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Abstract
Histopathological grading of astrocytic tumours based on current WHO criteria offers a valuable
but simplified representation of oncological reality and is often insufficient to predict clinical
outcome. In this study we report a new astrocytic tumour microarray gene expression dataset
(n=65). We have used a simple Artificial Neural Network (ANN) algorithm to address grading of
human astrocytic tumours, derive specific transcriptional signatures from histopathological
subtypes of astrocytic tumours and asses whether these molecular signatures define survival
prognostic subclasses. 59 classifier genes were identified and found to fall within three distinct
functional classes namely angiogenesis, cell differentiation and lower grade astrocytic tumour
discrimination. These gene classes were found to characterize three molecular tumour subtypes
denoted ANGIO, INTER and LOWER. Grading of samples using these subtypes agreed with prior
histopathological grading both for our dataset (96.15%) as well as an independent dataset. Six
tumours were particularly challenging to diagnose histopathologically. We present an ANN
grading for these samples, and offer an evidence-based interpretation of grading results using
clinical metadata to substantiate findings. The prognostic value of the three identified tumour
subtypes was found to outperform histopathological grading as well as tumour subtypes reported
in other studies, indicating a high survival prognostic potential for the 59 gene classifiers. Finally,
11 gene classifiers that differentiate between primary and secondary glioblastomas were also
identified.
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Introduction
Astrocytic tumours of malignancy grades II to IV are collectively termed diffusely
infiltrating astrocytomas, and include diffuse astrocytoma (malignancy grade II, abbreviated
‘A’), anaplastic astrocytoma (malignancy grade III, abbreviated ‘AA’) and glioblastoma
(malignancy grade IV, abbreviated ‘GB’). A total of four malignancy grades are recognised
by the World Health Organization (WHO) system with grade I and IV tumours being the
biologically least and most aggressive tumour grades respectively (1, 2). Glioblastoma
commonly occur de novo (also called primary glioblastoma) but may also result from the
progression of lower grade tumours to higher malignancy grades. Glioblastoma shows the
greatest range of genetic abnormalities, with common changes in the de novo tumours
including homozygous deletion of CDKN2A, CDKN2B, and p14ARF (9p21), loss of one
allele and mutation of the retained allele of PTEN (10q23) and amplification of the EGFR
gene (7p12) (2).

Use of expression microarray data in brain tumour classification/clustering (3) and survival
prognosis (4-6) has received significant interest in the last few years. Approaches include
statistical methods for gene set identification and tumour classification (7), principal
component analysis and t-test for the selection of differentially expressed genes involved in
astrocytoma progression (8), k-means along with multidimensional scaling for
discriminating between glioblastomas, lower grade astrocytomas and other glioma types
such as oligodendrogliomas (9), hierarchical clustering (3, 4, 9, 10), k-nearest-neighbour for
classification of high-grade gliomas and outcome prognosis (5), gene voting for survival
prediction of the diffusely infiltrating gliomas (4) and others. Expression profiling has
identified molecular as well as genetic subtypes associated with tumour grade, progression,
and patient survival (8, 10). While astrocytic tumours continue to be defined by histological
criteria, reports that expression profiles predict survival better than histological grade (4, 5,
11) provide support for the hypothesis that tumours defined morphologically represent a mix
of molecular genetic subtypes. Most of these studies, however, have compared diffusely
infiltrating astrocytomas to tumours of mixed or non-astrocytic origin, have not included
lower grade (II) tumours (4, 5, 7, 11) or have limited their efforts to a single tumour grade
(3, 6). Several of these studies have also compared tumour tissue to normal brain, a task of
arguable relevance when taking into account the vast differences in cellular composition
between the two tissues. Moreover, studies have often focused on questions related more to
the use of expression data towards general brain tumour classification rather than
malignancy grading of diffusely infiltrating astrocytic tumours per se. Finally, discordances
between histopathology and expression-based tumour classification for a given tumour set
have seldom been interpreted or substantiated with thorough clinical and/or molecular
evidence.

Using a new gene expression dataset originating from 65 highly annotated tumours and a
simple artificial neural network (ANN) algorithm in the form of a single-layer perceptron,
we address grading of human astrocytic tumours, derive specific transcriptional signatures
from histopathological subtypes of astrocytic tumours and asses whether these molecular
signatures define survival prognostic subclasses. We validate our approach with a number of
independent datasets and offer valuable insight into the tumour biology and gene
expression-based grading of astrocytomas.
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Materials and Methods
Tumour samples, RNA isolation and Hybridization to Affymetrix U133A GeneChips

The tumour set consisted of 2 pilocytic astrocytomas (WHO grade I, ‘PA’) 5 diffuse
astrocytomas (WHO grade II, ‘A’), 15 anaplastic astrocytomas (WHO grade III, ‘AA’) and
39 glioblastomas (WHO grade IV, ‘GB’). This sample distribution reflects tissue availability
and relative frequency of diagnosis per tumour grade. 4 additional samples graded as AA
that were exceptionally challenging to grade by histopathology were treated as separate
“problem” cases. Histopathological diagnoses were made according to WHO criteria (1) by
V.P.C. RNA from the 65 human astrocytic tumour samples was extracted using guanidine
isothiocyanate ultracentrifugation as described previously (12). RNA quality was assessed
using an Agilent Bioanalyzer 2100 (Agilent technologies). For each tumour sample, 7 μg of
RNA were used to generate double stranded cDNA which was subsequently in vitro
transcribed to produce biotin-labelled cRNA using the ENZO BioArray HighYield kit.
cRNA (15 μg) was fragmented and hybridized to Affymetrix HG-U133A genechips
(Affymetrix, Inc, Santa Clara, CA). GeneChips were washed, stained and scanned as
described in the manufacturer’s manual. Quality of pre- and post-fragmentation cRNA was
assessed using an Agilent Bioanalyzer 2100 (Agilent technologies).

Expression microarray data analysis
Raw data (CEL files) were imported into ‘R’, a freely available environment for statistical
computing(13). Normalization and computation of expression measures was performed
using the justRMA function within the Affy package of Bioconductor (14). All expression
data has been submitted to GEO (15) in a MIAME-compliant fashion (accession number
GSE1993). Annotation of probe set lists was performed using EASE (16).

Validation of results using Quantitative QPCR (QPCR)
QPCR was performed on a LightCycler machine (Roche) using DNA master SYBR Green I
(Roche Molecular Biochemicals, or Sigma) according to the manufacturer’s protocol.
Primers were ordered from MWG. Double stranded cDNA used as a template was the same
as that used for cRNA target preparation. 1 μl of this cDNA was diluted 1:200 for
generation of the final template used. Validation was performed on a subset of 23 tumours
(15 GB, 8 AA) that were part of the original tumour dataset assessed. Assays were
performed in duplicate. The raw data produced by QPCR referred to the number of cycles
required for reactions to reach exponential phase as determined using the RelQuant software
(Roche). Expression of MYO1C was used for normalisation of the QPCR data. Mean
expression fold change differences between tumour groups were calculated using the
2−ΔΔCT method (17). Primer sequences: PEA15, 5′-GAGCAGCCAGCGTTAGATGC-3′,
3′-GGAGGTGTTCACAAGACCAGGG-5′; ADM,5′-
GCAGAAGAATCCGAGTGTTTGC-3′, 3′-AATCAGTTTGTGGGCGAGCACG-5′.

Tissue array generation and Immunohistochemistry
Cores (n=2, for 57 tumours from our dataset) of 0.6 mm diameter were taken from paraffin
embedded tumour tissue and arrayed into a fresh paraffin block using a manual tissue
arrayer (Beecher Instruments, Silver Spring, MD, USA). Areas identified on hematoxylin
and eosin-stained sections to have high tumour cell content were used. 10 non-neoplastic
tissue cores with minimal or no tumour cell content were also included.
Immunohistochemistry for ADM (1:50, Abcam, ab18092) and PEA15 (1:500) was
performed as previously described (18, 19).
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The ANN Model and statistical analysis
A single-layer perceptron was used for grading the tumour tissue samples. The number of
inputs was equal to the number of classifier genes and the output layer consisted of a single
neuron with a sigmoidal activation function. Initial weight values were chosen randomly and
training was performed using a standard gradient descent learning rule (or Delta rule) with
learning rate η = 0.05. Calibration was performed via leave-one-out cross-validation. The
weight values were updated after every sample and the calibration was terminated after 100
passes (epochs) through the entire training set. The resulting parameters for a completed
training define a “model” (also see online supplement). The source code for the ANN and
visualization methods is available from: http://www.imbb.forth.gr/people/poirazi/
software.html.

The Kaplan-Meier method was used to estimate the survival distributions(20). Log rank tests
were used to test the difference between survival groups. For all of the analyses, a p < 5.0e−2

was accepted as significant. Statistical analyses were carried out with the freely available
software package R.

Results
SELECTION OF CLASSIFIER GENES

Training the ANN to distinguish between different astrocytic tumour grades
and concurrent selection of classifier genes—In order to train the neural network,
tumour samples were randomly split into two sets in a way that approximately preserves the
sample distribution across each tumour grade. The first 20 GB, 10 AA and 3 A were used as
a training set and 19 GB, 5 AA and 2 A were used as a test set. A further test group of 6
astrocytic tumours comprised 4 AA that had proved difficult to grade histopathologically
and two samples belonging to grade I, pilocytic astrocytomas (PA).

Training/calibration was performed in an all-pairs approach whereby the single problem of
learning to differentiate between 3 grades (GB, AA, and A) was narrowed down to multiple
2-grade problems (Figure A online supplement). The 33 training samples were split into
three sample groups each comprising 2 tumour grades, namely (a) GB-AA, (b) AA-A and
(c) GB-A. Three different types of ANN models (A, B and C) were then trained, each
corresponding to their respective sample groups. For each of these model types, genes that
showed differential expression between the two grades in question were selected using the
signal-to-noise method (21) on the entire U133A chip genome. Training performance and
optimum number of genes required for grading were evaluated using leave-one-out cross-
validation. For every leave-one-out run, genes were ranked according to signal-to-noise
(taken over all but the left out sample) and then the grading success rate was determined
using increasing numbers of these ranked genes. Leave-one-out cross-validation success
rates optimized to 93.3%, 84.6% and 95.6% using a total of 44, 9 and 7 probe sets for the
GB-AA, AA-A and GB-A grade comparisons respectively (see leave-one-out plots, Figure
B online supplement).

Pooling of all probe sets and elimination of redundancies resulted in a total of 59 unique
probe sets. As anticipated, hierarchical clustering of all training samples using the above
probe sets revealed clear distinctions between the GB, AA and A tumour grades and further
defined 3 functional gene classes that delineate 3 molecular tumour subtypes. (Figure 1 - see
next section for details). The trained/calibrated ANN models (see Materials and Methods)
were subsequently used for grading of the test set.
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Expression profiles of gene classifiers selected during training define three
molecular tumour subtypes—A thorough examination of the selected gene classifiers,
most of which were also identified using empirical Bayesian analysis (Table 1 and online
supplement), revealed two interesting features. Firstly, classifying genes were found to fall
within three main functional classes and secondly, these functional classes could
discriminate between three molecular tumour subtypes. The first subtype showed significant
increased expression of genes involved in: i) wound-healing (ADM, PDGFa, EFEMP2), ii)
extracellular matrix constituents and remodelling machinery (LGALS1 and 3, PLAT,
TIMP1, COL5A2) and iii) cell adhesion (PARD3, DAG1, Kindlin1, ZYX and ALCAM). As
all of these functions are necessary for the angiogenic properties of cells, this subtype was
labelled ANGIO and was characteristic of the grade IV, GB samples. The next group was a
mixture of histopathological and molecular subtypes and showed increased expression of
genes involved in: i) cell-signaling and growth (BMP2, ABI1, REPS2, ADCY2, NET1), ii)
protein biosynthesis (RPL22, ZMYND11) and the iii) cell cycle (PARD3, ZMYND11,
CLASP2). This group, labelled DIFFER, characterizes the grade II and grade III, samples,
which while active in growth and neuronal differentiation, have not yet acquired angiogenic
properties. This group was further analyzed using a set of genes coding for ankyrin repeat
proteins (ANK3, ANKS1B), solute carrier proteins (SLCO1A2, SLC34A1), a protein
involved in apoptosis (DNAJA3) and PEA15, a cytostatic and anti-apoptotic phosphoprotein
enriched in astrocytes (22). This analysis lead to the separation of the DIFFER group into
the INTER (Intermediate) subtype, which was characteristic of the grade III samples and the
LOWER subtype which was characteristic of grade II samples.

Gene classifiers of particular biological interest—In addition to the identification of
three molecular tumour subtypes, two classifiers, the phosphoprotein enriched in astrocytes
15 (PEA15, 1q21.1 - LOWER) and adrenomedullin (ADM, 11p15.4 - ANGIO) were of
particular biological interest and/or novelty. These genes were also found to be differentially
expressed between the GB-A and/or GB-AA tumour grades by empirical Bayesian analysis.
Expression changes were validated by both QPCR and immunohistochemistry (IHC) (Figure
2). A further 23 differentially expressed genes identified by Bayesian analysis were
successfully validated by QPCR. The correlation (R2) between Affymetrix and QPCR GB/
AA expression fold changes for these genes was over 0.8 (data not shown).

GRADING USING TRAINED ANN MODELS
Grading of test samples using the trained ANN models into tumour subtypes
agrees with prior histopathological grading—Grading of the test set (n=26) was
performed by passing each test sample through all models saved during the training process
(for details see online supplement). Through this way the 59 genes/probes selected during
training can be put to the test of grading a ‘blind’ set of tumour samples. For each test
sample, an initial voting was performed by the ANGIO/DIFFER trained models. The
samples that were graded as DIFFER received a follow-up grading by the INTER/LOWER
trained models to discriminate between INTER and LOWER subtypes (Table A - online
supplement). Histopathological grading of the test samples was found to agree with the
tumour subtypes observed during training. More specifically, all GB (except sample GB154)
and all lower grade astrocytic tumours (A and AA) showed increased expression of ANGIO
and DIFFER genes respectively. Furthermore, all A samples were distinguished from AA by
the differential expression of INTER/LOWER genes. Overall our ANN-defined tumour
subtypes were in agreement with prior histopathological grading, reporting 94.74%, 100%
and 100% accuracies for ‘GB’, ‘AA’ and ‘A’ grading respectively Visualization of network
outputs using available clustering algorithms (23, 24) for all train and test samples
(including annotation with genomic metadata) is shown in Figure 3a (also see online
supplement).

Petalidis et al. Page 5

Mol Cancer Ther. Author manuscript; available in PMC 2010 February 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Grading of an independently published astrocytic tumour gene expression
dataset using cross-chip gene classifiers—To further validate the grading capacity
of our gene classifiers, we used an independent, astrocytic tumour gene expression dataset
published by Shai et al in 2003 (9). Of the 59 probe sets selected during training from our
HG-U133A genechips, 38 genes had >96% identity to probe sets on the U95Av2 genechip
utilized by Shai et al, 2003 (9). Out of these, we selected 20 genes that appeared more than
once in our leave-one-out cross-validation runs, thus ensuring that only the most significant
probe sets were used in the cross-chip analysis. Of these, 17 genes were differentially
expressed in the GB-AA comparison (comprised of ANGIO and DIFFER genes), 1 in the
GB-A comparison (INTER/LOWER gene) and 2 in the AA-A comparison (INTER/LOWER
genes). We re-trained the ANN models on our original training data utilizing these 20 probe
sets (for gene names see online supplement). Due to the limited number of probe sets
available for the GB-A assessment, we split the grading task into two pair-wise
comparisons. ANN models of “Type 1” were trained to distinguish between grade IV and
lower grade astrocytic tumours using the 17 ANGIO/DIFFER genes and models of “Type 2”
were trained to distinguish between grade II and III tumours using the 3 INTER/LOWER
genes. Only samples that were graded as lower grade DIFFER tumours by Type 1 models
required follow-up grading by Type 2 models. The 23 (18 GB, 3 AA, 2 A) samples derived
from the Shai et al, 2003 dataset were treated as a blind test set and were graded using our
trained models. A remarkable consistency was observed between the two expression
datasets using the 20 common probe sets, whereby histopathological and ANN-based
subtyping resulted in an agreement accuracy of 100% (2/2), 100% (3/3) and 88.89% (16/18)
for the A (graded as LOWER), AA (graded as INTER) and GB (graded as ANGIO) tumours
of the Shai et al study respectively (Table C online supplement).

Grading of additional samples difficult to grade histopathologically and
evaluation of ANN results using clinical, histopathological and genomic
annotation—After verifying the grading power of our molecular signatures, we used them
to identify the stage of certain samples that were particularly challenging to diagnose by
histopathology. Histopathological identification of Pilocytic astrocytomas (grade I) and
malignancy grading of astrocytic tumours that have been treated with irradiation and/or
chemotherapy, can be extremely difficult. We therefore examined the expression data from
6 such problem cases using the trained ANN models.

The two pilocytic astrocytoma (PA) tumours (PA68 and PA67) were graded as ANGIO
(GB-rich) and INTER (AA-rich) respectively by our trained ANN models (see Discussion).
These tumours were histologically typical (25) and were derived from patients with
excellent survival (alive at end of follow-up - see Table I online supplement). Samples
AA49 and AA86, were difficult to grade as they had received irradiation and chemotherapy.
Two other AA tumours, AA29 and AA93, were also difficult to grade histologically.
Grading these samples using our trained ANN models did not concur with histopatholical
grading and showed the grading of all 4 AA samples as ANGIO (GB-rich subtype) (Table B
online supplement).

In order to investigate possible reasons for this discrepancy, we evaluated available
annotation for all 4 ambiguous tumours in our dataset as well as for the miss-graded GB154
and the two grade I pilocytic astrocytomas. In addition to histopathological diagnosis,
available annotation included i) clinical data (age at operation, gender, primary or secondary
tumour, tumour location), ii) survival data and iii) previously published genomic
information for a total of 9 genes (CDKN2A, CDKN2B, p14ARF, CDK4, RB1, MDM2,
EGFR, PTEN and TP53) known to be affected in astrocytoma (see Table I online
supplement).
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The histology of tumours AA49 and AA86 was difficult to use for malignancy grading as
previous treatment complicated the findings significantly. AA49 shows a clear GB genetic
profile (homozygous deletion of CDKN2A, CDKN2B and p14ARF, EGFR amplification and
no wild-type PTEN) while AA86 shows further genetic abnormalities commonly seen in
glioblastoma: lack of wild-type CDKN2A, p14ARF, or TP53. In the case of tumour AA29,
clinical, histopathological and genomic evidence indicated a significant resemblance to GB
(suspicion of, but no frank necrosis found and no wild-type PTEN). Tumour AA93 had a
histological and clinical appearance of an AA but shared the same classic GB-like genetic
profile seen also for AA49. The only genetic difference between the two tumours related to
the retention of one wild-type copy of PTEN.

The 4 ambiguous AA tumours classified by our ANN as ANGIO comprised 100% (2/2) of
the EGFR amplifications, 100% (2/2) PTEN mutations and 66% (2/3) of the CDKNA/B
nullizygosity found across all the AA samples assessed. With the exception of one INTER
graded AA tumour with CDKN2A/B nullizygosity, lesions for the cyclin inhibitor locus
were totally absent in all remaining AA of our dataset. All 3 of the AA cases where survival
data was available, died within 2 years.

No apparent reasons for the disagreement between histopathology and ANN subtyping of
the GB tumour (GB154) could be found. Although GB154 had some non-classic GB
characteristics, the presence of amplification of CDK4, necrosis and microvascular
proliferation, the latter being major histological criteria for glioblastoma, support the
original histopathological diagnosis. Survival in this case was also under 2 years.

SURVIVAL ANALYSIS
Survival Analysis using the selected gene classifiers reveals a prognostic
value for tumour subtypes—To investigate the survival prognostic capabilities of our
gene classifiers we performed survival analysis on our 59 samples as graded by
histopathology and then as defined by our trained ANN models into the three tumour
subtypes. Although there was only a small difference between ANN- and histopathology-
based grading efforts (difference of one sample - GB154), the survival analysis based on the
ANN grading proved to be more significant (p = 8.76e−7) than that based on purely
histopathological data (p = 2.088e−6), as defined by the log rank test (Figure 3b). Similar
results were obtained from survival analysis of the Shai et al in 2003 (9) dataset. The
prognostic value of our ANN defined subtypes was equally significant (p =6.0e−3) to that
based on histopathology (p =6.0e−3).

Survival analysis substantiates grading of datasets where ANN defined
subtypes do not concur with prior histopathological grading—To our surprise,
for two other independently published datasets, the ANN failed to recapitulate
histopathological grading. However, in both cases, survival analysis favoured the ANN-
based grading.

The Phillips et al. 2006 (11) dataset comprised of 100 MDA samples (76 for which survival
information was available). In that study the samples were divided into 3 “subclasses”
representing the progression of astrocytic tumours. The subclasses were defined by the
authors as Proneural (PN), proliferative (Prolif) and Mesenchymal (Mes), with increasing
malignancy from PN to Mes. Since those samples consisted of grade III and IV tumours, we
used the ANN models trained with ANGIO/DIFFER genes to classify the 100 MDA
samples into the respective subtypes. The ANGIO subtype consisted of 50/76 GB and 4/24
AA while the DIFFER subtype was comprised of 22/76 GB and 12/24 AA. The ANGIO
group consisted of 30/35 of the Phillips et al 2006 (11) Mes samples, in accordance to
previously published results that show that Mes tumors display over-expression of

Petalidis et al. Page 7

Mol Cancer Ther. Author manuscript; available in PMC 2010 February 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



angiogenic markers (11). The DIFFER group consisted of 33/37 of the PN samples, also in
accordance to previous reports indicating that PN samples display over-expression of
markers of neuronal differentiation and growth. Further analysis of the DIFFER survival
samples using our INTER/LOWER genes partitioned them into the INTER subtype, which
consisted of 18/76 GB and 4/76 AA, and the LOWER subtype, which consisted of 4/76 GB
and 8/24 AA. This approach grouped the Phillips et al 2006 (11) samples into three very
significant prognostic subclasses (Figure 3c, p = 1.922e−7), once again outperforming the
previous subtyping defined in the Phillips et al 2006 (11) study (p = 1.0e−4). The Phillips et
al 2006(11) Prolif samples, which according to their study represent the intermediate stage
of the progression and are highly enriched for proliferative markers, were not so well
defined by our tumour subtypes. However; 20/28 resided within the ANN-defined ANGIO
subtype (which was rich in Mes samples) and 8/28 within our INTER subtype (rich in PN
samples) (Table E - online supplement). This was in accordance with previous published
results that show a very similar survival median for the Phillips et al 2006 (11) Mes and
Prolif groups and a higher angiogenic index of the Prolif compared to the PN tumours (11).
In addition, this concurs with the observation that the Prolif signature is less exclusive and
the proportion of astocytic tumours with this signature varies across samples obtained from
different institutions (11).

Finally, a probe comparison between the 59 gene classifiers utilized in this analysis and the
final 35 probes identified in Phillips et al, 2006 showed that there were no common probes
between the two gene/probe sets, once again highlighting the novelty of our gene classifiers.

Similar results were obtained for another independent dataset containing 65 astrocytic
tumours (15 grade III and 50 grade IV) published by Frieje et al (4). More specifically, our
subtyping significantly outperformed (Figure 3d, p = 8.13e−8) the final survival groups
obtained by Freije et al (4) in the respective publication (p = 2.2e−4).

Genes predictive of survival versus genes predictive of histopathology—In
order to investigate this unexpected performance on the Phillips et al. and Freije et al.
datasets, whereby genes identified based on histopathology acted as prognostic signatures of
survival, we decided to compare genes predictive of survival (survival-correlated genes) and
genes predictive of histopathology (histopathology-based genes) within our own dataset as
well as within the other two large datasets. We initially performed clustering using the top
80 positively- correlated and negatively-correlated genes to survival (Pearsons correlation of
expression values versus survival times >0.55 or <−0.55), and observed three major clusters.
We then recalibrated our ANN to optimize leave-one-out cross-validation runs for these
clusters with survival correlated genes and resulted in an optimum set of 37 genes (see
supplementary information Table G). We also performed the same histological based
analysis on the two independent datasets as described earlier for our own dataset and
selected the respective histopathology-based genes. Log rank tests using histopathology-
based or survival-correlated genes are shown in table 2. Interestingly, we found that genes
identified by signal-to-noise to be differentially expressed between histological grades were
more successful than the respective survival-correlated genes in predicting survival in all
datasets tested.

TP53 lesions further separate the grade IV GB into two survival groups—TP53
mutations are observed in over 65% of secondary GB and are considered a major hallmark
that defines the separate molecular pathways, responsible for the development of the
secondary GB and the primary (de novo) GB. In order to identify genes with distinct
signatures for these two separate pathways, we performed a leave-one-out cross-validation
using only the GB - separated into TP53 mutated and wild-type- and identified an optimum
set of 11 probes (see supplementary information Table F). Using these genes, the ANN
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separated our ANGIO subtype into two groups denoted, ANGIO-PRI and ANGIO-SEC.
This distinction was more significant for survival prediction (p = 3.325e−2), than the
respective TP53 separation (p = 7.082e−1). In the Phillips dataset, we found that the
ANGIO-SEC group consisted 16/28 Prolif samples and only 3/35 Mes samples while the
ANGIO-PRI group consisted 12/28 Prolif and 32/35 Mes samples. This is in accordance to
previous reports (26) showing that secondary GB undergo aggressive proliferation (as is the
case with the Prolif samples) in contrast to primary GB, which show over-expression of
angiogenic genes (as is the case with the Mes samples). Survival analysis using our 59 gene
classifiers and the 11 gene signatures described here, for all three datasets, is shown in figure
4.

Discussion
In this study, we used a simple, ANN-based approach to derive specific transcriptional
signatures from histopathological subtypes of astrocytic tumours and assesed whether these
molecular signatures define survival prognostic subclasses. We found that the classifier
genes selected fall into three distinct functional classes, which characterize three molecular
tumour subtypes, denoted ANGIO, INTER and LOWER. ANN-based grading into the three
tumour subtypes for our own as well as one independent dataset (9) was found to accurately
match prior histopathogical grading. This was not the case for two other datasets (4, 11). In
order to investigate this discrepancy we performed an extensive comparison between
survival correlated genes and histopathology based genes. We showed that with respect to
survival prediction (a) histopathology based genes outperform the respective survival-
correlated genes in each dataset and (b) our histopathology based genes outperform survival-
correlated genes, in all datasets tested. Finally, ANN analysis of TP53 mutated and wild-
type samples identified a gene signature that appears to further separate the ANGIO subtype
into two groups reflecting primary and secondary GB.

The prognostic nature of markers of angiogenesis and proliferation has previously been
reported (27-30) with angiogenic markers (VEGF, flt1/VEGFR1, kdr/VEGFR2, PECAM1)
and markers of proliferation (PCNA and TOP2A) commonly used by pathologists for
astrocytic tumour grading. Here, we provide a novel set of genes that characterize the
ANGIO subtype and appear to control angiogenesis. The general trend for grade IV, GB to
reside within the ANGIO subtype is in accordance with these reports. The presence of most
of the Phillips et al 2006 (11) defined Mes samples within the ANGIO subtype further
substantiates findings as these samples have been reported to over-express angiogenic
markers such as VEGF. The differentiating and developing nature of the lower grade AA
and A, is consistent with the observation that these tumours reside within the DIFFER
group. The general trend for the Phillips et al 2006 (11) PN samples to resemble the
DIFFER samples is in accordance to reports that show that PN samples over-express
markers of neurogenesis and neuronal differentiation (11). The Phillips et al 2006 (11) Prolif
subtype is not defined on the basis of our tumour subtyping, but was partially defined by the
11 genes used to differentiate between the primary and secondary GB. The characteristic of
the Phillips Prolif samples to be less clearly defined, confirms previous observations which
report a less specific phenotype for these samples as well as a greater variability across
samples obtained from different institutions(4, 11). Furthermore, we identified an interesting
set of genes (including PEA), that appear to separate the DIFFER group (lower grade II, A
and grade III, AA) into the INTER (grade III, AA) and the LOWER (grade II, A) subtypes
and further define a prognostic class with the highest survival probability (LOWER).

Survival analysis suggests that histopathological grading, although categorical and
oversimplified, provides a general trend by which genes predictive of survival can be
identified, with prognostic value greater than histopathological grading per se. Survival
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prognosis can be achieved either independently or, as in the case of our dataset, in
conjunction with histopathology prediction. A comparison of survival-correlated and
histopathology-based genes showed that the latter were more efficient in survival prognosis.
This was observed for our dataset as well as two other independent datasets tested. A
possible explanation for this unintuitive finding relates to the methodology used to obtain
survival prognostic groups. This involves the prediction of survival correlated genes and the
concurrent clustering of the tumour samples using these genes. The clusters defined are
considered as prognostic groups and a unique gene signature for each cluster is obtained.
This methodology is highly dependent on clustering techniques and may be less accurate
than using histopathological groups to define gene expression signatures. Other reasons
include the numerous external factors that influence survival probability and do not directly
relate to cancer, like the patient’s age, physical and neurologic performance, etc. Genes
encoding such factors will appear highly-correlated with survival in small sample groups
frequently used in microarray studies, despite having no association with cancer per se.
However, such genes may have limited predictive capacity when applied to other datasets.
Expression profiles of histopathology-associated genes on the other hand are directly linked
to cancer and are expected to be more consistent among different patients, thus having a
better predictive capacity. Although there is significant variability between different studies
in specimen processing, analysis and tissue heterogeneity which is likely to affect the
identification of classifier genes, our findings show that it is possible to use expression data
to identify genes with predictive capacity that extents across multiple datasets.

Two genes of special interest have been selected for further analysis in this study, namely
PEA15 and ADM. Tumour-suppressing functions for PEA15 have been suggested (31).
PEA15 suppresses DISC-mediated caspase 8 activation, limits entry to the cell cycle and has
not been previously associated with astrocytic tumour progression. Physiological levels of
PEA15 expressed in cultured astrocytes are capable of restricting ERK to the cytosol,
blocking ERK-dependent c-Fos transciption and cell proliferation (22). Candidate tumour
suppressor genes, such as PEA, may act as major stalling points for tumour progression and
perhaps the diminished expression of such genes may directly contribute to a cascade of
events that lead to the progression of early grade tumours to later more malignant
phenotypes. PEA15 was selected for further analysis in order to investigate its subcellular
localization but also in a preliminary attempt to elucidate possible correlations between
PEA15 expression and astrocytic tumour cell programmed cell death. ADM is a 52-
aminoacid peptide suggested to be capable of affecting tumour growth by both direct tumour
cell-related mitogenic effects and indirect vasculature-related angiogenic mechanisms(32).
ADM expression in astrocytic tumours has been previously shown while its increased
expression with tumour grade progression was recently suggested by Tso et al 2006 (26).
ADM was selected in order to validate previous suggestions relating the peptide to
regulation of angiogenesis and because very few publications commented on its exact
subcellular or tissue localization.

This work presents a large, new expression profiling dataset of astrocytic tumours and
employs a novel ANN-based grading of these tumours into molecular subtypes. We show
that it is possible to derive transcriptome signatures from the tripartite histolopathological
grading used to train the ANN-model. Moreover these signatures attain a more significant
survival prognosis when compared to histopathological grading as well as tumour subtyping
reports from other studies. We hope that the identification of the novel set of genes
underlying this subtyping will enable tumour diagnosis to progress towards a more
quantitative realm, where tumours are viewed within a malignancy spectrum that includes
samples from all stages of tumour progression. We also believe that the interpretation of
grading and classification efforts based on gene expression data must be performed using
thorough tumour annotation on as many levels as possible. It is the integration of such work
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with clinical, genotypic and histopathological annotation that can maximize the value of
gene expression data, increase our understanding of tumour pathology and further develop
current diagnostic and therapeutic approaches.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Hierarchical clustering of 33 training samples (20GB, 10 AA and 3 A) using 59 probe sets
selected by S2N. MeV (33) was used to perform hierarchical clustering using Euclidean
distance and complete linkage algorithm. Samples are labelled with their respective grades
and genes are labelled according to the molecular tumour subtype(s) (ANGIO, DIFFER or
INTER/LOWER) that they characterize. Gene expression values are standardized to a mean
of 0 and standard deviation of 1. Red represents higher expression relative to green.
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Figure 2.
Expression of ADM and PEA15 changes with astrocytic tumour progression at both
transcript and protein levels. (a) GeneChip (‘chip’) expression values for ADM and PEA15
across tumour grades. Samples PA68 and PA67 (grade I tumours – see text) have not been
included in this analysis. Expression changes for both gene products are highly statistically
significant (for the AA-GB and A-GB tumour grade comparisons respectively: ADM, p =
1.1e−6 and 1.6e−4; PEA15, p = 4.8e−5 and 8.3e−5). (b) Validation of expression changes
using QPCR. Mean expression fold changes between GB and AA tumour grades
(‘Expression fold change’) shown as assessed by both GeneChip (‘chip’) and QPCR
expression technology. (c) Tissue array IHC immunoreactivity intensities for ADM and
PEA15 across tumour grades and non-neoplastic brain (normal tissue, ‘NT’). 5-scale grading
system used: ‘0’ no immunoreactivity, ‘4’ intense immunoreactivity. For each tumour grade
and for the collection of normal tissues, an average immunoreactivity grade was obtained
from replicate tissue cores available on the tissue array. Differences in IHC
immunoreactivity (Mann-Whitney non-parametric test, p<5.0e−2) were significant for
tumour group comparisons A-GB and A-AA (PEA15), and A-AA (ADM). (d)
Representative IHC results for ADM and PEA15 on GB and A tumour sections.
Immunoreactivity for both gene products was seen to be present in tumour cells only. ADM
showed cytoplasmic staining and PEA15 showed both cytoplasmic and nuclear staining. The
nuclear/cytoplasmic distribution of PEA15 immunoreactivity was not constant for all
tumour cells in a given tumour sample.
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Figure 3.
(a)Visualization of network results for all 33 training and 26 test tumour samples (39GB, 15
AA and 5 A) using the 59 genes/probe sets selected during training. Hierarchical clustering
of network outputs (Euclidean distance, single linkage algorithm). The visualization
represents results from the propagation of all samples (training and test) through the trained
models. Colour coding is according to the 3 molecular subtypes which best characterize the
samples (blue: ANGIO, red: INTER, orange: LOWER). The only tumour where ANN
subtyping does not agree with histopathology is GB154 (highlighted by a black box).
AA106 appears to cluster separately from the rest of the AA but does not reside in the
LOWER cluster. Tumours are annotated with genomic information for a total of 7 loci
available from previously published work from our laboratory (34-38), known to be
involved in astrocytic tumour genesis and/or progression. Grey boxes indicate homozygous
deletion (CDKN2A/CDKN2B/p14ARF), amplification (CDK4, MDM2 and EGFR) or loss of
one allele with mutation of the remaining allele (RB1, TP53 and PTEN). Test samples
marked ‘TEST’. (b) Kaplan-Meier survival plot of our 59 astrocytic tumours as defined by
our ANN grading results. ANGIO – blue line, INTER- red line, LOWER – orange line. (c)
Kaplan-Meier survival plot of the 76 Phillips samples as defined by our ANN grading
results using our 59 gene classifiers. (d) Kaplan-Meier survival plot of the 65 Freije
samples. ANGIO subtype contained 38/50 GB, INTER was comprised of 6/15 AA and
12/50 GB, while the remaining 4/15 AA made up the LOWER subtype.
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Figure 4.
Survival analysis of astrocytic tumours (including the 11 primary/secondary gene signature).
(a) Kaplan-Meier survival plot of our 59 astrocytic tumours as defined by our ANN grading
results. Primary-ANGIO – blue line, secondary-ANGIO – green INTER- red line, LOWER
– orange line. (b) Kaplan-Meier survival plot of the 76 Phillips samples as defined by our
ANN grading results using our 59 gene classifiers + 11 gene signature. (c) Kaplan-Meier
survival plot of the 65 Freije samples using our 59 gene classifiers + 11 gene signature.
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Table 1

Three sets of selected genes each derived form one of the three pairwise tumour grade comparisons: a) GB-
AA (ANGIO/DIFFER genes), b) GB-A (INTER/LOWER genes), c) AA-A (INTER/LOWER genes)

a)

Gene Symbol Gene Name
Bayesian

p value
Mean expression

fold change
Gene
class

ADM Adrenomedullin 2.62E-05 11.79 ANGIO

TIMP1 tissue inhibitor of metalloproteinase 1 1.51E-08 11.56 ANGIO

FABP5 fatty acid binding protein 5 1.85E-04 9.41 ANGIO

EMP3 epithelial membrane protein 3 5.27E-07 7.58 ANGIO

PDPN Podoplanin 3.22E-05 6.00 ANGIO

LGALS3 lectin galactoside-binding soluble 3 (galectin 3) 1.02E-05 5.86 ANGIO

LGALS1 lectin galactoside-binding soluble 1 (galectin 1) 1.02E-05 4.41 ANGIO

PDGFA platelet-derived growth factor alpha polypeptide 2.03E-05 4.09 ANGIO

PLAT plasminogen activator tissue 6.60E-05 3.97 ANGIO

EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2 2.20E-06 3.92 ANGIO

COL5A2 collagen type V alpha 2 3.71E-05 3.72 ANGIO

COL5A2 collagen type V alpha 2 1.02E-05 3.60 ANGIO

DDA3 differential display and activated by p53 2.06E-05 3.53 ANGIO

TAGLN2 transgelin 2 3.15E-05 3.19 ANGIO

DUSP6 dual specificity phosphatase 6 5.49E-05 3.14 ANGIO

LDHA lactate dehydrogenase A 7.84E-05 2.84 ANGIO

PLP2 proteolipid protein 2 6.34E-05 2.74 ANGIO

EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2 7.34E-05 2.43 ANGIO

CENTD3 centaurin delta 3 2.57E-04 2.42 ANGIO

KIAA0495 KIAA0495 1.69E-04 2.15 ANGIO

DAG1 dystroglycan 1 (dystrophin-associated glycoprotein 1) 2.73E-05 1.80 ANGIO

ZYX Zyxin 1.46E-04 1.78 ANGIO

OSBPL10 oxysterol binding protein-like 10 2.63E-04 1.75 ANGIO

CUTC cutC copper transporter homolog 1.74E-05 −1.59 DIFFER

TNKS2 TRF1-interacting ankyrin-related ADP-ribose polymerase 2 6.60E-05 −1.67 DIFFER

HSA9761 dimethyladenosine transferase 8.27E-05 −1.71 DIFFER

KIAA1279 KIAA1279 2.03E-05 −1.76 DIFFER

RPL22 ribosomal protein L22 2.83E-04 −1.81 DIFFER

ENAH enabled homolog 6.26E-05 −1.82 DIFFER

ZMYND11 zinc finger MYND domain containing 11 4.53E-05 −1.87 DIFFER

HNRPH3 heterogeneous nuclear ribonucleoprotein H3 3.65E-05 −1.88 DIFFER

RPL22 ribosomal protein L22 2.62E-05 −1.93 DIFFER

CLASP2 cytoplasmic linker associated protein 2 2.81E-04 −2.05 DIFFER

USH1C Usher syndrome 1c (autosomal recessive severe) 1.02E-05 −2.10 DIFFER

RAP2A RAP2A 7.90E-04 −2.10 DIFFER

ALCAM activated leukocyte cell adhesion molecule 4.72E-03 −2.14 DIFFER
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a)

Gene Symbol Gene Name
Bayesian

p value
Mean expression

fold change
Gene
class

ABI1 abl-interactor 1 8.27E-05 −2.16 DIFFER

PARD3 par-3 partitioning defective 3 homolog 3.43E-06 −2.30 DIFFER

CRYAB crystallin, alpha B 5.80E-05 −2.72 DIFFER

NAP1L3 nucleosome assembly protein 1-like 3 1.77E-04 −2.88 DIFFER

NET1 neuroepithelial cell transforming gene 1 2.20E-06 −2.93 DIFFER

C20ORF42 chromosome 20 open reading frame 42 2.87E-04 −3.09 DIFFER

BMP2 bone morphogenetic protein 2 5.49E-05 −3.27 DIFFER

ADCY2 adenylate cyclase 2 (brain) 3.05E-05 −3.79 DIFFER

b)

Gene Symbol Gene Name
Bayesian

p value
Mean expression

fold change
Gene
class

SLC34A1 solute carrier family 34 (sodium phosphate) member 1 1.46E-02 −1.35 LOWER

RSNL2 restin-like 2 1.88E-02 −1.39 LOWER

REPS2 RALBP1 associated EPS domain containing 2 1.53E-03 −1.94 LOWER

SLCO1A2 solute carrier organic anion transporter family member 1A2 4.46E-03 −2.06 LOWER

PEA15 phosphoprotein enriched in astrocytes 15 1.93E-03 −2.12 LOWER

USH1C Usher syndrome 1C 1.53E-03 −3.49 LOWER

c)

Gene Symbol Gene Name
Bayesian

p value
Mean expression

fold change
Gene
class

B2M beta-2-microglobulin 3.69E-01 2.50 INTER

SCP2 sterol carrier protein 2 4.79E-01 1.81 INTER

DDOST
dolichyl-diphosphooligosaccharide-protein
glycosyltransferase 5.68E-01 1.79 INTER

NPTN neuroplastin 8.49E-01 1.39 INTER

TAP2 transporter 2 ATP-binding cassette sub-family B 6.92E-01 1.39 INTER

DNAJA3 DnaJ (hsp40) homolog subfamily A, member 3 6.48E-01 1.25 INTER

ANKS1b ankyrin repeat and sterile alpha motif domain containing 1b 5.17E-01 −1.21 LOWER

--- DKFZp434M083 5.68E-01 −1.22 LOWER

ANK3 ankyrin 3 node of Ranvier 9.07E-02 −1.93 LOWER
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