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Footrot is a highly contagious bacterial disease of sheep affecting the interdigital skin and surrounding soft and hard horn of a
hoof, often resulting in severe lameness. This study was aimed at estimating the effect of footrot on weight gain of affected
animals, and characterising the variation between animals in terms of phenotypic, environmental and genetic components.
A general approach was developed describing the relationship between the disease and weight gain, defining new traits such as
the maximum weight loss as a result of disease and the time after infection that this occurs. In two trials, 1267 Merino sheep
were artificially challenged with footrot when 10 months old and re-infected through exposure to footrot on pasture 33 weeks
later. Their feet were scored for footrot and live weights were measured approximately every 3 weeks. From data on animals
that were not affected by footrot throughout each trial, normal growth curves were calculated and applied to affected animals
to predict their growth had they remained healthy, so that weight loss as a result of footrot could be predicted. Animals with
average footrot severity in the two trials suffered weight losses of 0.5 to 2.5 kg live weight, but most animals regained lost live
weight later in the trials as footrot healed following vaccination. The estimates of the heritabilities of weight loss, adjusted for the
severity of footrot, were about 0.30 and 0.15 in the experimental and natural challenge groups, respectively. Animals with higher
genotypic values for weights at the start of each trial appeared to cope better with infections, in terms of lower weight losses.
The time of highest footrot score and the time of maximum weight loss after infection had only very small genetic components.

Keywords: sheep, footrot, weight loss, compensatory growth, genetics

Introduction

Footrot is a highly contagious bacterial disease of sheep
affecting the interdigital skin and the surrounding soft and
hard horn of a hoof, often resulting in severe lameness.
There are various options for control and treatment, and the
most effective strategy appears to be prompt treatment of
affected animals, which also reduces spread of the infec-
tion (Egerton, 2000; Green et al., 2007). In Britain it is
estimated that about 6% of adult ewes and 3% of lambs
are affected at any time (Grogono-Thomas et al., 1998;
Wassink and Green, 2001; Clements et al., 2002) and the
costs associated with the disease have been estimated at
£24.4 M annually for Great Britain or £1.32 per ewe and
£0.15 per lamb (Nieuwhof and Bishop, 2005).

Infection of animals by a disease is expected to affect
their general wellbeing and performance. For example,
estimates of the reduction of live weight in lambs infected

with internal parasites range from 6.2% to 23% (Coop
et al., 1985; Mackay et al., 1998). Sheep scab leads to a
53% reduction in growth rate in lambs (Kirkwood, 1980)
and a 10% loss in birth weight (Sargison et al., 1995), while
losses in lamb weaning weight due to Maedi-Visna have
been estimated at 12% for the most severe cases (Pekelder,
1994). Based on results of Symons (1978) and Stewart et al.
(1984) it can be estimated that ewes infected with footrot
have a reduced lamb output of 18%. Marshall et al. (1991)
investigated the long-term effect of footrot on the live
weight of wethers that were 1.5 years old at the start of
a 2-year trial. One group of animals that was left largely
untreated over the study period showed a significant decrease
in body weight at times of high footrot prevalence, but on
average animals regained the lost weight in the following
months. Any variation between animals in their response to
footrot and the nature of this variation were not studied.

Genetic variation in resistance to footrot has been
demonstrated (Skerman et al., 1988; Raadsma et al., 1994;
Conington et al., 2007), with the heritability depending on
the definition of footrot (number of classes, observed or
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underlying scale) and reaching values up to 0.3. While
Raadsma et al. (1994) showed an increased risk of footrot
with heavier live weights, they did not estimate the effect of
footrot on live weight gain. Breeding objectives for most
selection programmes for meat or multipurpose sheep breeds
include higher growth rates, and it is important to know if
higher weights achieved through selection will lead to higher
susceptibility to footrot and consequently higher weight losses.

The current study aims to estimate the effect of footrot in
lambs on their growth performance. Data on footrot severity
and live weights are used from the experiment described
by Raadsma et al. (1994) in which lambs were exposed to
footrot and vaccinated 6 or 9 weeks later. A further aim is to
separate effects of live weight on the risk of footrot from the
effect of footrot on subsequent live weights. To this end, a
number of extra traits are defined to describe footrot severity
and the effects on growth. Genetic and phenotypic correla-
tions between footrot severity and weight (gain) are esti-
mated, allowing prediction of the effects of selection on
increased weights on footrot and its consequences.

Material and methods

Animals and treatments
A study was conducted over a 4-year period, as described in
detail by Raadsma et al. (1994). Each year, two groups of
about 200 Merino sheep were infected with footrot on two
separate occasions followed by vaccination. All data from
year 2, when the trial was interrupted by a dog attack that
killed some sheep and required treatment of others, were
eliminated, however. At the start of trial 1, when animals
were about 10 months of age, they were artificially infected
for the first time, the second infection through exposure on
pasture (start of trial 2) was about 33 weeks after the first
and the two trials combined took 48 weeks (Table 1).

Weights at, or close to, the start of each of these two trials
and at 3-week intervals were recorded for up to 15 weeks
after infection, although not all weights were taken on all
animals (see Table 2). An overall footrot score was assigned
to each animal at the same 3-week intervals on a 0 (no
footrot) to 5 (severe footrot) scale and the number of feet
affected was recorded. Data from animals that had footrot
in week 27 (6 weeks prior to the second infection) were
not considered for the second trial. Animals were vacci-
nated with homologous strain vaccines 9 and 6 weeks post
infection in each trial, respectively, inducing a high degree
of healing (Raadsma et al., 1994).

The total dataset comprised 1267 animals with complete
records for the first trial (Table 2). Of these, 1225 animals

Table 1 Timeline of treatments and records over the two trials

Reference Time against reference Event Records

Challenge 1a 25 days Predisposition on wet mats
Challenge 1 0 days Infection through bandaging
Challenge 1 13 days Bandages removed, remain on wet mats
Challenge 1 12 weeks First inspection and exit to pasture Footrot score, live weight
Challenge 1 13 weeks Inspection Footrot score, live weight
Challenge 1 16 weeks Inspection Footrot score, live weight
Challenge 1 19 weeks Inspection 1 vaccination Footrot score, live weight
Challenge 1 112 weeks Inspection 1 booster Footrot score, live weight
Challenge 1 115 weeks Inspection Footrot score, live weight
Challenge 1 127 weeks Inspection Footrot score, live weight
Challenge 2b 0 weeks Predisposition with donor sheep
Challenge 2 13 weeks First inspection Footrot score, live weight
Challenge 2 16 weeks Inspection 1 vaccination Footrot score, live weight
Challenge 2 19 weeks Inspection 1 booster Footrot score, live weight
Challenge 2 112 weeks Inspection Footrot score, live weight
Challenge 2 115 weeks Inspection Footrot score, live weight

aChallenge 1 occurred at 10 months of age.
bChallenge 2 occurred 33 weeks after challenge 1.

Table 2 Number of animals recorded and average footrot score,
number of feet affected and average live weight over the two trials

Time since
start (weeks)

Number of
records

Average
footrot
score

Average number
of feet affected

Average live
weight (kg)

2 1267 1.80 1.10 24.3
3 205 1.74 1.07 25.5
6 856 1.62 0.83 27.9
9 1267 1.48 0.70 28.9
12 1265 0.70 0.33 30.0
15 1265 0.24 0.10 31.7
27 1267 0.06 0.03 33.9
27$ 1225 0 0 34.0
36 1225 2.18 2.12 35.8
39 1224 2.57 2.15 33.7
42 1224 1.81 1.47 33.1
45 1225 0.56 0.32 33.7
48 1225 0.54 0.38 34.6

$Includes only those free of footrot for inclusion in trial 2.
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with a 27-week weight record were included in the analysis
of the second trial (group size varying from 205 to 220 in
trial 1 and 198 to 214 in trial 2).

Quantifying the impact of footrot on weight gain
Initial inspections of the live weight data indicated that
impacts of footrot on weight gain are transient. Therefore,
additional traits have to be derived from the raw data to
capture these transient effects. To enable this, a general
framework for the effect of infection or disease on the live
weight of an animal was developed as shown in Figure 1.
In terms of effects on live weight, the first noticeable effect
will be weight loss or reduced gain some time after the
infection. This may coincide with the first observation of
clinical signs of disease, precede them or follow later. If an
animal recovers from the disease, the weight loss will reach
a maximum and then decline and there may or may not be
a permanent long-term effect on the animal’s live weight.

Figure 1 shows a hypothetical profile for the change in
footrot score that peaks at time t 5 6; a straight line depicts
the weight gain of an unaffected animal, and a curve that of
an affected animal that initially loses weight and then regains
much of the weight loss through compensatory growth.

Based on this figure the following new traits can be
defined:

> Peak time (tmfr): the time between infection and the
highest footrot score;

> Maximum weight effect (maxwte): the biggest negative
difference in weight of an infected animal compared to
that expected from unaffected growth;

> Time of maximum weight effect (tmwe): the time at
which the maximum weight effect occurs since infection;

> Time (twe_fr) between maximum footrot and maximum
weight loss.

Analysis
The effect of footrot on weight gain (or loss) can be estimated
at two levels: a general estimate at population level and an

individual animal estimate. The former can be estimated by
comparing unaffected animals with affected animals, taking
into account severity of the disease (Marshall et al., 1991).
The second method, which allows estimation of between
animal variation, requires comparison of the actual growth
curve of an affected animal with the unobserved curve pre-
dicted for that individual animal if had not been affected.

In line with Raadsma et al. (1994), animals were deemed
unaffected if they did not have any overall footrot scores
.1 over a trial. Growth curves for unaffected animals in
trial 1 were estimated using SAS GLM (Statistical Analysis
Systems Institute (SAS), 1989) fitting the model:

Yijklmn¼ flockiþgroupjþsexkþrearing typel

þdam agemþb1tþðb2t
2Þþðb3t

3Þþb4 day

þb5wtstþb6jt:groupjþb7kt:sexkþeijklmn

with:

Yijklmn ¼ live weight of animal n at time t since infection;

flocki ¼ effect of flock of origin ði ¼ 124Þ;

groupj ¼ effect of treatment group ðj ¼ 126Þ;

sexk ¼ effect of sex ðfemale; castrateÞ;

rearing typel ¼ effect of rearing type ðl ¼ 1; 2; 3Þ;

dam agem ¼ effect of age of dam ðm ¼ 229Þ;

day ¼ day of birth within the calendar year;

wtst ¼ start weight;

t ¼ time since infection; in weeks;

t:groupj ¼ the interaction of group with t;
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Figure 1 General framework for the development of footrot and weight following infection (footrot score on 0 to 5 scale, time after infection and weights
in arbitrary units).
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t:sexk ¼ the interaction of sex with t;

b1;b2;b3 ¼ linear; quadratic and cubic regression of

weight on time since infection;

b4 ¼ linear regression of weight on day of birth;

b5 ¼ linear regression of weight on start weight;

b6j;b7k ¼ group or sex specific linear regressions of

weight on time since infection:

For trial 2, the same model was used, except that the
sex 3 time interaction was not significant and was elimi-
nated from the model. Note that for trial 1 the earliest
available weight was 2 weeks after infection and this was
considered the start weight. In trial 2, the weight 6 weeks
prior to the second infection (27 weeks after the first
infection) was used as start weight.

For all animals, these regressions were then used to
predict live weight at time t, using (i) the linear regression
(pwtlt) only, (ii) linear and quadratic terms (pwtqt) and (iii)
linear, quadratic and cubic (pwtct) terms:

pwtlt¼wtstþb1tþb5wtstþb6jt:groupjþb7kt:sexk;

pwtqt ¼ wtst þ b1t þ b2t
2 þ b5wtst þ b6jt:groupj

þ b7kt:sexk;

pwtct ¼ wtst þ b1t þ b2t
2 þ b3t

3 þ b5wtst

þ b6jt:groupj þ b7kt:sexk:

The same procedure was used for trial 2, but without the
sex-specific regression of weight on time.

Deviations of actual from predicted weights, at various
time points, were calculated for each animal, separately
for the pwtl, pwtq and pwtc predictions. In affected
animals, this deviation is expected to be negative (i.e. a
reduction in weight gain). The maximum weight effect
(maxwte) was the most negative deviation, and the time
this occurred was the week of maximum weight effect
(tmwe). In cases where the same maximum weight effect
occurred more than once, the time of the maximum was the
average of the occurrences when this maximum occurred.
The variable endwte was calculated as the weight deviation
at the end of each trial, again separately for predictions
based on linear, quadratic or cubic regressions.

The effect of footrot on these traits was then estimated
with SAS GLM for all animals in each trial as:

Yijklmn¼ flockiþgroupjþ sexkþ rearing typel

þdam agemþb1dayþb2footrotþeijklmn;

where Yijklmn5maxwte or tmwe and footrot 5 sum of
footrot scores or maximum footrot score during the trial.

Regardless of the effects of footrot, maxwte (and pos-
sibly tmwe) can be expected to have a genetic component,
as it is a measure of growth compared to a group average.
In this study, we are interested in finding whether this
genetic component is related to measures of footrot resis-
tance. Genetic analyses were done with an animal model
using VCE 5.1 (Kovac and Groeneveld, 2003), generally
with the model:

Yijklmno ¼ flocki þ groupj þ sexk þ rearing typel

þ dam agem þ b1:day þ b2:wtst

þ b3:footrot þ animaln þ eijklmno;

with variables defined as above and animaln is a random
effect accounting for the direct genetic effect associated
with animal n. The start weight effect accounts for the
weight related risk of contracting footrot and was excluded
from certain models in multivariate analyses of live weights.
The footrot effect was not included when analysing footrot
severity or in multivariate analyses with a footrot measure
as one of the dependent traits. The pedigree contained
5815 animals.

Results

The average overall footrot score and live weights for
animals deemed free of footrot (maxFR , 2) and also for
affected animals are presented in Figure 2. The development
over time confirms the basic framework in Figure 1. It can be
seen that the impacts on live weight do appear to be tran-
sient, occurring after the time of maximum footrot severity.

Weights of animals were predicted using their weight at
the start of the trial and growth curves estimated from the
healthy animals. In trial 1, there were 435 healthy animals
with a total of 2164 weight records, while only 84 animals,
with 419 weights, were considered unaffected in trial 2.
Linear, quadratic and cubic terms of the growth curves were
significant in both trials.

Effect of footrot on live weight
Table 3 summarises the parameters describing the impact of
footrot. The traits shown are: sumFR the sum of all footrot
scores over the trial, maxFR the maximum of the footrot
scores over the trial, and other parameters are defined
above. With regard to timing, it can be seen that peaks for
footrot score and the maximum weight effect could occur at
any time during the trials (from week 3 to 27 in trial 1 and
week 3 to 15 in trial 2), but the average time of the
maximum footrot score in both trials was between 6 and
8 weeks, with the maximum weight effect following later.
In trial 1, depending on how the healthy growth was pre-
dicted, the maximum weight effect occurred 7 to 10 weeks
after the highest footrot score (twe_fr), while in trial 2 on
average the delay was only 2 to 3 weeks. There were some
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minor differences in the estimated effects using linear,
quadratic or cubic terms in the prediction of healthy growth.

Over the duration of trial 1, animals gained an average of
almost 10 kg and the average maximum weight effect
(maxwte) was, as expected, negative (21.8 to 23.3 kg),
but by the end of the trial the effect on weight had almost
completely disappeared. In trial 2, there was little weight
gain (10.6 kg) and the average maximum weight effect
was larger (24.1 to 24.7 kg), which may partly be due to
the later start weight in trial 1 (2 weeks after infection)
compared to trial 2 (6 weeks prior to infection). At the end
of trial 2, which was much shorter, only a small weight loss
remained, showing important compensatory growth.

The maximum weight effect is only moderately correlated
with the weight at the end of each trial, whereas there is a

much stronger correlation with the growth over the trial
(adjusted for start weight) (Table 4).

Weight at the start of each trial has a clear effect on the
size of the maximum weight effect, with a regression of
0.05 to 0.10 kg/kg of maximum weight loss on start weight
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Figure 2 Average overall score and live weight for animals with a maximum footrot score , 2 (no FR group) and others (FR group).

Table 3 Distributions of footrot and weights traits (trial 1 n 5 1267, trial 2 n 5 1225)

Trial 1 Trial 2

Trait Mean s.d. Min Max Mean s.d. Min Max

Gain 9.6 5.4 26.0 28.0 0.6 3.7 214.0 12.5
maxFR 2.1 1.5 0 5 3.0 1.0 0 5
sumFR 5.8 5.3 0 24 7.7 3.9 0 20
maxwte linear 21.8 3.4 214.5 12.1 24.1 3.2 216.0 5.7
maxwte quadratic 23.2 3.4 217.0 9.5 24.7 3.2 216.9 5.0
maxwte cubic 23.3 3.4 217.0 9.4 24.7 3.2 217.0 4.9
endwte linear 20.1 3.7 212.9 14.6 20.7 3.4 212.6 12.3
endwte quadratic 20.4 3.7 213.3 14.2 20.7 3.4 212.5 12.4
endwte cubic 20.5 3.7 213.5 14.0 21.0 3.4 212.8 12.0
tmfr 7.6 3.5 3 27 6.3 2.1 3 15
tmwe linear 17.5 9.6 3 27 9.4 3.4 3 15
tmwe quadratic 15.4 8.2 3 27 8.7 3.2 3 15
tmwe cubic 15.0 8.3 3 27 8.7 3.4 3 15
twe_fr linear 9.9 10.7 221 24 3.0 3.8 29 12
twe_fr quadratic 7.8 9.4 218 24 2.4 3.6 29 12
twe_fr cubic 7.4 9.5 218 24 2.3 3.7 29 12

Weights in kg and times in weeks.

Table 4 Residual correlations of the maximum weight effect
(maxwte) with end weight or weight gain over each trial, using a
linear prediction of healthy growth

Trial 1 Trial 2

End weight 0.62 0.31
Gain over trial 0.81$ 0.62$

$Gain and maximum weight effect adjusted for start weight.
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in trial 1 (depending on exact model) and about 0.15 in
trial 2 (P , 0.01). Table 5 shows the effect of footrot on the
size and time of the maximum weight effect in trials 1 and 2,
estimated as a linear regression and depending on the
order (linear, quadratic and cubic) used to predict healthy
growth. Again there is little difference between estimates
based on linear, quadratic or cubic predictions of healthy
growth. Footrot, by either measure, has a highly significant
negative effect on live weight. For example in trial 1, an
animal with a sumFR of 5.8 (the average) would lose about
0.5 to 0.6 kg compared to healthy growth. The effect of the
maximum scores is slightly larger, ca. 0.6 to 0.8 kg loss at a
maximum score of 2.1. The effects in trial 2 are much larger,
both due to higher regression coefficients and higher average
footrot scores, resulting in 1.7 kg weight loss at a sum of
scores of 7.7, and 2.5 kg loss for a maximum score of 3.0.

In trial 1, the effect of severity of footrot on the time
the maximum weight effect (tmwe) occurs is also highly
significant, with the effect occurring sooner for more severe
footrot. There is no such effect in trial 2.

Genetic effects on weight loss
Univariate estimates of genetic variances and heritabilities
for the various footrot and derived traits, based on models
accounting for the standard fixed effects, start weight and
sum of footrot scores are given in Table 6. In trial 1, the
heritability for the maximum weight effect is about 0.30
and higher than that of gain over the same period, which is
0.17. The heritability is smaller in trial 2, but the phenotypic
variance is similar. The time of peak footrot or maximum
weight loss and the length of time between them have very
small heritabilities, which also depend on the order of
covariates used to estimate healthy growth.

Table 7 shows the genetic and phenotypic correlations
between the various variables defined from trial 1 data,
including the sum of footrot scores and the maximum
footrot score, as well as heritabilities for each variable.
The corresponding variances and covariances are given in
Table 1.1 of Appendix 1. The model fitted was the same for
all traits and excluded the start weight. Because the two
footrot score variables were highly correlated and a model

Table 5 Effects of footrot severity on weight and time of maximum weight effect (‘regression’) and level of significance in
trials 1 and 2, depending on the order of the regression used in the prediction of healthy growth

Trial 1 Trial 2

Trait Order Footrot trait Regression$ P Regression$ P

maxwte
L sumFR 20.08 ,0.001 20.22 ,0.001
Q sumFR 20.11 ,0.001 20.22 ,0.001
C sumFR 20.11 ,0.001 20.22 ,0.001

maxwte
L maxFR 20.30 ,0.001 20.80 ,0.001
Q maxFR 20.39 ,0.001 20.83 ,0.001
C maxFR 20.39 ,0.001 20.81 ,0.001

tmwe
L sumFR 20.20 ,0.001 20.01 0.59
Q sumFR 20.18 ,0.001 20.01 0.72
C sumFR 20.17 ,0.001 20.00 0.93

tmwe
L maxFR 20.57 ,0.001 20.15 0.14
Q maxFR 20.53 ,0.001 20.13 0.16
C maxFR 20.53 ,0.001 20.14 0.17

$Linear regression units are kg/point for maxwte and endwte, weeks/point for tmwe.

Table 6 Genetic variances (kg2) and heritabilities for weight effects
(n 5 1267 for trial, n 5 1225 for trial 2), depending on the order of
the regression used in prediction of healthy growth

Trial 1 Trial 2

Order
Genetic
variance h2 (s.e.)

Genetic
variance h2 (s.e.)

maxwte
L 2.74 0.31 (0.07) 1.32 0.16 (0.05)
Q 2.33 0.29 (0.06) 1.24 0.15 (0.05)
C 2.21 0.27 (0.06) 1.26 0.15 (0.05)

tmwe
L 6.45 0.11 (0.04) 1.05 0.10 (0.05)
Q 1.31 0.03 (0.04) 1.65 0.18 (0.05)
C 0.38 0.01 (0.03) 1.84 0.18 (0.05)

tmfr
0.61 0.06 (0.04) 0.09 0.03 (0.04)

twe_fr
L 8.64 0.12 (0.04) 0.57 0.04 (0.04)
Q 2.77 0.05 (0.04) 1.41 0.11 (0.04)
C 1.41 0.02 (0.04) 1.70 0.13 (0.04)

Models fitted included the standard fixed effects and start weight and sum
of footrot scores as covariates, and for trial 2 also sum of footrot scores
from trial 1.
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with both included would not converge, estimates in
Table 7 are based on two separate multivariate analyses,
each excluding either footrot measure (estimates for para-
meters in both analyses were essentially the same). The
estimates for the heritabilities of these traits were similar
to those presented by Raadsma et al. (1994).

Footrot score and maximum weight effect have a nega-
tive genetic correlation indicating that selection for
increased resistance to footrot would lead to a lower impact
on weight in affected animals. The genetic correlation
between maxwte and tmwe is strongly negative, which is
consistent with some animals recovering, while others
continue to lose weight, but the phenotypic correlation
is small (20.14). There is a strong positive correlation
between maxwte and wtst showing that at equal severity
of footrot, larger animals cope better with the disease,
and the negative correlation with tmwe suggests that
the effects that do occur will happen sooner. Based
on the negative correlation of maxFR and tmfr it appears
that the sooner footrot reaches maximum severity, the less
severe it is.

In alternative analyses (not shown) in which the start
weight was included in the model as a covariate, or maxwte
and tmwe were based on estimates of healthy growth
including a cubic term, genetic and phenotypic correlations
were very similar to those without the covariate or cubic
terms as presented in Table 7.

The equivalent estimates for trial 2 are given in Table 8
and corresponding variances and covariances given in
Table 1.2 of Appendix 1. Compared to trial 1 (Table 7), esti-
mates of genetic correlations between weight loss and footrot
are stronger, but there does not seem to be a correlation of
footrot severity with timing of its peak. The genetic correla-
tion between start weight and maxwte is much lower, indi-
cating that at this stage, genes that affect growth have a
much smaller effect on the reaction to footrot.

In contrast, the alternative analysis (not shown) that
included start weight as a covariate in the model for the
other five traits, shows similar genetic correlations to a
model without the covariate, but phenotypic correlations
between footrot severity and weight loss are much stronger,
confirming an important effect of footrot on weight loss.
The phenotypic correlation between tmwe and tmfr of 0.89
after both have been adjusted for start weight, shows a

Table 7 Genetic parameters (standard errors) and phenotypic correlations for weight and footrot traits including start weight and
end weight in trial 1

maxwte tmwe sumFR maxFR tmfr wtst endwte

maxwte 0.29 (0.05) 20.14 20.14 20.15 0.03 20.08 0.62
tmwe 20.79 (0.11) 0.21 (0.04) 20.16 20.12 20.03 20.42 20.53
sumFR 20.24 (0.15) 20.21 (0.15) 0.18 (0.04) nc 20.16 0.09 20.01
maxFR 20.25 (0.14) 20.15 (0.12) nc 0.14 (0.03) 20.44 0.06 20.03
tmfr 0.11 (0.23) 20.22 (0.22) 20.57 (0.21) 20.79 (0.14) 0.08 (0.03) 0.01 20.01
wtst 0.67 (0.13) 20.85 (0.09) 0.05 (0.16) 20.13 (0.11) 0.32 (0.26) 0.25 (0.05) 0.57
endwte 0.92 (0.02) 20.93 (0.04) 20.11 (0.18) 20.20 (0.19) 0.01 (0.15) 0.85 (0.05) 0.48 (0.05)

maxwte and tmwe are based on the linear predictions of healthy growth. Heritabilities on, genetic correlations below and phenotypic
correlations above diagonal.
nc 5 no convergence.

Table 8 Genetic parameters (standard errors) and phenotypic correlations for weight and footrot traits including start weight
in trial 2

maxwte tmwe sumFR maxFR tmfr wtst

maxwte 0.15 (0.03) 0.09 20.26 20.25 20.01 20.21
tmwe 20.41 (0.14) 0.11 (0.02) 20.02 20.04 0.05 20.17
sumFR 20.46 (0.09) 0.16 (0.11) 0.24 (0.04) 0.78 0.21 0.02
maxFR 20.57 (0.11) 20.13 (0.13) 0.89 (0.05) 0.13 (0.03) 0.01 0.00
tmfr 20.01 (0.18) 0.48 (0.15) 0.06 (0.22) 20.26 (0.25) 0.05 (0.02) 20.02
wtst 0.23 (0.11) 20.36 (0.08) 20.13 (0.10) 20.14 (0.13) 0.62 (0.15) 0.49 (0.04)

maxwte and tmwe are based on the linear predictions of healthy growth. Heritabilities on, genetic correlations below and phenotypic correlations
above diagonal.

Table 9 Phenotypic and genetic correlations between the same trait
in the two trials, estimated in a model fitting start weight as a
covariate

Correlation maxwte linear tmwe linear sumFR

Phenotypic 20.19 0.09 0.07
Genetic (s.e.) 0.15 (0.09) 0.78 (0.10) 0.72 (0.08)
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strong dependency between timing of footrot and the
maximum weight loss.

Phenotypic correlations (repeatabilities) across the two
trials for weight loss and footrot scores were low (Table 9),
as was the genetic correlation between maxwte in the two
trials, although of opposite sign to the phenotypic correla-
tion. In contrast the severity of footrot and the time of
maximum weight loss in the two trials have highly posi-
tive genetic correlations, indicating environmental effects
specific to each trial. Corresponding covariances are given
in Table 1.3 of Appendix 1.

Discussion

This aim of this study was to estimate the effect of footrot
on weight gain of affected animals, and to investigate the
nature of the between-animal variation for this effect.
A general approach was developed describing the rela-
tionship between disease and weight gain, and new traits
were defined such as the maximum weight loss as a result
of disease and the time after infection that this occurs.

The new trait of maximum weight effect was defined as
the maximum weight loss of animals as a result of footrot.
This trait required prediction of an animal’s weight had it
not been affected, which was achieved by applying the
growth curve of unaffected animals in the same flock and
taking into account various effects that may affect growth,
such as sex and age. The accuracy of this prediction is
difficult to assess, but is likely to be better in the first trial as
it was based on many more animals.

The weight of an affected animal is determined by the
animal’s (unknown, but predicted) growth if it had
remained healthy and the footrot effect, estimated as pre-
dicted growth 2 actual growth. Systematic errors may be
introduced in the estimation of the footrot effect because
healthy growth has an important genetic component, but is
accounted for in the prediction by including an effect of
start weight on growth. If the footrot effect for faster
growing animals was still underestimated, this would lead
to a negative correlation between healthy growth and the
footrot effect, but the actual genetic correlations between
gain over the trial and weight loss are highly positive.

Animals with average severity of footrot in trials 1 and 2
are predicted to suffer weight losses of 0.5 and 2.5 kg live
weight, respectively, compared to uninfected animals.
Animals subsequently regained most of the lost live weight
later in the trials after they recovered from footrot. Weight
loss, adjusted for the level of footrot, had a genetic com-
ponent, with heritabilities of approximately 0.30 in trial 1
and 0.15 in trial 2. Although the two traits were similar in
nature, the method of challenge, serogroup and virulence of
challenge isolate and timing of challenge were different,
and this may account for differences in relationship
between weight gain and footrot.

For an average weight of animals around 30 kg, the
weight loss estimated in this study is a much smaller per-
centage (2% to 8%) of live weight than found for other

sheep diseases (Kirkwood, 1980; Coop et al., 1985;
Pekelder, 1994; Sargison et al., 1995; Mackay et al., 1998).
The effect is similar to a 6.7% reduction in lamb output due
to footrot in ewes estimated from results presented by
Symons (1978) but much lower than the 30% found by
Stewart et al. (1984). Costs of footrot to the British sheep
industry estimated by Nieuwhof and Bishop (2005) are
based on extrapolating the average of results presented by
Symons (1978) and Stewart et al. (1984) to a weight effect,
i.e. an 18% reduction in growth. Nieuwhof and Bishop (2005)
estimate the total costs of footrot at £24.4 M, of which only
£1.5 M is due to reduced lamb growth so a reduction based
on the current findings would have a little impact on the total.
Both trials confirm findings by Marshall et al. (1991) that
sheep eventually completely regain weight lost due to footrot,
but in this experiment animals were treated by therapeutic
vaccination rather than left untreated.

For the British meat sheep industry, the main costs of
footrot are suffered therefore in adult ewes at times of mating,
lambing and lactation. In wool sheep, such as the Merino in
this study, footrot will also impact negatively on fleece weight
and fleece quality, specifically staple strength, which is not
recoverable (Symons, 1978; Stewart et al., 1984).

In general terms, conclusions are similar for the two
trials, which used the same animals, but there are differ-
ences in the size of the weight loss, the time frame and the
heritability of weight loss and timing. While the trials dif-
fered in various aspects, including animal age, the method
of infection and the time between infection and vaccina-
tion, it seems reasonable to assume that the previous
infection affected the response of animals in the second
trial. While the footrot scores across the two trials showed a
high positive genetic correlation, this was not the case for
the maximum weight effect. The animal’s response to
subsequent infections should not therefore be regarded as
repeat measures of the same trait.

Selection for higher weights at a given age and con-
sequent higher mature weights, as practiced in most sheep
breeding programmes, bears the risk, already established by
Raadsma et al. (1994), that animals become more suscep-
tible to footrot as a direct effect of weight. The current
study shows that at a phenotypic level weight losses due to
footrot also increase with severity (phenotypic correlations
between maximum weight loss and the sum of footrot
scores for example are 20.26 and 20.14 in trials 1 and 2,
respectively), thus apparently compounding the negative
effect of live weight on the animal’s performance. In con-
trast, the first trial shows that at the genetic level animals
with a high breeding value for growth lose less weight
(rg 5 0.67), which may be indicative of their (genetic) ability
to better cope with the disease. The effect was smaller in
trial 2 (rg 5 0.23).

Alternatively, selection for increased resistance to footrot
may lead to lower weights, if footrot scores are not
adjusted for live weight. In theory a selection programme
could include weight loss due to footrot in order to identify
the more resilient animals, i.e. those that do not lose weight

Nieuwhof, Bishop, Hill and Raadsma

1434



while showing clinical signs of footrot. Estimation of weight
loss is not practical, however, as it would require knowl-
edge of the time of infection and frequent weighing.
Selection on growth should to a large extent identify the
same animals. The low repeatability of footrot scores across
the two trials means that any selection programmes aiming
to increase resistance to footrot through selection of
resistant animals under natural challenges would benefit
from repeated scoring of the same animals and use of
information on relatives.
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Appendix 1. (Co)variance matrices

See Tables 1.1, 1.2, 1.3.

Table 1.1 (Co)variances for weight and footrot traits including start weight and end weight in trial 1

maxwte tmwe sumFR maxFR tmfr wtst endwte

maxwte 261.608 (1.384) 235.12 223.24 26.64 2.50 295.60 799.19
tmwe 250.137 (1.019) 15.400 (0.340) 27.26 21.50 20.86 2147.71 2197.45
sumFR 28.849 (1.403) 21.834 (0.299) 5.062 (0.191) nc 22.76 18.98 22.89
maxFR 22.243 (0.982) 20.325 (0.206) nc 0.298 (0.044) 22.10 3.79 21.11
tmfr 1.599 (1.116) 20.802 (0.299) 21.172 (0.257) 20.412 (0.048) 0.836 (0.100) 1.92 20.77
wtst 221.981 (6.440) 269.017 (1.638) 2.469 (0.726) 21.538 (0.067) 5.981 (0.436) 424.759 (1.741) 1006.06
endwte 446.759 (1.330) 2108.78 (0.538) 24.393 (0.17) 21.247 (0.032) 0.352 (0.095) 521.406 (1.478) 881.861 (1.987)

maxwte and tmwe are based on the linear predictions of healthy growth. Genetic variances on, genetic covariances below and phenotypic covariances above
diagonal. These figures correspond with the genetic parameters in Table 7.
nc 5 no convergence.
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Table 1.2 (Co)variances for weight and footrot traits including start weight in trial 2

maxwte tmwe sumFR maxFR tmfr wtst

maxwte 144.286 (0.840) 9.25 228.27 26.96 20.68 2273.84
tmwe 25.267 (0.466) 1.163 (0.074) 20.21 20.13 0.33 223.64
sumFR 29.634 (0.660) 0.297 (0.056) 3.070 (0.132) 2.55 1.40 2.59
maxFR 22.278 (0.745) 20.047 (0.058) 0.516 (0.127) 0.109 (0.031) 0.02 0.12
tmfr 20.064 (0.678) 0.222 (0.046) 0.045 (0.097) 20.037 (0.019) 0.187 (0.038) 21.32
wtst 82.150 (0.895) 211.414 (0.069) 26.731 (0.108) 21.419 (0.048) 7.962 (0.078) 888.086 (1.820)

maxwte and tmwe are based on the linear predictions of healthy growth. Genetic variances on, genetic covariances below and phenotypic covariances above
diagonal. These figures correspond with the genetic parameters in Table 8.

Table 1.3 Phenotypic and genetic covariances between the same trait in the two trials, estimated in a model fitting
start weight as a covariate

Covariance maxwte linear tmwe linear sumFR

Phenotypic 2173.183 2.534 1.245
Genetic (s.e.) 27.834 (0.555) 3.057 (0.220) 2.920 (0.814)

These figures correspond with the genetic parameters in Table 9.
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