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Compared with the application of mathematical models to study human diseases, models that describe animal responses to
pathogen challenges are relatively rare. The aim of this review is to explain and show the role of mathematical host–pathogen
interaction models in providing underpinning knowledge for improving animal health and sustaining livestock production. Existing
host–pathogen interaction models can be assigned to one of three categories: (i) models of the infection and immune system
dynamics, (ii) models that describe the impact of pathogen challenge on health, survival and production and (iii) models that
consider the co-evolution of host and pathogen. State-of-the-art approaches are presented and discussed for models belonging to
the first two categories only, as they concentrate on the host–pathogen dynamics within individuals. Models of the third category
fall more into the class of epidemiological models, which deserve a review by themselves. An extensive review of published
models reveals a rich spectrum of methodologies and approaches adopted in different modelling studies, and a strong discrepancy
between models concerning diseases in animals and models aimed at tackling diseases in humans (most of which belong to the
first category), with the latter being generally more sophisticated. The importance of accounting for the impact of infection not
only on health but also on production poses a considerable challenge to the study of host–pathogen interactions in livestock.
This has led to relatively simplistic representations of host–pathogen interaction in existing models for livestock diseases. Although
these have proven appropriate for investigating hypotheses concerning the relationships between health and production traits,
they do not provide predictions of an animal’s response to pathogen challenge of sufficient accuracy that would be required
for the design of appropriate disease control strategies. A synthesis between the modelling methodologies adopted in
categories 1 and 2 would therefore be desirable. The progress achieved in mathematical modelling to study immunological
processes relevant to human diseases, together with the current advances in the generation and analysis of biological data
related to animal diseases, offers a great opportunity to develop a new generation of host–pathogen interaction models that
take on a fundamental role in the study and control of disease in livestock.

Keywords: host–pathogen interaction, mathematical model, animal, review, immune system dynamics

Implications

This review contributes to the ongoing efforts for enhancing
animal health and sustaining livestock production. By providing
an overview of the state-of-the-art in modelling host–pathogen
interactions, this review aims to give relevant insight into
the contributions and shortcomings of current mathematical
models in enhancing our understanding of animal responses
to pathogen challenge and for devising appropriate surveil-
lance and control strategies to improve these responses.
Combining existing and upcoming modelling approaches with

current advances in the acquisition of biological data may
serve as a road map for creating a new generation of models
that play a fundamental role in combating disease in livestock.

Introduction

The increasing demand for more and healthier food and
rising concerns about emerging livestock diseases brought
on by climate and pathogen resistance to pharmaceuticals
and infrastructure change have placed animal health high on
the priority list of livestock production (Perry and Grace,
2009; Department of the Environment, Food and Rural
Affairs (Defra), 2010; Simm, 2010). Research underpinning
our understanding of how animals respond to pathogen
challenge and how to improve this response has never been

* This review is based on an invited presentation at the 60th Annual Meeting
of the European Association for Animal Production held in Barcelona, Spain,
in August 2009.
- E-mail: andrea.wilson@roslin.ed.ac.uk
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of greater importance. An animal’s response to infectious
pathogens is a complex interaction of properties of the host,
pathogen and environment, and therefore requires contribu-
tions from research across a range of disciplines including
different branches of biology, epidemiology and environmental
science. Over the recent years, more and more mathematical
modellers have been employed to study host–pathogen inter-
actions, although the focus has been primarily on modelling
immunological processes relevant to human diseases. In con-
trast, the application of mathematical models to address issues
concerning animal health has been relatively sparse.

The aim of this review, written from the perspective of a
mathematician working with animal scientists over several
years, is to illustrate how mathematical host–pathogen
interaction models can contribute to enhancing our under-
standing of animal responses to pathogens and ultimately
help in improving animal health. This will be achieved by
outlining the general role of mathematical models in a field
dominated by experimental data and by providing some
insight into various types of host–pathogen interaction
models that differ in their objectives and approaches. Concrete
examples will serve to illustrate how different assumptions,
concepts and methodologies are implemented into quantita-
tive models and how they can be applied to address important
animal health issues. This review is targeted not only towards
animal scientists who seek to better understand how mathe-
matical models work and what they can achieve, but also
towards modellers who are interested in finding out about
modelling approaches that are outside their area of expertise.
Ultimately, this review aims to shed light on a potential new
approach to tackle animal diseases that uses modelling to
integrate theory and experiments.

The need for mathematical host–pathogen
interaction models

Complementing empirical studies
The wealth of data from large-scale field studies and small
animal models (e.g. mouse or rat) collected in the past
decades has substantially improved our understanding of a
variety of factors influencing host response to pathogens.

Recent advances in molecular and genomic tools have added
another dimension to our knowledge base, by providing
a detailed insight of the genes and pathways involved in
the host immune response. However, results from empirical
studies are often limited in scope and validity as they are
constrained by physical boundaries. The stark contrast
between the large body of research findings and the sparse
translation of these findings into practical disease control
strategies points to substantial knowledge gaps that need to
be overcome. Successful disease control strategies not only
require knowledge about individual components of the host
or pathogen dynamics, but also some understanding of the
system as it functions as a whole (Perelson, 2002).

Throughout history, the language of mathematics has
proven well suited for integrating diverse empirical findings
into a holistic quantitative framework (Morel, 1998; Nowak
and May, 2000; Perelson, 2002). Mathematical models have
the benefit over empirical studies that they are free from
physical constraints, thus enabling to test a wide spectrum of
scenarios that may be difficult to test experimentally. The
possibility to calculate the state of all system components
represented in the model for any desired duration of time
and at any desired frequency may provide the information
needed to explain the phenomena observed in empirical
studies in which only limited amounts of measurements can
be taken. The models thus not only help to test hypotheses
emerging from experimental studies, but can also reveal and
fill important knowledge gaps leading to the generation of
new hypotheses that can be tested in future experiments.
Table 1 lists diverse generic functions of mathematical
models that have proven useful in existing host–pathogen
interaction models, some of which will be described with
concrete examples provided here.

Help in devising surveillance and control strategies
The importance of mathematical and computational models
of immune system dynamics for the development and testing
of pharmaceuticals is evident, and the majority of published
models of human diseases have been developed for this very
purpose. Less attention has been given to reflect how host–
pathogen interaction models could prove useful for devising

Table 1 Functions of mathematical/computational models of host–pathogen interactions

Function Description

Describe 1. Integrate findings of diverse empirical studies into a holistic quantitative framework.
2. Clarify assumptions and conceptual understanding.
3. Identify key system components.
4. Identify knowledge gaps.

Simulate and analyse 5. Test alternative hypotheses by simulating different scenarios.
6. Assess the role of individual components on the dynamics of the entire system.
7. Provide estimates for quantities that are difficult to measure.
8. Help interpreting experimental data.
9. Explain (often conflicting) phenomena observed in empirical studies.

Predict 10. Generate new hypotheses that can be tested in future experiments.
11. Provide predictions of outcomes of intervention strategies and suggest control strategies.
12. Offer new ways to analyse and interpret data.
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control strategies for diseases in animals. Decisions about
which animals should be diagnosed, vaccinated, treated or
selected for breeding are generally based on observable
biomarkers (e.g. acute phase proteins or other plasma pro-
teins, faecal egg counts (FECs) for parasite infections,
somatic cell counts for mastitis, etc.). Although some bio-
markers relate to a particular immune response process (e.g.
specific antibodies related to the humoral response), others
(e.g. FEC and weight gain) are the cumulative result of a
variety of interacting processes related to pathogen, host
and environment. No biomarker alone can predict or identify
animals that are most susceptible or most severely infected
with 100% accuracy. Mathematical host–pathogen interac-
tion can describe the underlying biological processes related
to specific biomarkers and elucidate how these processes
change over time and relate to other key processes (and thus
to other potential biomarkers). The modelled relationships
could further lead to the proposition of new potential bio-
markers related to other important processes. In addition, as
models provide time trends of infection characteristics, they
could be used to predict the optimal timing and frequency at
which biomarkers should be applied to enhance the accuracy
of disease diagnostics and predictions of genetic risk of
infection and selection response or treatment efficacy.

Three categories of host–pathogen interaction models

As illustrated in Figure 1, most host–pathogen interaction
models can be assigned to one of three categories depending
on the questions addressed and the experimental evidence

incorporated. The first category comprises the large group of
mathematical models that describe the within-host infection
and immune system dynamics. The model presented in
Example 1 falls into this category. The aim of these models is
to synthesise information obtained from diverse pathological
and immunological studies into a holistic quantitative frame-
work and use this to gain insights into how specific compo-
nents of the pathogen and/or immune system function and
interact. These types of models find their application mainly in
the development and testing of pharmaceuticals.

The second category of models addresses the relationship
between immune functions and other biological processes
related to survival or production. One common assumption
underlying these models is that all biological processes demand
nutritional resources and that trade-offs occur between
mounting an (or alternative types of) immune response(s)
and maintaining fitness or production levels when resources
become scarce (Sheldon and Verhulst, 1996; Lochmiller and
Deerenberg, 2000). These types of models arise in evolu-
tionary ecology or livestock production science, in which the
focus is not only on the impact of infection on animal health
but also on the undesirable side effects related to repro-
duction and production (e.g. growth rate and milk yield).
The model presented in Example 2 falls into category 2.

The third category of host–pathogen interaction models
deals with the question of how the interactions between
hosts and pathogens affect their co-evolution. These models
are important for anticipating the long-term impact of con-
trol strategies that alter host and pathogen genetics, such as,
for example, the use of anthelmintics to control parasitism,

Category 1:

Category 3:

Host-pathogen co-evolution

Category 2:

Host immune
response

Host immune
response

clearance clearance

trade-off

• Growth
• Reproduction

Host performance

inhibition

activation/
inhibition activation

modification transmission

infection/
killing

Pathogen :
genotype frequency

Host population :
Transmission and
selection processes

Individual host:
Interaction between
host and pathogen
genotype

Witihin host
pathogen lond

Witihin host
pathogen lond

Infection and immune system dynamics Impact of infection on immunity and
performance

Figure 1 Schematic diagram of the three alternative categories of existing host–pathogen interaction models. The categories differ in the questions
addressed by the models, the biological principles incorporated, the choice and representation of model components and in the methodology. The categories
generally correspond to different research disciplines, although methodologies may overlap.
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which has resulted in the emergence of anthelmintic-resistant
parasites and increased host susceptibility (Sangster, 1999;
Jackson and Coop, 2000). The methodology for models
belonging to category 3 differs from those of the other
categories, as they concentrate less on the dynamic pro-
cesses during infection of an individual host, but more on the
transmission of pathogens and resulting evolutionary pro-
cesses in the population. These models are more closely
related to epidemiological models and merit a review on
their own (e.g. Woolhouse et al., 2002). In this review, I will
focus on models that describe the host–pathogen interaction
within individual hosts, that is, models belonging to the first
two categories.

Category 1: models of infection and immune
system dynamics

Overview of published models for animal diseases
In contrast to the vast amount of epidemiological models
that describe the spread of infection between animals and
predict disease prevalence and severity in the population,
models that study the dynamics of infections in individual
animals are relatively scarce. Although most epidemiological
models incorporate expressions for the disease progression
within animals (e.g. from latent infected to diseased to
recovered state in compartmental models for micro-parasitic
infections or more explicit descriptions of the life cycle of
macro-parasites within and outside the host (Anderson and
May, 1991)), they will not be considered here as they aim to
address questions concerning disease prevalence in the
population rather than in individual animals. Published
models that concentrate on the within-host dynamics of
infections exist for nematode infections in ruminants (Louie
et al., 2005; Vagenas et al., 2007a and 2007b), gut and
mammary gland infections in cattle caused by Escherichia
coli and other bacterial infections related to mastitis in cattle
(Oltenacu and Natzke, 1976; Detilleux, 2004; Detilleux et al.,
2006; Wood et al., 2006a and 2006b; White et al., 2010) and

porcine reproductive and respiratory syndrome (PRRS) in
pigs (Doeschl-Wilson and Galina-Pantoja, 2010).

PRRSV (virus) infection (see Example 1). Given the great
economic importance of PRRS in many pig producing coun-
tries worldwide, PRRSV infection dynamics have been studied
extensively in field and laboratory experiments (Zimmerman
et al., 2006). However, many fundamental questions remain
unanswered that prevent the development of effective dis-
ease control strategies. The wealth of experimental evidence
offers a great opportunity for mathematical models to com-
bine the accumulating knowledge into a holistic quantitative
framework.

A first step towards this goal, that is, a simple model for
PRRSV infection dynamics, is outlined in detail in Example 1.
The model describes how pathogen load, severity of infec-
tion and target cell numbers change over time in the absence
of an immune response. For a more comprehensive model of
PRRSV infection that includes immune response mechanisms,
see Doeschl-Wilson and Galina-Pantoja (2010). The example
presented here not only aims to show how findings from
various empirical studies can be combined into a quantita-
tive model (Table 1, point 1) but also illustrates that even
very simple mathematical models can produce valuable sci-
entific insights. In particular, discrepancies between model
predictions and empirical observations point towards miss-
ing system components of great importance that warrant
further experimental investigations and model development
(Table 1, points 4 and 10).

Example 1: modelling host–virus interaction
for the PRRSV infections in pigs

Questions arising from empirical studies
PRRS is an endemic viral pig disease causing reproductive
failure in pregnant sows and respiratory disease with an
often fatal outcome in growing pigs. A hallmark of PRRSV
infection and reason for lack of efficient control to date is the

Available
Resources

Foraging
behaviour

Resoure
requirements

Resource
intake

Pathogen
challenge

ANOREXIA

RESOURCE ALLOCATION
IP

INTERACTION

Damage

Immune
response

GrowthReproduction

Predation Animal’s physiological state / ‘fitness’

Energy
reserves

Basic
maintenance

Figure 2 Schematic diagram of processes included in host–pathogen interaction models belonging to category 2. Not all processes/attributes are included in
each model. Solid boxes refer to attributes of the animal and dashed boxes refer to attributes of the animal’s environment. ANOREXIA, RESOURCE
ALLOCATION and IP INTERACTION refer to biological processes represented in (some of) the models. For further explanation, see text.
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unusual pathogenesis and the atypical immune response it
invokes (Murtaugh et al., 2002). PRRSV targets primarily a
subpopulation of macrophages in the lung and other tissues
that have reached a specific stage of differentiation that
renders them permissive to the virus (Duan et al., 1997;
Gaudrealt et al., 2009).

PRRSV infection is characterised by an atypical patho-
genesis consisting of a prolonged acute phase lasting for
1 month or longer, with peak virus levels in the blood and lung
between 7 to 14 days post infection and followed by a persis-
tent infection in the lung and lymphoid tissues that clears for
most animals within 150 days post infection (Allende et al.,
2000), but can last in some (especially younger) pigs for several
months or years (Lopez and Osorio, 2004; Figure 3a).

Compared with other common viruses, PRRSV fails to
elicit any of the typical innate immune response mechanisms
(van Reeth and Nauwynck, 2000; Murtaugh et al., 2002),
and the adaptive immune response is delayed and weak
(Molitor et al., 1997; Mulupuri et al., 2008; Figure 3b).

The results of empirical studies thus raise the following
question that (together with other questions) has been
addressed by the mathematical model of Doeschl-Wilson
and Galina-Pantoja (2010) and is described below.

What causes the decline in virus load during the acute
phase of the infection before the onset of the adaptive
immune response?

The mathematical model. The model describes the interac-
tion between a replicating virus and host alveolar macro-
phages, the primary site of PRRSV infection, during the acute
phase of infection, before the onset of the adaptive immune
response (i.e. no VN antibodies and cytotoxic T-cells). The
basic model for host–virus interaction contains four variables:
uninfected, non-permissive macrophages z, uninfected per-
missive macrophages x, infected macrophages y and free virus
particles v. It is assumed that uninfected non-permissible
macrophages z are produced at a constant rate l, become
activated towards a PRRSV permissive state at a rate d1z and
die at a rate mz. Permissive uninfected macrophages x return
to a non-permissive state at a rate d2x, die at a rate mx and
become infected by PRRSV at a rate bxv. Infected cells die at a

rate ay, with a > m. Free virus is produced by infected cells at
rate a ky and decays at a rate fv. These assumptions are
graphically captured in Figure 4 and lead to the following
system of ODEs (1).

_z ¼ l�ðd1 þ mÞzþ d2x

_x ¼ d1z�ðd2 þ mÞx�bxv

_y ¼ bxv� ay

_v ¼ ky�jv:

ð1Þ

Mathematical stability analysis at the system’s steady
states shows that there are two possible outcomes for sys-
tem (1 for system (1) (described by two equilibrium points):
either the infection will not be able to establish itself in the
host or it will converge to a persistent state with positive
viral load (although viral load may be too low to be main-
tained in reality), as shown in Figure 5a and b. The char-
acteristic of most interest to the first question above is that a
decline in virus load to low levels as shown in Figure 5a and
observed in empirical studies is only possible if the total
number of macrophages decreases substantially. This, how-
ever, contradicts empirical findings, which suggest that
macrophage numbers in infected tissues remain constant
during the time course of infection (Labarque et al., 2003;
Xiao et al., 2004). Applying the additional constraint that
macrophages are replenished at a rate corresponding to a
constant number of macrophages leads to a new persistent
equilibrium. However, it is straightforward to prove that this
equilibrium corresponds to a high virus load (Figure 5a).
Hence, the model predicts that a decline in virus load, as
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Figure 4 Schematic representation of the host–pathogen interaction
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observed in empirical studies, would not be possible under
the assumptions incorporated in our model, that is, in the
absence of immune response and a constant influx of new
macrophages to maintain macrophage numbers constant.
The results thus suggest that there are other important sys-
tem components that need to be included in the model.

One possible mechanism that may affect the trend in virus
load during the acute phase of infection is that macrophages
may become less permissive during the time course of infection.
Macrophage permissiveness over time has indeed been asses-
sed in an in vitro infection experiment (Gaudrealt et al., 2009),
but was found to increase within the first 5 days post infection.
However, this time frame corresponds to the early stage of
acute infection in which virus load still increases. Up to now,
no published experimental study has investigated macro-
phage permissiveness over a sufficiently long time period to
detect whether permissiveness decreases over a longer time
period. The advantage of mathematical models is that they
allow assessment of the outcome of hypothetical scenarios.
Replacing the constant differentiation rate d1 in model (1) by
the function d1(t) 5 atbexp(2ct), with parameters a, b and
c describing fast differentiation rates at the early stages and
slow differentiation rates at the later stages of infection
(Figure 5b), indeed produces a reduction in virus load similar
to those observed in experiments (Figure 3a).

This hypothesis is currently assessed in a laboratory study
and stimulated a fruitful collaboration between mathematicians
and molecular scientists. Preliminary results from the in vitro
experiment confirm the hypothesis that macrophage permis-
siveness initially increases and declines after about 6 days
post infection, and they also provide further insights into the
underlying mechanisms responsible for this decline from which
more accurate estimates for the differentiation rate d1(t) in the
above model can be derived (Reyes-Umana, 2010).

Gastrointestinal parasitism in ruminants. An approach
different from the PRRS infection model has been adopted

for host–pathogen interaction models of gastrointestinal
parasitism in ruminants, which, like all (epidemiological)
macro-parasitic infection models, describe the life cycle of
the parasite within the host from the intake of larvae to their
establishment in the gastrointestinal tract and finally the
production and excretion of larval eggs (Bishop and Stear,
1997; Louie et al., 2005; Vagenas et al., 2007a and 2007b).
The model of Vagenas et al. (2007a and 2007b), presented
in detail in Example 2, describes the impact of parasitism on
both host immunity and performance, and therefore belongs
to category 2. However, as infection and immune system
dynamics have been modelled in a similar way as in all of the
above models, the model is also partly considered here. In
particular, host–pathogen interactions are described by the
impact of larval challenge on the acquisition of immunity of the
host (which are simple functions of the cumulative larval intake
in the above-mentioned models), as well as by the influence
of the host genotype and physiological or immune status on
larval establishment, worm mortality and fecundity. Rather
than containing explicit descriptions of individual immune
processes, the models describe the effects of the host immune
response on different stages of the parasite life cycles.

Model application consists of assessing the influence of
diverse factors on the outcome of infection and of identifying
key biological uncertainties for which field data are required.
For example, Louie et al. (2005) established that parameters
determining larvae establishment have the greatest influ-
ence on peak parasite burden, whereas parameters affecting
mortality and fecundity had greater influence on the dura-
tion of the infection. Vagenas et al. (2007a) also identified
larval establishment rate (E) as a key parameter determining
the time trend of infection. In addition, they quantified the
impact of different challenge doses, nutritional regimes
(ranging from protein-rich to protein-scarce diets) and of the
host genotype on parasite burden and other traits of interest.

Despite differences in the actual model equations, existing
models of gastrointestinal parasite infections in ruminants are
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similar in that they are hypothesis driven. In other words, they
aim to provide an understanding of the influence of various
factors on the infection dynamics, rather than to provide
quantitatively accurate representations of individual immune
processes. Obtaining accurate estimates of the model para-
meters and fitting the models to existing data may prove
challenging as many key model parameters are defined on
conceptual grounds (e.g. genotypes for growth or resistance)
rather than representing measurable entities.

Example 2: modelling growth and immune response
to gastrointestinal parasite challenge in
immunologically naive lambs

In order to assess the influence of host genetics and nutrition
on gastrointestinal parasitism in lambs, Vagenas et al.
(2007a) developed a deterministic, dynamic simulation
model that describes the growth and immune response of
initially naive lambs facing pre-defined levels of nematode
challenge. A schematic diagram of the basic concepts and
rules for the host–pathogen interaction is shown in Figure 6.
Inputs to the model are (genetically controlled) growth and
resistance attributes of the host, feed quality, various para-
sitological parameters and daily larval intake. The model is
built upon a nutritional framework, that is, all biological
processes represented by the model are described in terms of
nutrient requirements and nutrients allocated to the indivi-
dual processes. For example, the host’s growth genoytpe
determines the desired nutrient intake, whereas the intake of
parasitic larvae and established adult worms are assumed to
result in nutrient loss for the host. The host counteracts this
loss by mounting an immune response, which affects, in
addition to the nutrient loss caused by larvae, the estab-
lishment rate of incoming larvae, mortality rate of adult
worms and fecundity of female worms. Nutrient scarcity and
the dilemma in nutrient allocation arises as a consequence of
anorexia, which is modelled as a function of worm mass.
Outputs include feed intake, growth rate and body compo-
sition, as well as worm burden and FEC.

The model consists of a large number of mathematical
equations describing changes in the model variables
according to heuristically derived relationships. The time
trends in the model variables are then described by first-
order difference equations (i.e. X(t 1 1) 5 X(t) 1 dX*Dt),
where a time step Dt of 1 day was used. Critical equations
are those describing the rates of host-controlled establish-
ment, fecundity and mortality of adult worms. These are
sigmoidal functions of cumulative larval intake and relate the
biological processes to nutrient requirements. For example,
larval establishment (E) is described by

E ¼ �max � e
�K��

PACImm
PRQmm

� �
�
P

t

LIn
 !

þ �min;

where emin and emax are minimum and maximum rates of
establishment, respectively, and PRQImm and PACImm are
protein required and allocated to immunity, respectively, KE

is a scaling parameter and
P
t

LIn is the scaled larval intake.
The model, and its extension to a population level, satis-

fied many of the functions listed in Table 1 (Vagenas et al.,
2007a, 2007b and 2008; Doeschl-Wilson et al., 2008). By
describing all biological processes in a nutritional context,
the interactive effects of host genetics and nutrition on
gastrointestinal parasitism, which are difficult to study
experimentally, could be explored in silico (Table 1, points 1,
5, 6 and 7). The host–pathogen interaction model for indi-
vidual animals was used to assess the time trends and
severity of gastrointestinal parasitism in sheep of different
growth and resistance characteristics, and kept in environ-
ments that vary in the provision of nutrients and exposure to
parasites (Vagenas et al., 2007b). One of the benefits of this
model is that it provides time trends for observable output
traits (e.g. growth rate and FEC), thus allowing assessment
of the impact of different control factors at different stages
of the infection (Table 1, points 11 and 12).

E. coli infections in the gut and mammary gland of cattle
Reflecting on the huge impact of E. coli on cattle health
and milk production, and in some cases also on human
health (for E. coli O157), several mathematical models exist
for the within-animal infection dynamics of E. coli. Wood
et al. (2006a) developed a stochastic simulation model that
describes the ingestion process and the resulting bacterial
population dynamics through simple birth–death and migra-
tion processes between different compartments in the bovine
gut. Intensive literature search for parameter estimates and
model fitting to experimental data showed that a variety of
experimental features could be reproduced by the model (e.g.
shedding duration and bacterial distributions in different gut
compartments), but it also revealed important knowledge gaps
that prevent the accurate prediction of bacterial time trends.
Despite some uncertainties in the parameterisation, the model
results suggest that although ingestion events in individual
animals are expected to be rare, a small number of ingestion
events would be sufficient to maintain the infection within
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Figure 6 Schematic diagram of the host–parasite interaction model.
Rectangular boxes indicate the fate of the ingested protein, rounded boxes
indicated host–parasite interactions and diamond boxes indicate key
quantifiable parasite life cycle stages. Dotted lines refer to the parasite life
cycle. The figure was published in Vagenas et al. (2007a).
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an animal. This insight was used in a subsequent paper in
which the model was used to explore the efficacy of diverse
control strategies (Wood et al., 2006b).

A more data-driven approach was adopted by Detilleux
et al. (2006), who modelled the acute inflammatory response
to E. coli of the bovine mammary gland. Their deterministic
model consists of three relatively simple ordinary differential
equations (ODEs) that describe the interactions between bac-
teria, milk somatic cells and blood leucocyte densities. By
fitting the model equations to data from challenge studies,
accurate estimates for the model parameters were obtained,
and the influence of different experimental conditions (e.g.
vaccinated and non-vaccinated animals, different bacterial
strains) on the model parameters was assessed. The model
also provided a threshold measure for the minimum milk
cellular density necessary to protect the gland against E. coli.
A similar approach (albeit a different model) had been applied
in an earlier model of the same lead author to obtain an esti-
mate of the minimum concentration of blood neutrophils
necessary to decrease the concentration of other bacteria in
mastitic milk (Detilleux, 2004). These studies show that even
relatively simple models can produce accurate quantitative
predictions and provide valuable insight into the role of
different key parameters. However, simple models may not
be able to capture all relevant phenomena observed in real
studies. In this case, infection dynamics were adequately
described for the acute stage of the infection but the model did
not capture the persistent stage.

A model that is able to describe infection processes at any
stage of mammary E. coli infection was recently developed
by White et al. (2010), with the objective to determine the
processes that lead to either transient or persistent infec-
tions. Their model includes a more detailed description
of bacteria (distinguishing between intracellular E. coli and
E. coli in milk), immune response mechanisms (including
pro-inflammatory and inhibitory cytokines and concentra-
tions of macrophages and polymorphonuclear cells) and
environmental factors (impact of lactation on cell numbers)
than other models. More complex models generally require
more parameters. Parameter estimates were derived by
using a combination of literature studies and fitting the
model to data from individual cows with transient and per-
sistent infections. On the basis of the results of the fitted
models, the authors established the most likely causes of
divergent outcomes (i.e. clearance or persistence).

In summary, there are relatively few models describing the
within-host infection dynamics for specific diseases in animals.
Existing models vary in their approach and in the level of
detail in which biological processes are represented, but most
models implement a very crude description of the host immune
response and its effect on within-host–pathogen load.

Overview of published models for basic immune
processes relevant for diseases in humans
In contrast to the few mathematical models that describe the
dynamics of infections in animals, the application of math-
ematical modelling in the study of immune system dynamics

in general and applied to human diseases is well established.
The abundance of published immune response models can be
partly attributed to the recent explosion of available experi-
mental data, combined with the recognition that an in-depth
understanding of the immune system with all its dynamic
interactions cannot be deduced from experiments alone
(Yates et al., 2001). In immunology, mathematical models
have adopted the role of providing the (quantitative) theore-
tical framework for interpreting the wealth of available
immunological data. In addition, the value of mathematical
models in advancing the understanding of the immune system
and in the development and in silico testing of treatment
strategies has been convincingly described by models of
human immunodeficiency virus (HIV) and some other infec-
tions in humans that emerged in the 1990s (see reviews by
Morel, 1998; Perelson, 2002; Davenport et al., 2007). The
success story of the early models has sparked much colla-
boration between mathematicians and immunologists since.

The extreme complexity of the immune system and the
vast variety of available data representing different system
components are mirrored by the great diversity of available
mathematical models. Detailed information about various
types of models of immune system dynamics published in
the immunological and mathematical literature is beyond the
scope of this review, but can be found in several excellent
reviews (e.g. Morel, 1998; Nowak and May, 2000; Yates
et al., 2001; Perelson, 2002; Louzoun, 2007; Kirschner and
Linderman, 2009).

Existing models of immune system dynamics vary
between those addressing basic immunological phenomena,
such as antigen recognition or development of immune cells
and effector mechanisms (e.g. Perelson and Wiegel, 1981;
Antia et al., 2005; Souza-e-Silva et al., 2009), models that
are generic for virus or bacterial infections (e.g. Antia and
Koella, 1994; Antia et al., 1996; Nowak and Bangham, 1996;
Kleinstein and Seiden, 2000; Pugliese and Gandolfi, 2008)
and models that focus on a particular (mostly human) dis-
ease of interest (e.g. Marchuck et al., 1991; Wodarz, 2003;
Kosmrlj et al., 2010; Smith and Ribeiro, 2010). Models differ
widely in the level of detail and the temporal and spatial
scales at which immune processes are represented as well as
in their methodologies. Many (in particular, early) immuno-
logical models are more conceptual, focusing on a phe-
nomenological description of the time course of infection
that results from the interaction of a relatively small number
of components (e.g. antigen with antibodies, T-cells or
memory B cells; Perelson and Wiegel, 1981; Wodarz et al.,
1999; Wodarz, 2003; Pugliese and Gandolfi, 2008). In these
models, the description of the individual system components
and their interactions can be simple (e.g. constant pro-
liferation rates, ignoring time delay or spatial distribution)
and model variables and parameters are often unscaled or
described in arbitrary units (as in Example 1). Nevertheless,
the dynamic properties of the simplistic model systems often
mimic the complex dynamics observed in the real world,
demonstrating the fact that complex behaviour can emerge
from simple interactions between few components.
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Increasing acquisition of data that produce detailed insight
into the fine building blocks of the immune system, together
with the shift from a reductionist to a systems view of biology
(Kitano, 2002), also raises the demand for a shift in mathe-
matical modelling. Traditional conceptual approaches are
replaced by more data-driven approaches and mathematical
systems with few components giving way to large networks.
Citing Louzoun (2007), ‘mathematical modelling in immunology
is becoming more and more molecular’.

One hallmark of mathematical modelling of immune sys-
tem dynamics is the incredibly rich repertoire of mathema-
tical methodology applied, which has evolved over time in
synchrony with the acquisition of new data. The advances
in the collection, storage and analysis of biological data
are also applicable to livestock diseases. Some of the most
common approaches, which are relevant to the development
of host–pathogen interaction models for livestock diseases,
are outlined in the section ‘Overview of mathematical
methodologies used in host–pathogen interaction models’.

Category 2: models that consider the impact
of infection on health and productive functions

An accurate understanding of the immune system dynamics
is vital for the development of pharmaceuticals, but for the
sustainability of livestock production a deep understanding
of the relationship between health, reproduction and pro-
duction traits is equally important. These questions are the
focus of models belonging to category 2, which arise mainly
from evolutionary ecology and livestock production science.
Evolutionary ecologists are interested in understanding the
factors influencing an animal’s ‘decision making’, in particular
when investment in immunity competes with investment in
reproduction or other survival traits (Medley, 2002; Houston
et al., 2007). Ultimately, the understanding will provide insight
into the evolution of immune and survival functions in animal
species. In contrast, livestock production scientists are more
interested in predicting the influence of infection on produc-
tive traits (Lescourret and Coulon, 1994), in anticipating
the consequence of genetic selection on animal health and
production and in determining the role of environmental
factors (e.g. pathogen challenge and nutrition) on the health–
production relationship. Their ultimate aim is to obtain the
necessary understanding for minimising the detrimental
effects and side effects of disease on animal health and other
traits of interest.

Basic principles of models in category 2
A common assumption underlying the majority of host–
pathogen interaction models of category 2 is that immunity,
like all biological processes, requires resources (e.g. protein
and energy). Resource scarcity, either resulting from envir-
onmental conditions (e.g. food shortage due to seasonal
effects) or from infection-induced anorexia (Exton, 1997;
Ayres and Schneider, 2010) causes a trade-off between diverse
resource-demanding functions. The observed response of an
animal in terms of immunity, reproduction and/or production is

then the outcome of an individual’s distribution of resources
between different competing processes.

The schematic diagram of Figure 2 illustrates how the
above-described nutritional framework is incorporated in the
host–pathogen interaction models belonging to category 2.
Despite the common conceptual approach, models differ in
the actual components included in the models (e.g. no model
considers all of the listed body functions in the nutrient
allocation simultaneously and only a few models included
infection-induced anorexia), in the representation of patho-
gen challenge (e.g. pathogen dose, incoming larvae and
infection pressure) and resources (e.g. energy or protein), in
the resource allocation rule and in the description of the
interaction between pathogens and the host’s immune
response.

Host–pathogen interaction models of category 2 in
evolutionary ecology
Host–pathogen interaction models in evolutionary ecology
aim to determine the optimum host defence strategy (mainly
allocation of resources) corresponding to minimum resource
requirements (Shudo and Iwasa, 2001), maximum chance of
survival (e.g. McNamara and Buchanan, 2005; Houston
et al., 2007) or maximum number of offspring (e.g. Medley,
2002). They assess how optimum allocation depends on
various factors such as nutrient availability, pathogen chal-
lenge or the physiological status of the host, with the aim to
explain contrasting phenomena observed in field studies.

Examples of evolutionary ecology models applying the
principle of trade-offs to host–pathogen interactions for an
individual animal include the model of Medley (2002), who
showed that the optimal defence strategy of a host exposed
to a constant parasite challenge may be to tolerate rather
than to clear parasites. The model also investigates how the
optimum level of parasites to be tolerated depends on host
resource acquisition, on parasite pathogenicity and on host
exposure level to the parasite. The model provides theore-
tical support for the hypothesis emerging from field obser-
vations that non-zero parasite burden could be beneficial to
the host (Behnke et al., 1992), and also offers some expla-
nation for the observed variations in parasite burdens
between hosts and parasite species.

Houston et al. (2007) applied the principle of nutrient
allocation to examine the trade-off between accumulating
energy reserves to avoid starvation and investing in immu-
nity to avoid death by disease for animals exposed to
changing environmental conditions. Their model suggests
that the optimal host strategy at a given time depends lar-
gely on the host’s energy reserves and on the frequency of
changes in food availability.

Trade-offs occur not only between immunity and other
fitness functions or production, but also between different
immune processes, such as between immediate or delayed
responses (Segel and Bar-Or, 1999) or between cellular and
humoral immune responses (Bankroft et al., 1994). For
example, mouse experiments showed that different doses of
the same pathogen or pathogens with different virulence
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could lead to divergent differentiation of Th0 cells into either
Th1 or Th2 cells activating cellular or humoral immune
response mechanisms, respectively (Janeway et al., 1999).
This motivated Shudo and Iwasa (2001) to develop a math-
ematical model to investigate whether different dominance
patterns between immune response mechanisms could be
inferred from energy costs associated with different defence
strategies. Weighting the energy cost of defence associated
with different types of immune responses against inflicted
damage, their model showed that response mechanisms that
require no or little time delay would be beneficial over
delayed response if pathogen dose and virulence are high,
thus supporting the experimental findings.

Although the processes implemented into these models
differ, the models share the underlying principle of trade-off
arising from resource scarcity and partitioning. In addition,
all of these models are represented as systems of ODEs (see
section ‘Overview of mathematical methodology’ below).

Host–pathogen interaction models of category 2 in
livestock science
Generic models for micro-parasitic infections. Host–pathogen
interaction models in livestock production science are aimed
more at determining the optimal control than optimal host
strategy. The underlying assumption of these models is that
the host genotype largely determines the nutrient require-
ments and/or nutrient allocation between different biological
processes and that the partitioning rules are known.
The models are then used to assess how changes in the ani-
mal’s genotype (e.g. through genetic selection) or changes in
environmental conditions (e.g. different pathogen challenge,
nutrient availability or diet composition) affect nutrient intake
and allocation and consequently also the observable pheno-
types related to health, reproduction and production (e.g. van
der Waaij et al., 2000; van der Waaij, 2004; Vagenas et al.,
2007a, 2007b and 2008; Doeschl-Wilson et al., 2008 and
2009a). In particular, the models aim to shed light on the
ongoing debate about how genetic selection influences the
relationship between disease resistance and (re-) production
(Knap and Bishop, 2000; Houdijk and Bünger, 2006; Doeschl-
Wilson et al., 2009b). It has been suggested that selection for
increased production over the last decades has made animals
on average more susceptible to disease as it may draw
resources away from immune defence towards costly pro-
ductive processes when nutrients are scarce (Sheldon and
Verhulst, 1996; Lochmiller and Deerenberg, 2000). However,
empirical evidence based on estimates of genetic correlations
between health and production traits also exists for the con-
trary, as reviewed by Rauw et al. (1998).

As described by van der Waaij et al. (2000) and van der
Waaij (2004), it is possible to assess the consequences of
genetic selection on the animal’s ability to cope with infec-
tious challenge with models that do not include explicit
expressions for host–pathogen interactions. Representing
host–pathogen interactions simply by the extent to which
genotypes for production and fitness can be realised (with high
infectious pressure corresponding to low realised production),

van der Waaij et al. (2000) showed that selection for
observed production could result in increased disease resis-
tance when animals are exposed to constant infection
pressure. A later model (van der Waaij, 2004) then described
how changes in resource availability and partitioning caused
by genetic selection for observed production could affect
both the sign and degree of genetic correlations between
production and fitness traits.

More recently, Doeschl-Wilson et al. (2009a) used a generic
model for host–pathogen interactions for micro-parasitic
infections to explore genetic and nutritional influences on
the production–disease resistance relationship over time. The
underlying assumption of this model was that the host’s genetic
capacities for growth and immune response determine its
nutrient requirements and preference of allocating nutrients
to either process. In addition, nutrient availability (which is
reduced due to infection-induced anorexia) and allocation sti-
pulate the extent to which the genotypes are expressed if the
animal is challenged by pathogens. The simulations demon-
strate that a host’s response to pathogen challenge is the result
of a complex interaction between host genotypes and the
nutritional environment, and that different outcomes to genetic
selection could be expected if selection was performed under
nutrient-rich or nutrient-scarce conditions (Doeschl-Wilson
et al., 2009a). The model also reveals the importance of
appropriate timing of measurements on which selection is to be
based, as the same selection criteria applied at different time
points could lead to different trends in genetic improvement.
All models belonging to category 2 mentioned so far are
non-specific to any particular type of pathogen and typically
represent pathogen challenge, immune response, host gen-
otype and nutrition through single entities with arbitrary
units. The objective of these models is to explain general
phenomena rather than to accurately predict the outcome
for a particular disease.

A specific model for the influence of parasitism on sheep
health and production (see Example 2). To the best of my
knowledge, the only (mechanistic) host–pathogen interac-
tion model that explores how pathogen challenge affects
both production and health for a particular disease is the
model for gastrointestinal parasitism in growing lambs by
Vagenas et al. (2007a). As outlined in more detail in Example
2, the model adopts similar principles for nutrient require-
ments and distribution as the generic model of Doeschl-
Wilson et al. (2009a) to simulate nutrient utilisation, growth,
immune status and parasite burden of an infected sheep on
a daily basis. One of the main benefits of a disease-specific
model over generic models is that the model can provide
quantitative predictions for observable growth and resis-
tance traits (e.g. body weight and FECs), which can be com-
pared with existing data. For example, extreme correlations
between resistance and growth, similar to those derived
from field studies (McEwan et al., 1992, 1995) could only be
reproduced by the model of Vagenas et al. (2007a and 2007b)
if underlying traits were genetically related (Doeschl-Wilson
et al., 2008). The results thus point to pleiotropic or linkage
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effects between underlying growth and resistance mechanisms
related to parasitism. In addition, the model offered some
explanations with regard to dietary effects on the grow-
th–resistance relationship explored in various field studies (e.g.
Greer, 2008; Zaralis et al., 2008). The model results suggest
that infection-induced anorexia is more likely to be observed
when nutrition is rich in dietary proteins (Vagenas et al.,
2007b), and that genetic correlations between growth and
resistance traits are stronger in protein-scarce than protein-rich
environments (Vagenas et al., 2008).

Nutrient intake and allocation as key drivers in models
of category 2
Nutrient intake and partitioning are key drivers determining
the observed host response to infectious challenge in all
models belonging to category 2 (Figure 2). Whereas nutrient
intake is either provided as model input or can be predicted
based on existing theoretical frameworks (e.g. Kyriazakis
and Emmans, 1999; Sandberg et al., 2006; Kyriazakis and
Doeschl-Wilson, 2009), all models rely on assumptions con-
cerning how nutrients are partitioned between different
body functions that are difficult to verify with experimental
data (Friggens and Newbold, 2007). It is therefore not sur-
prising that substantial differences exist between nutrient
allocation rules adopted in different models. For example,
van der Waaij (2004) assumed that nutrient partitioning is a
genetic characteristic of the host, independent of the host’s
physiological status or level of infectious challenge. In the
models of Vagenas et al. (2007a and 2007b) and Doeschl-
Wilson et al. (2009a), nutrient allocation to growth and
immunity is status- and genotype-dependent and based
on the relative nutrient requirements for either process.
In contrast, Medley (2002) proposed that the proportion of
resources allocated to the immune response depends on the
pathogen load and does not exceed a fixed proportion of the
total resources available to the host. Given the importance of
nutrient allocation for determining the health–production
relationship, more research efforts to come up with a unified
framework would be warranted. These could extend existing
theoretical frameworks for predicting nutrient partitioning
based on empirical observations (Coop and Kyriazakis, 1999;
Houdijk et al., 2001; Friggens and Newbold, 2007).

Description of host–pathogen interactions in models
of category 2
In contrast to the infection models of category 1, all models
belonging to category 2 adopt a relatively simplistic
description of host–pathogen interactions. In the simplest
case, host–pathogen interaction is only indirectly described
by the impact of pathogen challenge on the expression of
the host genotype (e.g. van der Waaij et al., 2000; van der
Waaij, 2004) or by the probability of death due to disease
(Houston et al., 2007). Others describe host–pathogen
interaction by the impact of pathogen challenge on the
immune response alone, ignoring how the immune response
affects the within-host pathogen load (e.g. Medley, 2002).
Conversely, the interactions were also described by the

impact of the immune response on the pathogen load (e.g.
Shudo and Iwasa, 2001), assuming that the strength of the
immune response is constant over the time course of infec-
tion and independent of the type or degree of pathogen
challenge. Even models that incorporate explicit two-way
interactions between the host immune response and within-
host pathogen load (e.g. Vagenas et al., 2007a; Doeschl-
Wilson et al., 2009a) only describe the immune response by
a single or few entities representing, for example, the
intensity of the immune response or the nutrient require-
ments for immunity.

Besides the risk of ignoring the role of essential system
ingredients, the consequence of this simplistic representa-
tion of the immune system is that the models are restricted
to exploring qualitative behaviour and trends with regard to
the infection dynamics, and have limited predictive power.
Currently, a number of models exist that predict the growth
and body composition of animals relatively accurately when
animals are raised in healthy environments (e.g. Knap, 1999;
Green and Whittemore, 2003) or challenged with social
stressors (Wellock et al., 2003). However, to this date, no
model exists that can accurately predict how these traits are
affected if animals are infectiously challenged (Kyriazakis
and Houdijk, 2007).

Including a more detailed description of the immune
response into these models would require specification of
resource requirements and allocation corresponding to each
individual immune process captured by the model. Several
studies have shown that estimates for protein and energy
requirements for immune processes in animals can be
empirically derived (Lochmiller and Deerenberg, 2000; Houdijk
et al., 2001; Klasing, 2007). The model of Romanyukha et al.
(2006) illustrates that empirical estimation of resource
requirements for specific immune processes is feasible and
can lead to valuable model predictions: after deriving esti-
mates of energy requirements for eight different immune
processes relevant in pneumonia infections, their mathe-
matical model could predict whether pneumonia infections
will lead to acute or chronic conditions based on energy
costs alone. The theoretical frameworks for predicting
nutrient partitioning mentioned above may serve as a good
basis for deriving quantitative estimates of nutrient alloca-
tion to the immunological and other biological processes
considered in the models.

Alternative approaches to model the effect of infection on
production traits
Not all models belonging to category 2 addressing the
relationship between health and production traits are based
on biological principles. For example, the two independent
simulation models for predicting the impact of mastitis on
milk production in dairy cows (Oltenacu and Natzke, 1976;
Lescourret and Coulon, 1994) build upon the results of statistical
analyses of mastitis and lactation data from commercial
dairy herds rather than upon biological concepts. Although
the data-driven models may provide a useful means to
investigate the effect of changes in animal characteristics
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and management on milk production (Lescourret and Coulon,
1994), their scope is limited as extrapolation of model results
beyond the conditions captured by the available data is
questionable.

Overview of mathematical methodologies used in
host–pathogen interaction models

The spectrum of mathematical methodologies applied to
model host–pathogen interactions, in particular to model
immunological processes, is extremely rich. Different meth-
odologies often generate different kinds of insight, and the
choice of the most appropriate methodology for the question
at hand may not always be obvious. This section of the
review summarises the principles, strengths and weaknesses
of the most widely applied mathematical tools in current
host–pathogen interaction models.

Systems of differential equations (DEs)
Traditionally, dynamical systems in mathematics are repre-
sented by sets of DEs (ODE, if change of system with respect
to time is studied and partial DEs, if a spatial component is
included). The model in Example 1 is represented through
ODEs, and most host–pathogen interaction models in evolu-
tionary biology consist of ODE systems. Equipped with a robust
set of mathematical tools to solve and analyse the behaviour of
DEs developed by mathematicians over centuries, DEs (in par-
ticular, ODEs) have been used widely in models of immune
reactions in previous years and are most likely to continue being
used in the future for systems comprising a limited number of
components. Despite their popularity, DEs have several impor-
tant limitations: first, non-linearities in the system can cause
difficulties in deriving (analytical or numerical) solutions of the
DE systems, especially if the system contains a large number of
variables, or if parameters are symbolic rather than actual
values (which lend themselves to more thorough mathematical
analysis). Second, as the variables of DE models describe gen-
erally a number or density of specific components (e.g. cells and
virus particles), they rely on the assumption that entities are
identical. Individual variation, brought on, for example, by
genetic heterogeneities of hosts or pathogens or different life
histories, is not easily captured by these models. Another lim-
itation of DEs is that they are deterministic and thus only pro-
vide information about the average behaviour of a system
rather than about the distributions of possible outcomes. In
addition, model variables can adopt arbitrary small values that
may not be realistic, such as pathogen loads corresponding to
,1 pathogen particle, and the modeller is faced with making
subjective decisions on how to interpret these values.

Mechanistic stochastic models
Many of these limitations can be overcome by introduc-
ing a chance element to the dynamic processes described
by the DE models, using stochastic modelling approaches
(e.g. Renshaw, 1991). A chance element can be introduced to
the initial conditions (e.g. initial pathogen challenge, host status
and time of infection) or to the occurrence of particular events

captured by the models. All stochastic models therefore require
the use of random number generators and, as every realisation
of the model leads to a different prediction, multiple simula-
tions to determine the expected range of behaviour. The models
thus provide a distribution of outputs rather than single pre-
dictions of the average system behaviour. Stochastic models are
particularly useful in scenarios in which chance fluctuations
become important, as for example, when pathogen load or
immune responses can be eliminated due to stochastic fade-out
(Wood et al., 2006a; White et al., 2010). As these models are
usually computationally demanding and more difficult to ana-
lyse than deterministic models, application of stochastic
approaches to model host–pathogen interactions are at present
relatively sparse.

Cellular automata (CA) and agent-based models (ABMs)
CA and ABMs are the biological alternatives to the
mechanistic DEs and their stochastic equivalents. Rather
than applying sophisticated mathematical methods to obtain
(analytical or approximate) solutions to a given set of
equations representing the entire system dynamics, CA and
ABMs simulate (usually simple) local interactions between
discrete ‘cells’ (or ‘agents’ in case of ABMs) (Wolfram, 1994;
Bauer et al., 2009). The dynamic evolution of the system is
then completely described by the specified rules of interac-
tion. The underlying assumption of these types of models is
that complex patterns can emerge from relatively simple sets
of interactions between system components, and the aim of
these models is therefore to establish the rules that generate
similar dynamic behavioural patterns as those observed in
real systems. In contrast to the continuous DEs, CA and
ABMs are discrete in both time and space.

Originally, CA models were deterministic and consisted of a
regular grid of identical cells that assume a finite set of states,
which solely depend on the states of the neighbouring cells
(Wolfram, 1994). Although restrictive, the mathematical
properties of these types of models were well characterised.
Several types of CA models have been developed to model
different aspects of the immune system (Celada and Seiden,
1992; Seiden and Celada, 1992; Morpurgo et al., 1995;
Zorzenon dos Santos and Coutinho, 2001; Shi et al., 2008) of
which the immune simulator IMMSIM (Kleinstein and Seiden,
2000) is probably the best known. However, most of these CA
models involve essential modifications of the original con-
cepts of CA (e.g. stochastic or continuous CAs and entities can
move between sites, etc.).

ABMs are natural extensions of CA models, relying on the
same principle that complex dynamic behaviour emerges
from local interactions of discrete agents, but applying less
restrictive rules. ABMs are stochastic, thus providing a
distribution of outputs rather than single predictions of the
average system behaviour. As the rules are still simple but
less restrictive than the CA rules, ABMs can handle a large
number of different immune system agents. Reflecting the
trend of increasing data production in experimental immu-
nology, ABMs of immune processes have emerged due to the
desire to provide a more comprehensive description of the
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complex immune network, comprising a large number of
interacting entities together with their inherent stochasticity.
Examples of existing ABMs of host–pathogen interactions and
their pros and cons are discussed in the review of Bauer et al.
(2009). The majority or CA or ABMs model ‘generic’ immune
processes rather than specific diseases. ABMs are relatively
new in mathematical immunology and to the best of my
knowledge have not yet been applied to study the relationship
between processes related to health and production.

The main advantage of CAs and ABMs over ODE models
is that the components and processes are represented in bio-
logical language, thus lending themselves more easily to bio-
logical applications and interpretations (Kleinstein and Seiden,
2000). Despite their simplicity, they are able to generate a rich
spectrum of complex dynamic patterns (Ganguly et al., 2003;
Bauer et al., 2009). Integration of new biological insights into
the model rules is relatively straightforward for these types of
models compared with the mechanistic DE or stochastic mod-
els, which do not lend themselves easily to model extensions
(Louzoun, 2007). However, several restrictions apply to CA and
ABMs: first, the simulations are often sensitive to parameter
changes, so that model validation requires a comprehensive
sensitivity analysis (Louzoun, 2007). As the overall system
behaviour emerges from local interactions, it can be difficult to
discern whether an unexpected result is the reflection of a
programming mistake or a surprising emerging property of the
model. The simplicity of implementation and versatility of these
models thus needs to be weighed against the difficulty in
identifying the key mechanisms controlling the observed
dynamics. Hence, whereas mechanistic DE or stochastic models
may be time consuming to build and unfriendly to use, CA and
ABMs are generally easy to code and use, but the generation
and analysis of results can be time consuming and difficult.

Bioinformatics and systems biology
Growing information with regard to the pathogen genomes
and molecular and biochemical pathways involved in the host
immune response has shifted the demand of quantitative
methods beyond the realm of mathematics towards bioinfor-
matics and systems biology, which are focused on interpreting
the large data sets emerging from genomic studies (Louzoun,
2007; Forst, 2010). Bioinformatics and systems biology are
closely related. While bioinformatics is the science of using
computer technology to gather, store, analyse and merge bio-
logical data (www.yourgenome.org/glossary/), systems biology
aims at understanding the dynamic interaction between the
identified system components. The underlying ethos of sys-
tems biology is that biological questions are addressed through
integrating experiments with computational modelling, simu-
lation and theory, in iterative cycles (Forst, 2010). Thus, in
comparison to the above-described modelling techniques
(DEs, CA or ABMs), they are much more data driven rather
than built upon theoretical concepts. In addition, in contrast to
the majority of existing mathematical host–pathogen interaction
models, bioinformatics and systems biology operate (primarily)
at a molecular level, for example, by using as input genomic
sequences of pathogens and involving computational prediction

algorithms to identify the pathogenic molecules to which the
host immune response reacts (Lundegaard et al., 2007). Adding
genomic resolution has the benefit that resistance and sus-
ceptibility patterns between pathogens and genetically different
hosts can be explored. However, in order to predict how mole-
cular interactions determine the outcome of infection, the model
has to operate on multiple scales ranging from the molecular to
the whole organism. This is a major challenge that has been
addressed only by a few studies. A framework for integrating
bioinformatics with dynamic simulation models was first out-
lined by Rapin et al. (2006), who combined a simple ODE-based
mechanistic model with bioinformatics to determine how the
mutation process of HIV (as predicted by bioinformatic algo-
rithms) affects the infection dynamics. More recently, Kosmrlj et
al. (2010) solved one of the long-standing mysteries in HIV
research by integrating bioinformatics and systems biology
approaches with sophisticated ODE models (Katsnelson, 2010).
Their model combined three approaches: (i) bioinformatic algo-
rithms for quantifying peptide binding in host-specific cell-
surface proteins that detect viruses and present them to T-cells,
(ii) stochastic simulations to predict how these affect T-cell
maturation and (iii) an ODE model for studying the effect of
peptide binding in cell-surface proteins and T-cell maturation on
the virus set point and the within-host evolution of HIV. This
synthesis of methodologies led to a convincing quantitative
explanation of why some people never develop AIDS after
becoming infected with HIV (Katsnelson, 2010).

Integrating molecular information into dynamic simulation
models is still in its infancy and has (to my knowledge) only
been shown for HIV, for which extensive information on
pathogen and human genome or proteome, and good esti-
mates exist for proliferation, division and death rates of
immune system components. Model implications discussed
in the literature exclusively concern drug development
or administration. Given the current trend in molecular
research, the time will soon be ripe for exploring similar
approaches to tackle animal diseases.

What is a good mathematical model?

After being presented with different types of mathematical
models using different principles and mathematical meth-
odologies, the question arises, which mathematical model is
most appropriate for addressing specific issues concerning
host–pathogen interactions in animals. The choice of an
appropriate model depends primarily on the modelling
objective: should the model be explorative or predictive? Are
we interested in better understanding a particular phenom-
enon or in obtaining quantitatively correct predictions for the
outcome of a certain treatment? To answer questions of the
first kind (explorative and improved understanding), a simple
model consisting of a small number of key components may be
adequate, whereas a comprehensive model including as many
known components of significant influence as possible may be
required to provide accurate predictions.

Irrespective of the model complexity, the most important
rule of thumb for creating any model is the principle of
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Occam’s razor, which states that one should choose from a
set of equivalent models of a particular phenomenon always
the simplest one. This implies that a model should not
extrapolate too far beyond the current knowledge of the
system, as this would require several assumptions that
may not be met. Application of this principle has been
exemplified by the progression of HIV models during the last
decades. Starting with small sets of DEs with very few
parameters in the initial stages of HIV modelling (e.g. Nowak
and May, 1991 and 1993), the gradual accumulation of in-
depth knowledge has evolved HIV modelling towards a
combination of mathematical tools including computational
algorithms in systems biology and extensive systems of DEs
(Rapin et al., 2006; Kosmrlj et al., 2010). However, as illu-
strated by the early HIV models and by the numerous models
outlined in this review, even simple models can provide
useful insights with strong implications. In fact, one of the
great dangers arising from the current generation of
vast amount of data is that they may produce models that
provide more accurate representations of reality, but do not
enhance the understanding of the system. As Mata and
Cohn (2007) warn: ‘building a mathematical web around a
random collection of observations does not in itself increase
understanding.’

Another critical factor for choosing an appropriate model
concerns model validation. Generally, ‘the more assumptions
that have to be put into a model, the harder it is to be
confident about the conclusions’ (Morel, 1998). A model that
contains many parameters with unknown values is difficult
to validate, as a comprehensive sensitivity analysis testing
the outcome for all possible parameter combinations is
virtually impossible. As discussed above, some modelling
methodologies lend themselves better to model validation
than others. For example, validation of DE models is gen-
erally more robust than validation of, for example, CA or
ABMs due to the symbolic mathematical toolset (e.g. bifur-
cation and stability analysis) that exists for the more classical
mathematical approaches. Model developers are often faced
with a trade-off between ease of computing, of interpreta-
tion of results and model validation.

Conclusions and the way forward

As shown through numerous examples, mathematical models
of host–pathogen interactions in animals are a valuable com-
plement to empirical studies to improve our understanding of
the processes underlying an animal’s response to infectious
challenge. This understanding is crucial for the control of live-
stock diseases and the sustainability of livestock production
and human health. Given the important role of livestock pro-
duction in feeding an ever-increasing human population,
mathematical models of livestock disease are faced with
the additional challenge compared with models of human
disease that they should account for the impact of disease on
animal health and performance and environmental impact
simultaneously. The nutrient allocation framework has proved
valuable for linking processes associated with immunity,

reproduction and production but needs to be complemented
with a more sophisticated representation of the biological
processes involved in an animal’s response to pathogen
challenge that integrates the vast amount of information
emerging from field and laboratory studies. To achieve this,
animal scientists should follow the footsteps of immunologists
in developing fruitful collaboration with mathematicians and
adapt the established methodologies and insights gained from
immunological models aimed at tackling human diseases to
diseases in livestock. The model development should also take
into account that compared to human diseases in which
treatment focuses on the application of pharmaceuticals, a
larger set of tools may be available to control disease in live-
stock. These include diverse changes in animal husbandry,
breeding for disease resistance or other genetic control stra-
tegies. In particular, greater attention should be given to the
role of host genetics and nutrition when modelling host–
pathogen interactions in livestock.

In conclusion, there is work to do before we can exploit
the benefits of mathematical models of host–pathogen
interactions to their full potential when tackling disease in
livestock. However, rather than being confronted with the
difficult task of inventing new tools, the work entails a skilful
assembly of existing building blocks.
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Houdijk JGM and Bünger L 2006. Selection for growth increases the penalty of
parasitism on growth performance in mice. Proceedings of the Nutritional
Society 65, 68A.

Houdijk JGM, Jessop NS and Kyriazakis I 2001. Nutrient partitioning between
reproductive and immune functions in animals. Proceedings of the Nutritional
Society 60, 515–525.

Houston AI, McNamara JM, Barta Z and Klasing KC 2007. The effect of energy
reserves and food availability on optimal immune defence. Proceedings of the
Royal Society B 274, 2835–2842.

Jackson F and Coop RL 2000. The development of anthelmintic resistance in
sheep nematodes. Parasitology 120, 95–107.

Janeway CA, Travers P and Walport M 1999. Immunobiology: the immune
system in health and disease. Garland Publishing Co., New York.

Katsnelson A 2010. Well-trained immune cells keep HIV in check. Nature News.
doi:10.1038/news.2010.219

Kirschner DE and Linderman JJ 2009. Mathematical and computational
approaches can complement experimental studies of host pathogen interactions.
Cellular Microbiology. 11, 531–539.

Kitano H 2002. Systems biology: a brief overview. Science 295, 1662–1664.

Klasing KC 2007. Nutrition and the immune system. British Poultry Science 48,
525–537.

Kleinstein SH and Seiden PE 2000. Simulating the immune system. Computing
in Science and Engineering. 2, 69–77.

Knap PW 1999. Simulation of growth in pigs: evaluation of a model to relate
thermoregulation to body protein and lipid content and deposition. Animal
Science 68, 655–679.

Knap PW and Bishop SC 2000. Relationship between genetic change and
infectious disease in domestic livestock. Occasional publications of the British
Society of Animal Science No. 27, pp. 65–80, BSAS, Edinburgh, Scotland.

Kosmrlj A, Read EL, Qi Y, Allen TM, Altfeld M, Deeks SG, Pereyra F, Carrington M,
Walker BD and Chakraborty AK 2010. Effects of thymic selection of the T-cell
repertoire on HLA class I-associated control of HIV infection. Nature 465,
350–354.

Kyriazakis I and Emmans GC 1999. Voluntary feed intake and diet selection.
In Quantitative biology of the pig (ed. I Kyriazakis), pp. 229–248. CABI,
Wallingford, Oxon, UK.

Kyriazakis I and Houdijk JGM 2007. Food intake and performance of pigs during
health, disease and recovery. In Paradigms in pig science (ed. J Wiseman, J
Varley, MA McOrist and B Kemp), pp. 493–513. Nottingham University Press,
Nottingham, UK.

Kyriazakis I and Doeschl-Wilson AB 2009. Anorexia during infection in mammals:
variation and its sources. In Voluntary feed intake in pigs (ed. D Torrallardona and
E Roura), pp. 307–318. Wageningen Academic Publishers, Netherlands.

Labarque G, Van Gucht S, Nauwynck H, Van Reeth K and Pensaert M 2003.
Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory
syndrome virus and associations with the production of apoptogenic cytokines.
Veterinary Research 34, 249–260.

Lescourret F and Coulon JB 1994. Modeling the impact of mastitis on milk
production in dairy cows. Journal of Dairy Science 77, 2289–2301.

Lochmiller RL and Deerenberg C 2000. Trade-offs in evolutionary immunology:
just what is the cost of immunity? Oikos 88, 87–98.

Lopez OJ and Osorio FA 2004. Role of neutralizing antibodies in PRRSV
protective immunity. Veterinary Immunology and Immunopathology 102,
155–163.

Louie K, Vlassoff A and Macckay A 2005. Nematode parasites of sheep: extension
of a simple model to include host variability. Parasitology 130, 437–446.

Louzoun Y 2007. The evolution of mathematical immunology. Immunological
Reviews 216, 9–20.

Lundegaard C, Lund O, Kesmir C, Brunak S and Nielsen M 2007. Modeling the
adaptive immune system: predictions and simulations. Bioinformatics 23,
3265–3275.

Mata J and Cohn J 2007. Quantitative modeling of immune responses.
Immunological Reviews 216, 5–8.

Marchuck GI, Petrov RV, Romanyukha AA and Bocharov GA 1991. Mathematical
model of antiviral immune response. I. Data, analysis, generalized picture
construction and parameter evaluation for Hepatitis B. Journal of Theoretical
Biology 151, 1–40.

McEwan JC, Mason P, Baker RL, Clarke JN, Hickey SM and Turner K 1992. Effect
of selection for productivity traits on internal parasite resistance in sheep.
Proceedings of the New Zealand Society of Animal Production 52, 53–56.

McEwan JC, Dodds KG, Gree GJ, Bain WE, Duncan SJ, Wheeler R, Knowler KJ,
Reid PJ, Green RS and Douch PGC 1995. Genetic estimates for parasite
resistance traits in sheep and their correlations with production traits. New
Zealand Journal of Zoology 22, 177.

McNamara JM and Buchanan KL 2005. Stress, resource allocation, and
mortality. Behavioural Ecology 16, 1008–1017.

Medley GF 2002. The epidemiological consequences of optimisation of the
individual host immune response. Parasitology 125, S61–S70.

Molitor TW, Bautista EM and Choi CS 1997. Immunity to PRRSV: double-edged
sword. Veterinary Microbiology 55, 265–276.

Morel PA 1998. Mathematical modelling of immunological reactions. Frontiers
in Bioscience 3, 338–347.

Morpurgo D, Serentha R, Seiden P and Celada F 1995. Modelling thymic
functions in a cellular automaton. International Journal of Immunology 7,
505–516.

Modelling host–pathogen interaction in animals

909



Mulupuri P, Zimmerman JJ, Hermann J, Johnson CR, Cano JP, Yu W, Dee SA and
Murtaugh MP 2008. Antigen-specific B-cell responses to porcine peproductive
and respiratory syndrome virus infection. Journal of Virology 82, 358–370.

Murtaugh MP, Xiao Z and Zuckermann FA 2002. Immunological responses of
swine to porcine reproductive and respiratory syndrome virus infection. Viral
Immunology 15, 533–547.

Nowak MA and Bangham CR 1996. Population dynamics of immune responses
to persistent viruses. Science 272, 74–79.

Nowak MA and May RM 1991. Mathematical biology of HIV infections –
anitgenic variation and diversity threshold. Mathematical Biosciences 106, 1–21.

Nowak MA and May RM 1993. AIDS pathogenesis – mathematical models of
HIV and SIV infections. AIDS 7, S3–S18.

Nowak MA and May RM 2000. Virus dynamics: mathematical principles of
immunology and virology. Oxford University Press, New York.

Oltenacu PA and Natzke RP 1976. Mathematical modeling of the mastitis
infection process. Journal of Dairy Science 59, 515–521.

Perelson AS 2002. Modelling viral and immune system dynamics. Nature
Reviews Immunology 2, 28–36.

Perelson AS and Wiegel FW 1981. Theoretical considerations of the role of
antigen structure in B cell activation. Federation Proceedings 40, 1479–1483.

Perry B and Grace D 2009. The impacts of livestock diseases and their control on
growth and development processes that are pro-poor. Philosophical Transactions
of the Royal Society B 364, 2643–2655.

Pugliese A and Gandolfi A 2008. A simple model of pathogen-immune dynamics
including specific and non-specific immunity. Mathematical Biosciences 214,
73–80.

Rapin N, Kesmir C, Frankild S, Nielsen M, Lundegaard C, Brunak S and Lund O
2006. Modelling the human immune system by combining bioinformatics and
systems biology approaches. Journal of Biological Physics 32, 335–353.

Rauw WM, Kanis E, Noordhuizen-Stassen EN and Grommers FJ 1998.
Undesirable side effects of selection for high production efficiency in farm
animals: a review. Livestock Production Science 56, 15–33.

Renshaw E 1991. Modelling biological populations in space and time.
Cambridge studies in mathematical biology. Cambridge University Press, UK.

Reyes-Umana V 2010. Assessing key viral determinants for viral load decline.
Honours degree thesis, University of Edinburgh, Scotland.

Romanyukha AA, Rudnev SG and Sidorov IA 2006. Energy cost of infection
burden: an approach to understanding the dynamics of host–pathogen
interactions. Journal of Theoretical Biology 241, 1–13.

Sandberg FB, Emmans GC and Kyriazakis I 2006. A model for predicting food
intake of growing animals during exposure to pathogens. Journal of Animal
Science 84, 1552–1566.

Sangster NC 1999. Anthelminitc resistance: past, presence and future.
International Journal for Parasitology 29, 115–124.

Segel LA and Bar-Or RL 1999. On the role of feedback in promoting conflicting
goal of the adaptive immune system. Journal of Immunology 163, 1342–1349.

Seiden PE and Celada F 1992. A model for simulating cognate recognition and
response in the immune system. Journal of Theoretical Biology 158, 329–340.

Sheldon BC and Verhulst S 1996. Ecological immunology: costly parasite
defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution
11, 317–321.

Shi V, Tridane A and Kuang Y 2008. A viral load-based cellular automoate
approach to modeling HIV dynamics and drug treatment. Journal of Theoretical
Biology 253, 24–35.

Shudo E and Iwasa Y 2001. Inducible defense against pathogens and parasites:
optimal choice among multiple options. Journal of Theoretical Biology 209,
233–247.

Simm G 2010. Guest editorial: livestock and global climate change. Animal 4,
321–322.

Smith AM and Ribeiro RM 2010. Modeling the viral dynamics of influenza A
virus infection. Critical Reviews in Immunology 20, 291–298.
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