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Neurons in the visual cortex receive a large amount of input from re-
current connections, yet the functional role of these connections remains
unclear. Here we explore networks with strong recurrence in a compu-
tational model and show that short-term depression of the synapses in
the recurrent loops implements an adaptive filter. This allows the vi-
sual system to respond reliably to deteriorated stimuli yet quickly to
high-quality stimuli. For low-contrast stimuli, the model predicts long
response latencies, whereas latencies are short for high-contrast stimuli.
This is consistent with physiological data showing that in higher visual
areas, latencies can increase more than 100 ms at low contrast compared to
high contrast. Moreover, when presented with briefly flashed stimuli, the
model predicts stereotypical responses that outlast the stimulus, again
consistent with physiological findings. The adaptive properties of the
model suggest that the abundant recurrent connections found in visual
cortex serve to adapt the network’s time constant in accordance with the
stimulus and normalizes neuronal signals such that processing is as fast
as possible while maintaining reliability.

1 Introduction

Input to the visual system is extremely variable, and the visual signal from
a given object can vary in properties such as size, position, and orientation.
It has long been realized that one of the roles of the visual system is to
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remove these stimulus variations. In a layered network, such invariant
object representations can be obtained by combining responses of neurons
with different receptive fields at various stages in the processing stream
(Riesenhuber & Poggio, 1999). However, stimulus contrast and stimulus
duration typically also vary. Invariance to these changes cannot be obtained
by pooling neurons, but it can be achieved using temporal integration. For
instance, a low-contrast stimulus can be integrated longer to maintain a
signal-to-noise ratio similar to that of a high-contrast stimulus. This increase
in the temporal integration at low contrast is reflected in the latency of the
neural responses. As the stimulus contrast is lowered, response latencies
increase. This already happens in retina (Shapley & Victor, 1978), but also
occurs in the lateral geniculate nucleus (LGN; Lee, Elepfandt, & Virsu,
1981), V1 (Albrecht & Hamilton, 1982; Dean & Tolhurst, 1986; Carandini
& Heeger, 1994; Albrecht, 1995; Saul, 1995; Gawne, Kjaer, & Richmond,
1996; Bair, Cavanaugh, Smith, & Movshon, 2002; Albrecht, Geisler, Frazer,
& Crane, 2002), area MT (Raiguel, Xiao, Marcar, & Orban, 1999), and the
anterior superior temporal sulcus (STSa) (Oram, Xiao, Dritschel, & Payne,
2002). The impact of contrast on response latencies becomes progressively
larger in higher areas: as contrast is lowered, the latency of V1 responses
increases from about 40 ms to 75 ms (Gawne et al., 1996), but in area STSa,
response latency increases from about 90 ms to 225 ms (Oram et al., 2002),
arguing for additional latencies incurred at each processing stage.

Small contrast-dependent changes in response latency, such as those ob-
served in V1, can be accounted for in many ways (Bugmann & Taylor, 1993;
Carandini & Heeger, 1994; Bair et al., 2002). A number of previous models
have included synaptic depression to explain temporal V1 response prop-
erties (Chance, Nelson, & Abbott, 1998; Carandini, Heeger, & Senn, 2002;
Kayser, Priebe, & Miller, 2001; see also Loebel & Tsodyks, 2002), but typically
have feedforward connectivity only. This is problematic in the light of evi-
dence that synaptic depression in the drive from LGN to V1 is limited, while
polysynaptic connections via other V1 cells depress strongly (Boudreau &
Ferster, 2005). Furthermore, the large latency changes in higher areas are
inconsistent with pure feedforward models of visual processing. In models
of spiking feedforward networks with realistic noise, latencies are short and
only weakly dependent on firing rates or stimulus contrast (Knight, 1972;
Treves, 1993; Gerstner, 2000; van Rossum, Turrigiano, & Nelson, 2002).

In addition to the contrast manipulation, we also consider manipulation
of the stimulus duration. It has been observed that when a stimulus is
briefly flashed, the response significantly outlasts the stimulus, such that
both the response duration and response amplitude in higher visual areas
depend only weakly on the precise stimulus duration (Rolls & Tovee, 1994;
Keysers, Xiao, Földiák, & Perrett, 2005). This is also incompatible with linear
feedforward models.

We show that both the contrast-dependent latencies and the invariance
of response to brief stimuli are reproduced in a network model that includes
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two physiological observations: strong recurrent excitatory connections
known to be abundant in cortex (Douglas, Koch, Mahowald, Martin, &
Suarez, 1995) and short-term synaptic depression of these connections
(Thomson & West, 1993; Markram & Tsodyks, 1996; Varela et al., 1997).
The abundant recurrent connections thus normalize signals by adaptively
adjusting the network’s gain and time constant.

2 Methods

2.1 Model Definition. We simulate a network model of nodes that are
characterized by their firing rates, schematically depicted in Figure 1c. Each
node can be thought of as representing the average firing rate of a small
population of neurons, such as a microcolumn. In the presence of asyn-
chronous noisy background activity, the dynamics of the population is not
limited by the (slow) membrane time constant, but instead the population
firing rate responds almost instantaneously to changes in the input current
(Knight, 1972; Treves, 1993; Gerstner, 2000; van Rossum et al., 2002). As a
result the dynamics is largely determined by the synaptic time course. We
therefore model the network as follows (see Dayan & Abbott, 2002, for a
discussion of this approximation). The net current I (t) received by a node
is described with

τ
d I (t)

dt
= −I (t) + Iinput(t) + g Prel (t)r (t), (2.1)

where the time constant τ (5 ms) determines the dynamics of the node and
reflects the time constant of fast excitatory transmission. The right-hand
side contains three terms: a decay term −I (t); an input Iinput term, which
for the first node equals the stimulus and for subsequent nodes equals the
synaptic input from the preceding node; and the right-most term, which is
the recurrent feedback, indicated by the loops in Figure 1c. The recurrent
feedback is subject to short-term synaptic depression and is given by the
product of the synaptic release probability Prel (t), the firing rate of the node
itself r (t), and the recurrent gain g, which is set to g = 1. Note that without
depression, a strong recurrent gain (g ≥ 1) could lead to diverging activity;
however, with depressing synapses, a high recurrent gain does not pose a
problem.

The synaptic release probability Prel incorporates short-term synaptic
depression. The dynamics of the release probability is modeled as a first-
order equation. Under the assumption of Poisson firing, the release proba-
bility obeys (Tsodyks, Pawelzik, & Markram, 1998)

τdepr
d Prel(t)

dt
= P0 − [1 + τdeprr (t)(1 − f )]Prel(t), (2.2)
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Figure 1: Neural responses in higher visual areas to stimuli presented at dif-
ferent contrasts: data and model. (a) Average normalized responses of 47 STSa
neurons measured in response to preferred stimuli of 100%, 75%, 50%, 25%,
12.5%, and 6.25% contrast (top to bottom traces) with 333 ms stimulus dura-
tion (bar). (b) Example of responses of an STSa neuron to a preferred stimulus
(a biohazard sign) at different contrasts. Rastergrams and corresponding spike
density functions (SD = 10 ms) of the responses to multiple presentations of
the effective stimulus at different contrasts (100%, 25%, 12.5%, and 6.25%). The
response latency increases from 90 ms to 200 ms as the stimulus contrast is
decreased. (c) Rate-based network to explain the latency increases of visual
signal propagation. In the network, nodes are connected through excitatory
connections and receive input from both the previous layer and recurrent exci-
tation. Both the feedforward and recurrent connections are subject to short-term
synaptic depression. (d) The activity of the model network in response to a low-
contrast (left) and high-contrast (right) step stimulus. The activity is shown in
five subsequent layers of the network. For low-contrast stimuli, the latency is
substantially longer than for high-contrast stimuli. (e) Model responses in layer
10 to step stimuli of four contrast levels. In higher layers, the responses become
stereotypical: duration and amplitude are independent of the input contrast
and duration, but the latency varies.
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where the parameter τdepr = 500 ms describes how quickly the synapse
recovers toward its default release probability, given by P0 = 1. The depres-
sion factor f = 0.8 describes how much each spike depresses the release
probability (Prel → f Prel ). These parameter values were taken from the lit-
erature as they give an accurate description of depression in visual cortical
slices (Abbott, Varela, Sen, & Nelson, 1997; Varela et al., 1997) and did not
require tuning.

Finally, the firing rate is modeled as an instantaneous function of the
current, r (t) = h(I (t)), with

h(I ) = κ log[cosh([I ]+/κ)]
1 + τrefrκ log[cosh([I ]+/κ)]

.

The function h(I ), referred to as the F/I curve, is a sigmoid combining
two effects. First, it implements a weakly expansive nonlinearity for low
firing rates, given by the parameter κ = 5 spikes/s that characterizes above
which frequency the F/I curve becomes approximately linear. Second, the
F/I curve is saturating for high rates, determined by the refractory time
τrefr = 0.002s (see Figure 6a). A simple threshold linear F/I curve, h(I ) =
[I ]+ = max(I, 0), yields similar behavior but has less sharp transients (see
section 3.6).

2.1.1 Feedforward Connections. Higher layers in the network receive their
input from the previous layer. Like the recurrent connections, the synapses
of these feedforward connections are also subject to synaptic depression;
however, the influence of this depression on the latency is weak (see
section 3.2). The input current to layer i + 1 in equation 2.1 is given by
I i+1
input(t) = gff Pi

rel(t)r
i (t), where Pi

rel(t) and r i (t) are release probability and
the firing rate of the previous layer. An identical feedforward gain gff is
used between all layers. This feedforward gain is adjusted such that a sus-
tained 50 Hz stimulus in the input layer evokes a response in the output
layer with a peak rate of 50 Hz. This was done for each model variant in-
dependently. For the recurrent networks with depression, this gain is about
0.5. Thus any node receives about twice as much recurrent as feedforward
input.

2.1.2 Population Coding Network. For the study of population codes, we
use a network with N = 20 neurons per layer with wraparound boundaries
to eliminate edge effects. The stimuli to the input layer are step stimuli
centered around node k = 10. The spatial profile of the stimulus is a rectified
cosine (“bump”), and the input to node i is Istim,i = A[cos(2π(i − k)/N)]+,
where A is the amplitude of the stimulus. The layers are connected to the
subsequent layer with an excitatory center and inhibitory surround given
by wff

ik = gff cos (2π (i − k)/N), where i and k denote the lateral position of
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the nodes in the layers. The feedforward gain gff is again determined by
calibrating the peak responses.

The lateral connectivity matrix equals wlat
i j = g(1 − δi j ) cos(2π(i − j)/N).

To demonstrate that self-excitation is not essential for the model, the lat-
eral connectivity matrix explicitly excludes self-excitation. The parameter
g is the strength of the lateral connections and is comparable to the re-
current gain g above; its value was determined by matching the laten-
cies of the single-node network to the latencies in the population net-
work. In summary, in the population coding network, each node obeys
τ

d I (t)
dt = −I (t) + Iinput(t), where the input current for a node i is I i

input(t) =∑
j wlat

i j P j
rel(t)r

j (t) + ∑
k wff

ik Pk
rel(t)r

k(t), where j loops over all nodes in the
layer of i , while k loops over all nodes in the preceding layer. The synaptic
depression parameters are the same as in the single-node case. Both excita-
tory and inhibitory (w < 0) connections depress. We obtained comparable
results when inhibitory connections (w < 0) were nondepressing.

Axonal and dendritic propagation delays are not included in the model.
Feedforward propagation delays add trivially a contrast-independent
latency. The delays in the recurrent connections can be substantial due
to the lack of myelination in the horizontal connections (Hirsch & Gilbert,
1996; Bringuier, Chavane, Glaeser, & Frégnac, 1999). Including a fixed 10 ms
delay in the recurrent connections leads to minor additional latency but does
not substantially increase the contrast dependence of the latency.

At the start of the simulation, the synapses are fully recovered, and the
firing rate is zero. For compactness, the input and the current are expressed
in the same units as the firing rate. Alternatively, constants can be introduced
in the F/I curve and the various gains to match the dimensions. This does
not change the model.

2.2 Neurophysiological Methods. The experimental protocols have
been described before (Oram et al., 2002). Briefly, extracellular single-unit
recordings were made using standard techniques from the upper and lower
banks of the anterior part of the superior temporal sulcus (STSa) and the
inferior temporal cortex (IT) of two monkeys (Macaca mulatta) performing
a visual fixation task. The subject received a drop of fruit juice reward
every 500 ms of fixation (±3o) while static stimuli (10o × 12.5o) were dis-
played. During initial screening, images of different perspective views of
monkey and human head, animals, fractal patterns, natural scenes, and
everyday objects were presented for 110 ms.Visual inspection of online
rasters and the poststimulus time histograms (PSTH) of each stimulus
was used to select effective (preferred) and noneffective (nonpreferred)
stimuli.

To measure the effect of contrast on the response (see Figures 1 and
2), gray-scale versions of preferred and nonpreferred stimuli were pre-
sented for 333 ms followed by a 333 ms interstimulus interval. The different
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stimuli and different contrast levels were present in random order. The
100% Michelson contrast (Lmax − Lmin)/(Lmax + Lmin) was formed by nor-
malizing the foreground pixel values such that they occupied the moni-
tor’s full luminance range after adjusting the initial gray-scale image to
have 50% luminance. Other contrast versions (75%, 50%, 25%, 12.5%, and
6.25%) were achieved by systematically varying the width of the distri-
bution of the foreground pixel values of the 100% contrast version while
maintaining the average foreground luminance. All manipulations were
performed after correcting for the measured gamma function of the display
monitor.

2.2.1 Data Analysis. Spike density functions were computed by smooth-
ing a 1 ms bin width peristimulus time histogram with a gaussian filter
(SD = 10 ms) for each stimulus at each contrast. Response magnitude was
taken as the average firing rate in the 333 ms following response latency.
Population-averaged responses were generated by normalizing the spike
density function of each cell to the most effective stimulus by setting the
average of the 200 ms prior to stimulus onset to 0 and the peak of the spike
density function to 1, average across neurons, and renormalizing to the
range 0 . . . 1 (Oram & Perrett, 1992).

The latency was extracted at the point at which the activity exceeded
the baseline activity (estimated from 200 ms before stimulus onset) by 3
standard deviations for at least 20 ms. The latency was accepted only if the
activity of the neuron in the 100 ms following the estimate was significantly
(p < 0.05) above the baseline activity (paired t-test). We termed this the
SD method. The latency was also calculated based on the time at which
the spike density function reached half-maximum. The half-maximum es-
timate of latency is sensitive to random fluctuations in the ongoing activity
when the response is small (responses to less preferred or low-contrast stim-
uli), yielding unreliable latency estimates. Given that we focus here on re-
sponse latencies at low contrast, we present the data using the statistical SD
method.

The model was noise free in most cases, so the SD method was not ap-
propriate, and we used the half-maximum latency. The latencies obtained
from the neurophysiological data using either method were highly corre-
lated (r = 0.87), which is expected from the steep onset of the responses
even at low contrast (see section 3.6).

3 Results

This study combines computational models with recordings from anterior
inferotemporal cortex (AIT) and STSa. We first present data showing the
contrast dependence of latencies in higher visual areas and introduce a
model with strong recurrent connections subject to synaptic depression
that explains these data. Next, we show that in the model and the data,
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the latency is only weakly determined by the firing rate and stimulus pref-
erence. Furthermore, the data and model show similar responses when
stimuli are briefly flashed. Finally, we discuss the signal processing and
gain regulation in the model.

3.1 Contrast-Dependent Latencies. We first study how response la-
tency in higher visual areas depends on contrast. In Figure 1a the average
response of 47 neurons recorded in area STSa is plotted in response to
preferred visual stimuli presented at different contrasts. The data show
large changes in the latency: the average latency ranges from 90 ms for the
highest-contrast stimuli to 216 ms for the lowest-contrast stimuli, while in
some neurons, the latency difference across the same contrast range can be
in excess of 300 ms (see also Oram et al., 2002). The response of a single neu-
ron in area STSa of four different contrasts is shown in Figure 1b. For this
neuron, the response latency at 100% contrast was 89 ms, which increased
to 190 ms at 6.25% contrast.

It is noteworthy that at low contrast, the population-averaged responses
show less amplitude normalization and a smoother onset of the responses
than the single-neuron example. This is partly because the different cells
included in the population average have different sensitivity of response
latency to contrast. Thus, as the contrast is decreased, the heterogeneous
latencies average to a temporally smeared response. However, the onset
for a given cell remains steep, with the average time to rise from detected
latency to half peak being 8.1 ± 1.1 ms at 100% contrast and 10.2 ± 3.2 at
6.25% contrast, corresponding to 2.6 ± 0.3 and 1.9 ± 0.6 Hz/ms, respectively.
Thus, although reducing stimulus contrast increases response latency, the
onset remains sharp.

To examine possible mechanisms underlying the change in response
latency at low contrast, we study layered networks with the architecture
shown in Figure 1c. First we consider a network with just one node per
layer, where each node represents a group of neurons with similar receptive
fields. The layers are abstract and do not correspond to the anatomical
lamina in the cortex. The model solely propagates signal and is of course
by no means a full model of the visual cortex. Its purpose is to study the
effect of depressing synapses and recurrent connections on the dynamics
of signal propagation in the visual system. Nevertheless, networks of this
structure can be extended to perform computations (van Rossum & Renart,
2004; Vogels & Abbott, 2005). Based on the known anatomy and physiology,
each node receives both feedforward input and strong recurrent excitation
(Douglas et al., 1995). These recurrent connections should not be considered
all-to-all on a single-neuron level but rather reflect the average strength of
the recurrent connections in a group of neurons. Crucially the recurrent
connections in the model are subject to short-term synaptic depression,
as observed in cortex (Thomson & West, 1993; Markram & Tsodyks, 1996;
Varela et al., 1997). Short-term synaptic depression means that the synaptic
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response becomes weaker on repeated stimulation, while after a period of
rest, the original strength is restored. We took the parameters of the synaptic
depression from the literature (see section 2) rather than introducing extra
degrees of freedom and fitting them to match the responses.

We first study the propagation of step stimuli of varying contrast through
the model network. Stimulus contrast was assumed to be coded in the
strength of the model’s (retinal) input. Figure 1d shows the response in
various layers to stimuli of high and low contrast. Already in the first layer,
the response to a low-contrast stimulus has a slower rise than to a high-
contrast stimulus. In subsequent layers, additional latency is added at low
contrast. In Figure 1e, we show the model response in layer 10 for four
contrast levels. The latency increases substantially at low contrasts. Note
that some 100 ms after onset, the responses in the data have a sustained
portion that is not present in the model. In the model, the response in the
higher layers is of limited duration (about 60 ms, basically until the synapses
are depressed) even when the stimulus persists. Below, we explore possible
explanations for this sustained response.

Next, we directly compared the latencies of the model to the physiology.
For the physiological data, the latency at a given contrast was calculated for
each neuron and averaged across the population, Figure 2a. For comparison
we also show response latencies recorded in area V1 (data from Wiener,
Oram, Liu, & Richmond, 2001; Oram, Wiener, Lestienne, & Richmond, 1999).
The average response latency in area STSa increases by 33 ± 3 ms for each
halving of stimulus contrast, which is significantly greater than in V1, where
this was 8 ± 0.8 ms (F[1,7] = 56.8, p < 0.0005). Thus the majority of the
latency change is not of retinal or V1 origin; instead it suggests that each
cortical processing area adds latency at low contrast.

The model’s latency is plotted as a function of contrast for layers 1, 5,
and 10 in Figure 2b (again for a model with one node per layer). To express
stimulus rate as a contrast, we used an inverse Naka-Rushton equation, c =
c50( r/rmax

1−r/rmax
)1/n, with parameters c50 = 0.5, n = 1.6, corresponding to LGN

inputs (Sclar, Maunsell, & Lennie, 1990) and rmax = 140 Hz. The minimum
latency occurs with the high-contrast stimuli and is approximately equal to
the number of layers crossed times the synaptic time constant. In comparing
data to model, one should take into account that retinal and propagation
delays lead to a latency in layer 4 of V1 of some 50 ms (Maunsell & Gibson,
1992; Schmolesky et al., 1998). It has been estimated that between retina
and AIT/STSa, at least 10 synapses must be traversed (Gautrais & Thorpe,
1998; Oram & Perrett, 1992). With this in mind, the latency in the model
in layer 10 is comparable to the latency in area STSa for the parameters
used. Thus, using realistic parameters and a reasonable number of layers,
the latencies in the model are comparable to the neurophysiological data.
In the model, the curves are steeper near low contrast than is observed in
the data; this is due to the sharper input-output nonlinearity in the model
(below).
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Figure 2: Latencies versus contrast, data and model. (a) Average response la-
tency as a function of contrast measured in 19 V1 neurons in response to Walsh
patterns (dashed curve) (data from Wiener et al., 2001; Oram et al., 1999) and
in 18 STS neurons (in response to objects) for which latency estimates were
available at all six contrast levels (solid curve). Error bars denote standard error.
(b) The latency in the network model with depressing recurrent connections
as a function of stimulus contrast. The latency is plotted for the first (bottom
curve), the fifth, and the tenth layers (top curve). For the weakest stimuli, no
latency is plotted in the deeper layers, because the stimulus fails to propagate
deeply into the network. (c) Model latencies in layer 10 versus stimulus am-
plitude for various model variants. The full model with recurrent connections
and depression of all synapses has large latency differences (thick solid curve).
If the feedforward connections are not depressing, latencies are slightly longer
but comparable (thick dashed curve). Without recurrent connections, the max-
imal latency and its contrast dependence is much smaller (thin solid curve)
also when the feedforward connections are not depressing (thin dashed curve).
A linear network without depression has a constant latency (straight line).
(d) Model latencies in layer 10 versus stimulus amplitude for a model in which
the recurrent connections are not depressing. If the feedforward connections
are depressing, long-contrast-dependent latencies result (dashed curve). Even
longer latencies result when the feedforward connections are not depressing
either (solid curve).

3.2 Contributions to Latency Changes. Next, we explored the differ-
ent contributions to the latency in the model. In Figure 2c, layer 10 latency
is plotted versus contrast for a range of model conditions. In a feedfor-
ward network, the nonlinearity of the F/I curve by itself leads to a weak
contrast-dependent latency (thin dashed curve). In this case, each node fil-
ters and (smoothly) thresholds the signal; such models have been used to
explain V1 latencies (Bair et al., 2002). Adding depression in the feedfor-
ward connections reduces the latency somewhat (thin solid curve), as it
reduces the late part of the response. Response latency is, however, much
longer with depressing recurrent connections (thick curves) than without
recurrence (thin curves). In the presence of the depressing recurrence, de-
pression of feedforward connections again has a small effect on the latency
(thick dashed curve).
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When the F/I curve is linear (r = I ) and the synapses are nondepressing,
the behavior of the network can easily be studied analytically. In that case,
if recurrent feedback is absent, the latency would be proportional to τ times
the number of layers crossed, where τ is the synaptic time constant, Figure
2c (straight line). Hence, the latency would be short and independent of
contrast. In a linear network with recurrent feedback with strength g (but
without synaptic depression), one has

τ

1 − g
dr (t)

dt
= −r (t) + 1

1 − g
Iinput(t),

from which one sees that the gain of each layer is proportional to 1/(1 − g)
and the latency increases to τ/(1 − g), but is still independent of contrast
(Douglas et al., 1995). When the synapses are depressing, the system consists
of two coupled differential equations per layer, equations 2.1 and 2.2, which
complicates matters considerably. In the appendix, we show how the latency
can be approximated in that case.

Finally, we consider the case where the recurrent connections are not
depressing, Figure 2d. The high recurrent gain g = 1 is in this case patho-
logical, so we slightly reduced it to g = 0.99. As expected from the above
arguments, the latencies are very long. As above, the nonlinearity of the F/I
curve and the feedforward depression still lead to contrast-dependent laten-
cies, although the ratio of maximal and minimal latency is again smaller, Fig-
ure 2d (solid curve). This seems perhaps an interesting alternative to obtain
contrast-dependent latencies. However, experimental evidence does not
support such a picture, and if anything, it suggests the opposite (Boudreau
& Ferster, 2005). If the feedforward connections are also not depressing,
very long contrast-independent latencies result, Figure 2d (dashed curve).
Furthermore, as can be inferred from the figure, the minimal contrast re-
quired to propagate through the network is higher. This is a consequence of
the very high recurrent gain in this case. In order to prevent activity levels
that are too high, the feedforward drive g f f is set much lower than in the
other model variants (see section 2 for the tuning procedure); this goes at
the expense of the low-contrast responses.

In summary, the long latencies observed physiologically are found in
the model with depressing recurrence, although factors such as the nonlin-
earity of the F/I curve and feedforward depression can contribute to the
contrast-dependent latency as well. The mechanism is as follows. When
the contrast is low, the total input to a node is dominated by the recur-
rent input, which effectively slows the dynamics (and increases the gain).
When presented with a high-contrast stimulus, the recurrent connections
are rapidly depressed out, leaving a quick response known from feedfor-
ward networks.



1858 M. van Rossum, M. van der Meer, D. Xiao, and M. Oram

3.3 Contrast, not Stimulus Preference, Determines the Latency. A pos-
sible interpretation of the above data could be that latency is simply deter-
mined by the firing rate of each node. However, it has been observed that
response latency in V1 is determined by stimulus contrast, but only weakly,
by stimulus preference (Carandini & Heeger, 1994; Albrecht, 1995; Gawne
et al., 1996). Comparable to the observations in V1, in STSa and IT a nonpre-
ferred high-contrast stimulus also yields a small response but with a short
latency. This is illustrated in Figure 3a (see also Oram et al., 2002; Oram &
Perrett, 1992).

To examine the dependence of response latency on response magnitude
and stimulus contrast in the model, we implement a population coding
network, Figure 3b. Instead of having just one node per layer, each layer
in the model now contains an array of 20 neurons. The recurrence was
implemented in a lateral connectivity matrix with a center-surround layout
(see section 2). Subsequent layers are connected to each other with a weight
matrix that implements an excitatory center and inhibitory surround. The
stimulus preference for a given node can be changed by placing the stimulus
at different locations. Equivalently, we fix the stimulus position and study
the response across nodes.

We determined the latency and response amplitude in the population
coding network for both a low- and high-contrast stimulus, Figure 3c (left
and right). In the network with depressing recurrence, the latency is again
strongly contrast dependent, Figure 3c, thick lines. This demonstrates that
in population coding networks, depressing connections between neighbor-
ing nodes give rise to contrast-dependent latencies. However, it can also
be observed that for a given contrast, the latencies in a given layer are
very similar. In particular, the activity of central nodes at low contrast (see
Figure 3c, lower left) is higher than the activity of the edge nodes at high
contrast (see Figure 3c, lower right), yet the latency at low contrast is about
twofold longer. In other words, the contrast affects the latency more than
the response amplitude of the particular node.

Next we tested a simplified network in which the synapses are not de-
pressing and recurrent connections are absent. As was shown above when
the F/I curve is nonlinear, a small contrast-dependent latency remains,
Figure 2c. In the population coding network, the latency is again weakly
contrast dependent, Figure 3c, thin lines. In this case, one might perhaps
have expected a strong coupling between latency and firing rate, but in-
terestingly, for a given stimulus contrast, the latencies within a layer are
again quite similar. Although the longer latencies occur for nodes for which
the stimulus is less preferred, both contrast and firing rate determine the
latency.

In response to high-contrast, nonpreferred stimuli, the latency is short
for two reasons. First, unlike with low-contrast stimuli, the latency does
not accumulate across layers because nodes with low activation receive a
short latency input, mainly driven by nodes in the previous layer with a
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Figure 3: Contrast-dependent latencies in a population coding network.
(a) Averaged responses of recorded neurons in area STS to most preferred stim-
uli (solid curve) and least effective stimuli (thin curve), all presented at high
contrast. The least effective stimuli lead to a small response, but with a short
latency. For comparison, the response to the preferred stimulus at 25% contrast
is also shown (dashed curve). (b) Population coding network architecture in
which each layer has 20 nodes. The layers are connected to each other with a
center-surround profile. The sharp arrows denote excitatory connections, the
blunt arrows inhibitory ones. For clarity, only the connections from the middle
nodes are shown. (c) Latencies (top, thick curves) and peak responses (bottom)
in the fifth layer of the population coding network. Response to a low-contrast
(left) and a high-contrast (right) bump stimulus in the input layer. The latency
to high-contrast stimuli is short and similar across nodes, even for nodes on the
edges, which have a low firing rate. At low contrast, the latencies are long and
again similar across nodes. Note that the most active nodes at low contrast have
latencies that are substantially longer than the latencies of weakly active nodes
to high-contrast stimuli, indicating that the latency is mainly determined by con-
trast rather than by firing rate. The thin curves indicate latencies in the model
variant without synaptic depression and recurrence (response amplitudes were
matched to be identical).

high activity. Second, in the depressing network, the strongest lateral input
comes from the nodes with the highest activation. The high activation means
these synapses depress quickly, shortening the latency.

Following Gawne et al. (1996), we examined the extent to which response
amplitude and latency varied with stimulus identity and stimulus contrast.
For recorded cells tested with stimuli that elicited significantly different
mean spike counts (ANOVA, p < 0.05), stimulus contrast accounted for
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Figure 4: Responses to brief stimuli. (a) Average responses of recorded neurons
in area STS to stimuli presented for 18 ms (solid) and for 102 ms (dashed). The
responses are almost identical. Preferred stimuli were randomly interleaved
with nonpreferred stimuli; only responses to the preferred stimulus were in-
cluded in the average. (Data from Keysers et al., 2005.) (b) Model responses in
a network without synaptic depression and recurrence. The activity in the fifth
layer in response to the brief (18 ms) stimulus and prolonged (102 ms) stimu-
lus. In contrast to the data, the response amplitude and duration clearly reflect
the stimulus duration. (c) In the depressing recurrent network, the response
in the deeper layers becomes independent of stimulus duration. The brief and
prolonged stimuli were in all cases presented at identical high contrast; brief,
low-contrast stimuli do not propagate through the network.

67 ± 7% of the variability of response latency and only 33 ± 3% of the
variability in spike count. Conversely, stimuli identity accounted for 69 ±
6% of the variability in spike count and only 20 ± 5% of the variability on
response latency. Thus, in areas STSa and IT, stimulus contrast is encoded
mostly by response latency, whereas stimulus identity is encoded mostly
by response magnitude; the same reversal was observed in V1 (Gawne
et al., 1996). The same is observed in the model where the contrast ac-
counted for 92% of the variability in the latency and 14% of the response
amplitude variation, while the stimulus identity (i.e., position) contributed
80% to the response amplitude variation and 0.1% to the latency (fifth-layer
response, linear model fit using cosine of angular stimulus location, and log-
arithmic stimulus amplitude). Thus the model qualitatively captures this
effect.

3.4 Processing of Flashed Stimuli. The second effect we consider is
the presentation of briefly flashed high-contrast images. Figure 4a shows
responses from neurons in area STSa to preferred and many nonpreferred
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stimuli presented in randomly interleaved order for either 18 ms followed
by a 93 ms gap, or for 102 ms followed by a 9 ms gap (data from Keysers
et al., 2005). Yet despite the more than five-fold difference in stimulus du-
ration, the neural responses are virtually identical (Keysers et al., 2005). A
simple explanation for this observation would be a retinal afterimage. How-
ever, similar observations were reported when brief stimuli are immediately
masked after their presentation (Rolls & Tovee, 1994), yielding retinal after-
images an unlikely explanation for the observed activity profiles.

Using the model of Figure 1, we compare the response to an 18 ms stim-
ulus to the response to a 102 ms stimulus. In the model variant without
recurrent and depressing synapses, the response duration and response
amplitude clearly reflect the difference in stimulus duration (see Figure 4b).
This is because the input is simply low-pass-filtered by the network. More
precisely, in the limit where the filtering time constant is much shorter
than the signal duration, the response duration reflects the stimulus du-
ration, while in the limit where the filter time constant is much longer
than the stimulus duration, the response amplitude reflects the stimulus
duration.

In contrast, in the model with depressing recurrent connections, the
model response is independent of stimulus duration, Figure 4c, as observed
in the data. This is because the decay of the activity is dominated by the
depression dynamics. With brief stimulus presentation, synapses are not
yet depressed when the stimulus is removed, and hence the filtering time
constant is still long. The response is sustained until the recurrent synapses
are depressed out. For even shorter presentations (less than 10 ms), the re-
sponse amplitude gradually decreases until the stimulus fails to propagate
through the network and the stimulus presumably would not be perceived.
The behavior in the population coding network is identical to this one-
node-per-layer network (not shown).

The model’s response to briefly flashed stimuli is shorter than seen in
the neurophysiological data. The duration of the model’s response is deter-
mined by the firing rates and how quickly the synapses depress, quantified
by f in the model. We note again that we have deliberately made no attempt
to fit model parameters to our data, preferring instead to take the param-
eters from the literature. While we could increase the value of f to match
the duration of the response, this would simultaneously reduce the effect
of the depression on response latency. Below we explore other possibilities.

Finally, we examined the network where the connections are not de-
pressing (as in Figure 2d). Because of the high threshold in this network,
the brief flash stimulus does not propagate, while the longer flash leads to
a longer duration response (not shown). If the input is increased a factor
three-fold, so that the brief stimulus does propagate, the half-width of the
response to the brief stimulus is only 0.5 of the half-width of the response
to the prolonged stimulus. Due to the high threshold, the response again
strongly reflects stimulus duration.
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3.5 Processing of Noisy Signals. The fact that the latency depends
strongly on contrast shows that the time constant of the circuit adapts.
This has advantages when processing noisy signals. To demonstrate the
advantages of the adaptive network when processing noisy signals, we add
gaussian white noise to step stimuli of low and high contrast (see Figure
5a, left and right, respectively). Without recurrence, the response is quick
but also sensitive to noise, particularly evident to low-contrast stimuli (top
traces). When nondepressing recurrence connections are included, the time
constant of the circuit is slow. In this case, the noise is filtered out more, but
the response at high-contrast is sluggish (middle traces). The circuit with
depressing recurrent connections is both fast in response to high-contrast
stimuli and filters the noise at low contrasts (bottom traces).

The processing of noisy signals is further quantified in Figure 5b. We
measured the signal and its trial-to-trial variations 50 ms after response on-
set (when all networks have a strong response) and compared this to the
absence of a stimulus. The resulting signal-to-noise ratio (SNR) normalized
by stimulus amplitude (left) and the response latency (right) are plotted as
a function of contrast. At low-stimulus contrasts, the SNR in the network
with depressing recurrence (thick, solid curve) is superior to both the non-
depressing recurrent network (dashed curve) and the nonrecurrent network
(thin, solid curve). At high contrasts the nondepressing recurrent network
has a higher SNR, but at the cost of increased latency. Note that the net-
work with depressing recurrence at the highest contrasts will always have
a longer latency than the nonrecurrent network because (1) synapses will
require time to depress and (2) the recurrent synapses will never depress
out completely.

The depressing recurrent network shows faster response latency than the
nondepressing network across almost the entire contrast range, including
at low contrasts where the normalized SNR is higher than that of the nonde-
pressing network. This indicates the usefulness of adaptive networks. The
initial network state has a long time constant, but as the responses develop,
the network’s time constant rapidly decreases, resulting in strong adaptive
noise filtering with only a small cost in overall processing speed.

3.6 Rate Nonlinearity. In the model the firing rate is a smooth nonlinear
function of the input current, Figure 6a (dashed curve). The nonlinearity
(F/I curve) is expansive for small currents, modeling the effect of combining
a noisy membrane potential with a firing threshold (Anderson, Lampl,
Gillespie, & Ferster, 2000; Hansel & van Vreeswijk, 2002; Miller & Troyer,
2002). For large inputs, the nonlinearity is compressive, reflecting a maximal
firing rate caused by the refractory period of the neurons.

While this nonlinearity is not essential to obtain contrast-dependent la-
tency, the nonlinearity adds further realism to the model. First, the nonlin-
earity causes a realistic nonlinear relation between contrast and response,
which becomes steeper the more layers are passed, Figure 6a. Responses in
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Figure 5: Adaptive noise filtering by the network. (a) The model’s response
in the first layer to a low-contrast (left) and high-contrast stimulus (right;
note the difference in y-scale). The stimulus is a step stimulus (0..100 ms) to
which gaussian white noise was added. A network without recurrent circuitry
(top) reacts rapidly to signal transients but is noise sensitive. A recurrent net-
work without depression filters out the noise but is sluggish at high contrasts
(middle, recurrent feedback g = 0.8, depression factor f = 1). The network
with recurrent depression (bottom) combines a rapid response at high con-
trast with a filtering of noise at low contrast. (b) The signal-to-noise ratio (left)
and the latency to half-maximum (right) for the nonrecurrent network (thin,
solid curve), nondepression recurrent network (dashed curve), and the net-
work with depressing recurrence (thick curve). The signal-to-noise ratio was
calculated across trials at 50 ms after stimulus onset with respect to the baseline
response. For clarity, the signal-to-noise ratio was normalized by the stimulus
amplitude.
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Figure 6: Normalization and nonlinearities in the model. (a) The maximum
response amplitude as a function of the stimulus amplitude. Shown are the
response in the first layer to the fifth layer of a five-layer network. In higher
layers, the relation between stimulus and response is more strongly nonlinear.
For comparison, the weakly nonlinear F/I curve of an individual node (dashed
curve; see section 2) and a linear F/I curve (thin line) are also shown. (b) The
effect of the nonlinearity on the firing rate. The firing rates of layers 1 to 5
are shown in response to a low-contrast step stimulus (100 ms duration). With
a linear F/I curve, the response for low-contrast stimuli becomes temporally
smeared (top). However, with a nonlinear F/I curve, the onset is less sluggish,
and the response offset is particularly brisk (bottom), while the half-maximum
onset latencies are similar to the linear model.

the higher layers are contrast independent. The recurrent connections am-
plify weak inputs, while high-contrast stimuli are amplified less (see also
Figure 1c), enhancing the nonlinearity with every layer. Note that interme-
diate firing rates still occur when responses are part of a population code,
but the response magnitude to a given stimulus becomes less dependent
on stimulus contrast. Such normalizing behavior has been observed in sub-
sequent stages of visual processing, where the contrast response function
is almost linear in LGN but gradually steeper in V1 and MT (Sclar et al.,
1990). This is a common feature of any layered model with a sigmoidal F/I
curve.

It could be argued that the curve in higher layers is unphysiologically
steep. However, real neurons will show heterogeneity in properties such
as threshold and F/I curves, which will soften this steepness. Indeed, the
steepness of the model’s contrast-response relation (see Figure 6a) can be
reduced by replacing the single nodes with a population of nodes with
heterogeneity in the F/I curves and the connectivity (not shown).



Adaptive Integration by Depressing Circuits 1865

The second effect of the nonlinearity is a steeper onset of the response
and, in particular, a more rapid offset of the response as seen in the neuro-
physiological data. In Figure 6b, the activity in layer 1 to layer 5 is shown
using a linear (top) and the nonlinear F/I curve (bottom). When the F/I
curve is linear, the responses are temporally smeared at low contrast. In
the nonlinear case, the half-maximum latencies are comparable, but the
onset and the offset of the response are brisker. The mechanism behind
the steeper onset resembles the spike-generation mechanism. At first, the
recurrent feedback is hardly active as the input current does not lead to
substantial activity. As activity builds up, the feedback gets disproportion-
ately stronger, at which point the activity rapidly increases. The fast offset
is observed because at the offset, the recurrent synapses throughout the
network will be depressed; therefore, the network has a fast time constant,
largely independent of the contrast.

3.7 NMDA and Sustained Responses. As mentioned above, the re-
sponse in the higher layers is transient, even when the stimulus is main-
tained. One could argue that this in conflict with data, which often display
sustained responses. We note that unlike the onset latency, the amount and
time course of the sustained response vary greatly among cells. Further-
more, the late part of the response is often modulated by attention or higher
area feedback (Roelfsema, Khayat, & Spekreijse, 2003). Finally, input might
be coming from slower parallel inputs. From this point of view, a full model
for sustained part might well be quite complicated.

Nevertheless, a more sustained response can be explained by including
an NMDA type current in the model. To show this we added a current
similar to equation 2.1 with a single exponential decay of 150 ms to all
recurrent and feedforward synapses in the model. This current had 40% of
the peak amplitude of the fast AMPA-like current. Voltage dependence of
the NMDA conductance was not taken into account, as this requires a more
explicit neuron model; results of such a network using integrate-and-fire
neurons will be reported elsewhere.

When this NMDA-like current is included in the model, the response
of the model is more sustained, while the other properties of the model
remain largely intact. In Figure 7, the response in the fifth layer is analyzed,
each time compared to the original model, without NMDA (thin lines).
In Figure 7a the response to a 330 ms stimulus is plotted; the inclusion
of the slow current lengthens the response, but the onset is unchanged.
This is further illustrated in Figure 7b, where the onset and offset latency
are plotted versus input amplitude (contrast). The onset latency is slightly
delayed by the NMDA current, while the (half-maximum) offset latency is
clearly much longer. The small effect on the onset latency is likely due to
the response peaking later than without NMDA. Finally, the invariance of
the response with regard to stimulus duration also occurs with the NMDA
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Figure 7: The effect of a slow NMDA-like current on the model. In each panel,
the network with NMDA is shown in thick curves; the model without NMDA
is shown in thin curves for comparison. (a) The response in the fifth layer to
a 300 ms step stimulus. With NMDA, a sustained response results similar to
what is seen in some recorded cells. (b) The onset latency (solid curve) and
offset latency (dashed curve) as a function of stimulus. The onset latency is only
slightly changed with NMDA, but the offset latency is extended considerably.
(c) The response in the fifth layer to flashed stimuli as used in Figure 4. The
NMDA component again lengthens the response, but the response remains
insensitive to precise stimulus duration. Solid curve: response to brief stimuli;
dashed curve: response to long stimuli.

current present, Figure 7c. In conclusion, including a slow conductance can
explain the sustained response seen in the data.

4 Discussion

Cortical networks have abundant recurrent connections, the role of which
has been speculated on in many models (Douglas et al., 1995; Ben-Yishai,
Bar-Or, & Sompolinsky, 1995). Here we have shown that the short-term
synaptic depression of the recurrent connections leads to an adaptive tem-
poral integrator circuit. The model replicates a number of experimental
findings: (1) contrast strongly affects the response latency, while the latency
is only weakly coupled to response amplitude, (2) responses in higher areas
are independent of stimulus duration for briefly flashed stimuli, and (3) the
onset and the offset of the responses are brisk across stimulus contrasts. The
network furthermore normalizes both the amplitude and temporal profile
of the response (both become independent of the input contrast and du-
ration), which is likely advantageous for subsequent processing. However,
unlike gain control models that simply amplify weaker signals, it does so
by dynamically adjusting the network time constant such that weaker sig-
nals are integrated over longer periods, thereby improving the resultant
signal-to-noise ratio without sacrificing response time when the signal is
strong.
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The model is by no means meant to be a full model of the visual cortex
in that it only tries to capture the dynamics of signal propagation. It ignores
many known features of cortical circuitry. First, the model does not perform
any computation and has an accordingly simple connectivity. Nevertheless,
similar networks have been used to perform computations (van Rossum
et al., 2002; van Rossum & Renart, 2004; Vogels & Abbott, 2005). Second, like
most visual processing models, the connectivity ignores possible feedback
from higher to lower areas, which could substantially complicate matters.
Third, it ignores heterogeneity among the neurons: at low-contrast, latencies
of neurons in the same area diverge substantially (see the error bars of Figure
2a). Nevertheless, we believe that the properties emerging in this model
will hold in more involved models. As an example, we have observed
similar dynamical properties in integrate-and-fire networks. The effects
inherent in our model do not contradict, and indeed may act in concert with,
recruitment of different feedback loops with changing stimulus contrast
suggested by other models (Schwabe, Obermayer, Angelucci, & Bressloff,
2006), to explain contrast-dependent contextual interactions.

Given the many uncertainties about the nervous system and the many
nonlinearities, it is hard to rule out all alternative explanations for the de-
scribed phenomena. We believe that the proposed model is parsimonious
and is consistent with the known architecture and physiological data. Nev-
ertheless, its ultimate verification can be explored only in experiments.

Some studies have addressed contrast-dependent latency changes using
a model that low-pass filters the input followed by a threshold (Bugmann
& Taylor, 1993; Bair et al., 2002). These models can explain increased latency
at lower contrasts and a difference between onset and offset latency. Our
model variant without recurrence and without depression is an example of
such a model (the filter is the synaptic time course, and a smooth threshold
results from the F/I curve). Indeed, latency does depend on contrast, al-
beit more weakly (see Figure 2c). However, such models have rather short
latencies and do not have an invariant response to brief flashed stimuli
(see Figure 4b). An alternative model to explain long latencies would be
one with depression feedforward but nondepressing recurrent connections
(see Figure 2d); however, such a model is inconsistent with LGN-V1 data
(Boudreau & Ferster, 2005).

Other studies have focused on temporal phase shifts in primary visual
cortex as a function of contrast. In particular, Carandini and Heeger (1994)
have suggested that inhibitory shunting feedback shortens the membrane
time constant at high contrast. This idea and the mechanisms proposed here
are not mutually exclusive, and the shunting model might help in explain-
ing the contrast-dependent latencies. Furthermore, the resulting effective
equations are quite similar in both models. Yet there are important differ-
ences that render the shunting model an unlikely sole explanation of the
long latencies observed in higher areas. In the shunting model, the latency at
low contrast is given by the membrane time constant, which is shortened by
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inhibitory shunting feedback at high contrast. This seems hard to reconcile
with studies that the effective membrane time constant is very short in vivo
(Destexhe & Paré, 1999). Moreover, the even shorter synaptic time constant
rather than the membrane time constant determines the circuit’s dynam-
ics (Knight, 1972; Treves, 1993). Finally, physiologically observed inhibition
does not seem to match the shunting model (Ahmed, Allison, Douglas, &
Martin, 1997; Anderson, Carandini, & Ferster, 2000). The mechanism of the
model presented here is very different: first, there is no inhibition in the
model; second, the time constant of the individual nodes is fixed and short.
The long time constant is the result of the recurrence. As such there is in
principle no upper bound to the latency. If it were possible to abolish both
excitatory and inhibitory recurrent interactions, for example, by cooling, it
would be possible to decide between the two models: a shunting model
would predict a long time constant, while our model would predict a short
time constant.

More recent models have examined V1 phase shifts using synaptic de-
pression in either feedforward connections (Chance et al., 1998; Carandini
et al., 2002), or feedforward and recurrent connections (Kayser et al., 2001).
The extent of efficacy changes in the LGN-V1 pathway might, however,
be limited, as the synapses are in a permanently depressed state due to
the high background activity in LGN (Boudreau & Ferster, 2005) (while
the same study shows that polysynaptic connections via other V1 cells do
strongly depress). Interestingly, slower components in synaptic depression
can be used to explain contrast adaptation on longer timescales (Chance
et al., 1998), emphasizing the importance of synaptic dynamics on adaptive
processing.

Appendix

Although analytical treatment of the coupled differential equations for fir-
ing rate and synaptic depression appears intractable, we here estimate the
contrast dependence of the latency under simplifying assumptions. One
major complication for solving the problem is that the release probability
has a sigmoidal profile in time: when the input comes on, the release prob-
ability initially decays slowly as the activity is still low; next, the decay
accelerates as the firing rate increases, while at later times, the firing rate
decreases and the release probability reaches a steady state balanced by the
recovery term.

To approximate these dynamics, we simply assume that the release
probability Prel decreases linearly in time when the node is activated
Prel (t) = P0[1 − 10−3rmax(1 − f )t], where rmax is the peak firing rate of the
node for the given stimulus contrast (the factor 10−3 converts the firing rate
from Hz into ms−1). Furthermore, we assume that the F/I curve of the node
is linear and limit ourselves to the first node. (The behavior for the deeper
nodes is more complicated because of the normalization properties of the
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network; see Figure 6). Stimulated with a step current Iinput , the node’s
firing rate thus obeys according to equation 2.1, assuming g = 1, P0 = 1,

τ
dr (t)

dt
= −r (t) + Iinput + r (t)(1 − kt/τ )

where k = 10−3τrmax(1 − f ). Under the initial condition r (0) = 0, it has the
solution

r (t) = Iinput

√
π

2k
e− kt2

2τ2 ierf

(
i

t
τ

√
k
2

)
.

This function describes a transient pulse that rises quickly and decays
slowly. We numerically extracted the half-maximum latency of r (t) to be
t1/2 = 0.404 τ√

k
; hence, for the used parameters, t1/2 ≈ 64√

rmax
. A power law fit

to the latency in the first layer in Figure 2b (plotted against the maximum
firing rate at given contrast) yields t1/2 = 90.r−0.58

max , which is in reasonable
agreement with the theory given the crudeness of the approximation.
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