define ),1( ttpiuv −  as equal to  )|( 11 −− == tttt vdvdP for case i. If we make the 

transition probabilities functions of covariates, then we may write 
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where the covariates of the right hand side are as defined in equation (3) except that 

they may be specific to the states u and v. If  we consider the simple case of V=2 and v 

is the default state and u is any other state then equation (33) is the same as equation 

(3). If we consider u=0 and v=1 then to perfectly define the model, when V=2, we 

require two equations, one with the lhs being ),1(01 ttpi − and the other with the lhs 

being ),1(11 ttpi − , with corresponding changes to the rhs. For further discussion and 

estimators see Gourieroux (2000). Note that the literature below has not estimated this 

type of model. 

 

Cyert et al (1962) gives one of the earliest applications of Markov chains. Cyert and 

Thompson (1968) estimate a different matrix for each of eight risk categories of 

borrower. Frydman et al (1985) test the applicability of the Mover Stayer model (MS) 

of Blumen et al (1962). The MS model assumes some individuals stay in their initial 

state e.g. up to date with payments, (‘stayers’), whilst others move between states 

according to a stationary Markov chain (‘movers’). Tests generally find that the MS 

model gives predicted transition matrices that are significantly closer to observed 

matrices than stationary Markov chains. For example Till and Hand (2001) found this 

for a sample of credit card holders and Frydman et al found this for revolving credit 

accounts.   

 

Statistical tests of whether transition matrices are stationary and first order are given 

in Anderson and Goodman (1957). Both Till and Hand, using credit card accounts, 

and Ho et al (2004), using a sample of current accounts with borrowing facilities, find 

that the transition matrices are not first order; the probability of an account 

transitioning from one state to another depends on which of at least one of the 

previous states the account was in. Ho et al find their Markov chain was not stationary 

whilst Till and Hand did not test for this. Ho et al collapsed their ten state transition 

matrix into three states and rejected the hypothesis that the chain was second order 

rather than third order. They went on to find that the most significant segmentation 

out of many considered is not just into movers and stayers but into those who stay, 

those that move up to three times (‘twitchers’), those that move four times (‘shakers’) 

and those that move five times (‘movers’) in a 48 month period. Till and Hand find 
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that if the assumption of stationarity is rejected, as statistical tests in other work 

suggest it should be, the time taken to reach three months overdue from 0,1,or 2 

payments overdue is 124, 108 and 69 months respectively; much larger than if 

stationarity is assumed. 

 

More recent applications of Markov chains have been to embed them into a Markov 

decision process (MDP) model to choose optimal strategies for each state so as to 

maximise expected profits. A good example is Trench et al (2003). In this paper each 

state is defined by a combination of (a) values of management control variables e.g. 

credit line and (b) variables representing customer behaviour. To reduce the 

dimensions implied by the use of two control variables and six behavioural variables 

cells were aggregated. Variables were defined in ways to increase the chance the 

transition matrix was first order. The MDP model to choose the optimal action, a, 

from a set of uA  possible actions for state of account u was set up as 

 

∑
∈

+∈
+=

Uv

taa
Aa

t vVuvPuNCFMaxuV
u

)}()|()({)( 1β ,  (34) 

 

where )(uVt is the maximised discounted NPV of net cash flows in state u at time t, 

)( auNCF is the net cash flow in state ua when action a is taken, β  is a discount 

factor, )|( auvP is the transition probability giving the probability of transiting to state 

v from state ua. Tests showed the MDP model increased NPV compared with the 

model currently in use by a bank. See White (1969) for dynamic programming 

methods. 

 

4.7 Stochastic Intensity Models 

 

These models have almost exclusively been applied to corporate loans and in this 

context contributions have been made by Jarrow and Turnbull (1995), Lando  (1998) 

and Duffie and Singleton (1999). See also Crowder (2001) for discussions of intensity 

models. The crucial point is that these models can also be applied to consumer loans 

as well. 
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A large number of models fit this category. One of the most influential is that of 

Jarrow, Lando and Turnbull (1997) (JLT). JLT describe a matrix of transition 

probabilities between rating state u in period t and rating state v in period t+1, 

)1,( +ttuvP  over state space C = 1…V. Corporate ratings describe the chance the 

company will default on loans. Applied to consumer loans we could regard the states 

as delinquency states. State V represents default or bankruptcy which is an absorbing 

state. Thus 
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is a V x V matrix. Now move from discrete to continuous time. Consider a Poisson 

process which has value Nt at time t where N takes on integer values. Then the 

probability of a change in N in some very small time interval dt is 

 

P(Nt+dt  -  Nt  =  1)  =  λdt,                (36) 

 

where λ is the Poisson intensity parameter. 

 

We now regard the change in N as a jump from one state u to default, V. The time to 

default can be modelled as the first time the Markov chain of V x V states reaches the 

default state. The evolution of the chain can be represented by its generator matrix of 

intensities: 
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where 0=−∑
≠vu

uvuu λλ  and each λuv gives the probability that the chain is in state v at 

time t, given it was in state u at time 0. Put another way, if the chain starts at time 0 in 

state u, it will stay in that state for length of time exp (λuu) and then jump to v in the 

next instant with probability λvv / λuu . Clearly we are most interested in the λuV. 

 

If the intensities, 
uvλ s in equation (37), can be made functions of  (duration) time we 

have a non-(time) homogeneous Poisson process. Schonbucher (2000) shows that in 

the period between 1τ  and 2τ , the probability of one jump is 
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If we now also make )(τλ  stochastic, Schonbucher shows we have a Cox process and 

so )1(
12

=− ττ NNP  equals the expectation of the right hand side of equation (38). 

 

The intensities, )(τλuv , can be modelled as functions of random hazard functions of 

covariates, as explained in section 1. Thus, )(τλuv  is the intensity of transitioning 

from state u to state v in the next instant of time, conditional on having remained in 

state u until that time. Thus we could write  

τ
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where )(* τix  is a realisation of the state variables in vector )(τix  and v is the state to 

which the borrower transitions from state u. This is equation (5) with these two 

conditions added. The process is described as ‘doubly stochastic’ since the uvλ  values 

are determined from a stochastic model (a survivor model) and are then part of a 

second stochastic model (a Poisson model).  

 

Lando and Skodeberg (2002) modelled corporate loan transitions in this way. They 

related intensities to time varying covariates using, essentially Cox Proportional 

Hazards. They test to see if the firm was previously upgraded to the present class (an 
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)(X i τ  covariate) to find it was significant. Of course the time varying covariates 

could be non-case specific and so could be macroeconomic variables. 

 

Kavvathas (2000) models stochastic intensities using competing risks. A competing 

risks approach is appropriate because for any initial state, if the number of time 

intervals is sufficient, the firm could transition to any of 1…V states in the next 

period. They model downgrade, upgrade and constant grade corporate transition 

intensities separately. They find that high spot interest rates are associated with higher 

probabilities of downgrading. They also find that intensities to downgrade are 

positively related to advantageous credit states and negatively related to stock returns. 

See also Crowder (2001) for discussions of competing risks models. 

 

5. Conclusion 

 

Considerable progress has been made in modelling consumer credit default risk in the 

last decade. Whilst dynamic models in the form of Markov chain models were 

discussed in the literature in the 1960s and behavioural scoring models in the 1990s, 

there has been considerable development in the last decade in the application of 

techniques to predicting the changing risk of both individuals and of portfolios of 

loans. The data that lenders collect is of a panel structure, albeit with missing values 

in certain places. This offers lenders considerable opportunities to incorporate 

covariates that vary over time, both those specific to the borrower and those which 

may affect everyone, and combinations of both. At the level of the account the use of 

survival analysis allows lenders to predict the probability of default in the next month 

taking into account predicted or ex-post observed macroeconomic indicators. The 

panel data structure of lenders allows them in principle to use panel techniques to 

estimate, for example, the probability of a missed payment in a particular month 

where this may or may not be a one-off event. This can be done more efficiently using 

random effects models than by data pooling. Alternative techniques, such as scalar 

techniques, still require further methodological development since they currently do 

not incorporate the possibility that changes in the state of the economy may alter the 

risk ranking of applicants or borrowers. 
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Models of the distributions of default probabilities which have been developed for 

application to corporate loans can also be applied to consumer loans. Corporate 

models which allow for inter-company default correlations in the form of unobserved 

factors, have considerable potential to be applied to consumer loans. They may be 

estimated using random (time) effects. The statistical significance of unobserved 

factors, that represent omitted risk covariates and asset correlations can be directly 

estimated. On the rare occasions when they have been applied to consumer loans we 

see that the asset correlations are very low and well below the correlations given in 

the Basel II formula. Macroeconomic variables can be incorporated into predictions of 

default rate distributions and when they are the estimated VaR values are likely to be 

more accurate. It is also possible to estimate values for latent unobservable factors in 

additional to the effects of macroeconomic variables using Kalman Filter techniques 

and on the few occasions on which it has been done it has been found that the implied 

VaR values are lower than when they are omitted. Again there is considerable scope 

for developing this work further. Pooling the data and omitting latent factors has also 

been tried as a way of incorporating macroeconomic variables and when this has been 

done it has been found that stressed loss rates are actually higher than under Basel II.  

 

Finally, in the corporate literature stochastic intensity models have commonly 

replaced Merton type models and there is considerable potential for applying the 

former to consumer loans. Consumer default transition matrices appear not to be first 

or even second order. There is considerable opportunity to model the transition 

probabilities in terms of macroeconomic variables and to introduce macroeconomic 

variables into intensity models to examine the implications of different states of the 

economy for default distributions. 
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Figure 1 
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