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Summary 

We show that the neurological condition of synaesthesia – which causes fundamental 

differences in perception and cognition throughout a lifetime – is significantly 

represented within the childhood population, and that it manifests behavioural 

markers as young as age 6 years. Synaesthesia gives rise to a merging of cognitive 

and/or sensory functions (e.g. ,in grapheme-colour synaesthesia, reading letters 

triggers coloured visual photisms) and adult synaesthesia is characterised by a fixed 

pattern of paired associations for each synaesthete (e.g., if a is carmine red, it is 

always carmine red). We demonstrate that the onset of this systematicity can be 

detected in young grapheme-colour synaesthetes, but is an acquired trait with a 

protracted development. We show that grapheme-colour synaesthesia develops in a 

way that supersedes the cognitive growth of non-synaesthetic children (with both 

average and superior abilities) in a comparable paired association task. With 

methodology based on random sampling and behavioural tests of genuineness, we 

reveal the prevalence of grapheme-colour synaesthesia in children (over 170,000 

grapheme-colour synaesthetes ages 0-17 in the UK, and over 930,000 in the US), the 

progression of the condition in longitudinal testing, and the developmental 

differences between synaesthetes and non-synaesthetes in matched tasks. We tested 

615 children age 6-7 years from 21 primary schools in the UK. Each child was 

individually assessed with a behavioural test for grapheme-colour synaesthesia, 

which first detects differences between synaesthetes and non-synaesthetes, and then 

tracks the development of each group across 12 months (from ages 6/7 to 7/8 years). 

We show that the average UK primary school has 2-3 grapheme-colour synaesthetes 

at any time (and the average US primary school has 5) and that synaesthetic 
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associations (e.g., a = carmine red) develop from chaotic pairings into a system of 

fixed, consistent cogno-sensory responses over time. Our study represents the first 

assessment of synaesthesia in a randomly sampled childhood population 

demonstrating the real-time development of the condition. We discuss the complex 

profile of benefits and costs associated with synaesthesia, and our research calls for 

a dialogue between researchers, clinicians and educators to highlight the prevalence 

and characteristics of this unusual condition. 

Keywords synaesthesia, synesthesia, cross-modal, binding, grapheme-colour 

Introduction 

Synaesthesia is a neurological condition that gives rise to a merging of sensory and/or 

cognitive functions, and so for people with synaesthesia, everyday activities (e.g., 

reading, listening to music) trigger extra-ordinary experiences (e.g., colours, tastes). For 

lexical-gustatory synaesthetes, for example (e.g., Simner and Ward, 2006) reading, 

saying or thinking about words triggers perceptual sensations of flavour in the mouth, 

and for grapheme-colour synaesthetes  (e.g., Dixon et al., 2000; Rich et al., 2005), 

letters and numerals trigger sensations of colour (photisms). These atypical sensations 

arise spontaneously during development (i.e., without effort), and synaesthesia in adults 

is typified by the consistency of mapping between the triggering stimulus (‘inducer’) 

and the resultant experience (‘concurrent’). Hence, for any given adult synaesthete, each 

inducer consistently triggers the same concurrent over time (e.g., if the letter a is 

carmine red, it is always carmine red). This consistency has been objectively 

demonstrated across months, years (e.g., Dixon et al., 2000; Rich et al., 2005; Simner 

and Ward, 2006; Simner et al., 2006; Smilek, Moffatt, et al.; 2002; Smilek, Dixon, et 
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al., 2002; Ward, and Simner, 2003; 2005; Yaro and Ward, 2007) and even decades 

(Simner and Logie, 2008) and is considered to be the ‘behavioural hallmark’ of 

synaesthesia (Rich et al., 2005). 

Studies of synaesthesia’s familial transmission patterns (e.g., Ward and Simner, 

2005; Smilek, Moffatt et al., 2002) suggest a genetic mode of inheritance, and this 

inheritance is assumed to give rise to a predisposition for increased cerebral 

communication. Neuroimaging studies show that the sensory experiences reported by 

synaesthetes are accompanied by activation in the related sensory cortices (e.g., 

Hubbard et al., 2005; Nunn et al., 2002; Rouw and Scholte, 2007). Hence, synaesthetes 

reporting colours from letters or spoken words show increased activation in colour 

selective regions, in the human V4 (hV4) complex of the ventral-occipital cortex (e.g., 

Nunn et al., 2002; Hubbard et al., 2005). This activation arises when synaesthetes are 

exposed to linguistic, but not non-linguistic stimuli, and no similar activity is found in 

control participants. Synaesthetic experiences appear to have anatomical roots, and 

recent DTI investigations have shown increased structural connectivity in the brains of 

synaesthetes (Rouw and Scholte, 2007). Grapheme-colour synaesthetes demonstrated 

greater fractional anisotropy suggesting increased white matter tracts compared with 

controls in the right fusiform gyrus, close to regions involved in word and colour 

processing. Synaesthetes also showed increased connectivity in the left intraparietal 

sulcus (IPS) and frontal cortex, and these are regions known to be involved in feature 

binding. Such findings are consistent with the notion of synaesthesia as an extreme or 

atypical binding phenomenon, and fit with neuroimaging and transcranial magnetic 

stimulation (TMS) studies showing that the parietal cortex is essential for the 
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synaesthetic binding of colour (Esternan et al., 2006; Weiss et al., 2005; see Hubbard, 

2007). 

There has been speculation on the question of lateralisation in grapheme-colour 

synaesthesia, given diverging evidence from recent imaging work. One dominant model 

has suggested that, for synaesthetes, reading causes additional activity to pass from 

regions involved in grapheme processing (the “visual word form area”; VWFA, 

McCandliss et al., 2003) to neighbouring regions in left colour processing areas (e.g., 

Hubbard and Ramachandran, 2005), and support has come from fMRI studies showing 

either left-lateralized or bilateral activation in hV4 (Hubbard et al., 2005; Nunn et al., 

2002; Rouw and Scholte, 2007). In contrast, Rouw and Scholte (2007) found evidence 

of increased connectivity and fMRI activity in the right temporal cortex. Hubbard 

(2007) points to similar lateralisation discrepancies for the role of parietal cortices in 

synaesthetic binding, and suggests that the issue of laterality should be approached with 

caution, given the differing techniques and small sample sizes that have thus far been 

brought to bear on the matter. 

Synaesthesia has a complex profile of benefits and costs, which manifest 

differently depending on the variant. Lexical-gustatory synaesthetes for example (who 

experience tastes from words) report difficulties maintaining attention when reading 

(Ward and Simner, 2003), while grapheme-colour synaesthetes show superior colour 

(Yaro and Ward, 2007) and digit memory (Smilek, Dixon et al., 2002). At the same 

time, these latter demonstrate significant difficulties retaining letters and numerals 

presented in colours that conflict with their synaesthetic sensations (e.g., a red 5, if 5 is 

synaesthetically green; e.g., Smilek, Dixon et al., 2002) as well as a sense of malaise 

when viewing such mismatched configurations (Callejas et al., 2007). Equally, while 
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grapheme-colour synaesthesia may endow superior spelling proficiency (Linn et al., 

2008), other variants (visuo-spatial synaesthesia, in which numbers are projected into 

spatial arrays) are accompanied by indications of difficulties in arithmetic, both in self-

report, and with detectable speed impairments in mental calculation (Ward et al., 2008).  

Although studies on synaesthesia have proliferated during the past decade (for 

statistics on this growth see Simner, 2007), comparatively little attention has been given 

to developmental questions. Adult studies have speculated on the possible roots of 

synaesthesia (e.g., Ward and Simner, 2005) and one emergent view has been that extra 

connectivity may arise from a failure in synaptic pruning during the first few months of 

life (Maurer, 1997). However, an early view of synaesthetic determinism does not 

marry easily with the broad range of synaesthesia, the overwhelming majority of which 

(approximately 88%, Simner et al., 2006) are triggered by learned linguistic units, or 

involve other cognitive constructs that are acquired during mid or even late childhood 

(Simner and Hubbard, 2006). However, in the last 10 years, a variety of data has 

suggested that human brain development, unlike that of non-human primates, is 

protracted and heterochronous (occurring at different times in different brain regions). 

For example, Huttenlocher and Dabholkar (1997) found that while synaptic density in 

the visual cortex falls off approximately 500 days after conception, density in the 

primary auditory cortex starts to decrease only after age 3.5 years, while frontal cortex 

density decreases more slowly from 3.5 until at least 11 years. Such data demonstrate 

that human brain development is a complex, prolonged process, and that it may yet 

allow for delayed or failed pruning that could interact with learning at relatively late 

stages in development (Simner and Hubbard, 2006). 
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The involvement of learned units suggests that grapheme-colour synaesthesia 

must have been acquired at some stage after the acquisition of the inducer. For 

grapheme-colour synaesthetes, for example, adult-like connectivity (consistently 

linking, say, the colour red with the letter a) can only emerge once the specific 

grapheme triggers have been acquired, and this process of alphabet acquisition begins 

during early years of formal education. This places the moment of ‘synaesthetic 

acquisition’ some time in early childhood for grapheme-colour synaesthetes, rather than 

from the moment of birth (which is a logical possibility at least for other types of 

synaesthetes; e.g., sound-colour synaesthetes). Hence there is dissociation between adult 

recollections of unchanging, ever-present sensations (e.g., Dixon et al., 2004) and a 

more likely scenario in which synaesthesia emerges, probably incrementally, on a 

trajectory that shadows the acquisition of the inducer. Notwithstanding speculation from 

adult studies, there has been an almost entire absence of any direct testing of these 

developmental hypotheses. The few studies showing synaesthesia in children (e.g., 

Green and Goswami, 2008; Simner et al., 2006) have documented cases who are already 

in, or close to their teens, and who already show adult-like synaesthesia. Moreover, a 

number of these cases would have come from self-referred samples, within families 

where the synaesthesia is known and discussed, and where the child’s synaesthesia may 

have been shaped to some degree by this feedback. No study has ever examined the 

presence of this neurological condition in a randomly sampled young population, and no 

study has tracked its development over time. As a result, there has been no information 

about the prevalence of the condition among children, nor any longitudinal comparison 

of the development of synaesthetes and non-synaesthete. The current study aims to 

provide this data. 
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In our study, a large population of children aged 6-7 years were assessed for 

grapheme-colour synaesthesia (one of the most common variants; Simner et al., 2006), 

based on the assumption that synaesthetes’ grapheme-colour associations will be more 

consistent than those of their peers (e.g., Dixon et al., 2000; Rich et al., 2005; Simner 

and Ward, 2006; Simner et al., 2006; Smilek, Moffatt, et al.; 2002; Smilek, Dixon, et 

al., 2002; Ward, and Simner, 2003;  2005; Yaro and Ward, 2007). Synaesthetes were 

identified, conservatively, as those whose grapheme-colour associations were 

significantly more consistent in a surprise retest over 12 months compared to their 

peers’ over just 10 seconds, and our classifications were additionally supported by 

quantitative questionnaire data and developmental patterns over time. Questionnaires 

assessed the automaticity, consistency and certainty of our synaesthetes’ colour 

sensations, and such questions have been shown to distinguish between synaesthetes 

and non-synaesthetes in adult studies (Simner et al., 2006). We also assessed the 

development of grapheme-colour synaesthesia over 12 months (from age 6/7 to 7/8 

years) to determine how synaesthetic associations (e.g., a = red; b = purple) emerge 

over time. We compared this development to advances in cognitive memory 

performance for an equivalent task in a group of non-synaesthetic children, with both 

average and superior memories for comparable stimuli.  

 

Methods  

Six hundred and fifteen children (male = 299; female = 316) aged 6-7 years (6 = 338; 7 

= 277) were sampled from 21 primary schools in the UK (cities of Edinburgh, Scotland, 

and Bath, England). All children spoke fluent English. An additional six children were 
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tested but subsequently excluded: one reported himself to be colour blind, one withdrew 

consent midway through testing, and four failed to follow task instructions. All children 

completed a timed computerised test in Session 1, and a subset were retested 12 months 

later (Session 2). Children were tested individually in both sessions. 

 In Session 1, participants performed a computerised test in which they 

individually viewed each of 36 randomly ordered graphemes (a-z; 0-9) on screen, along 

with an electronic palette of 13 colours, whose arrangement was randomised on every 

trial. Our 13 colours (black, dark blue, brown, dark green, grey, pink, purple, orange, 

red, white, light blue, light green, and yellow) represent the irreducible colour terms of 

Berlin and Kay (1969), plus light/dark variants of blue and green1. Participants were 

instructed to select (with a computer mouse) what they considered to be the ‘best’ 

colour for each grapheme. They were told there was no right or wrong answer but that 

they should avoid choosing the same colour repeatedly. Approximately 10 seconds after 

completing all 36 graphemes, participants performed an immediate surprise retest, in 

which the order of graphemes and colours was re-randomised. (Specifically, our 

program presented all 36 graphemes in a random order, then paused for 10 seconds, 

then began again, showing the same, but re-randomised, graphemes. During the pause, 

children were told that they should wait a few moments and then ‘carry on as before’.) 

We calculated each child’s immediate consistency in Session 1 as the number of 

consistent colour choices for letters (out of 26) and numerals (out of 10) across this 

approximately 10 second retest period. Participants performing significantly higher than 

the mean (whom we classed as ‘potential synaesthetes’) repeated the procedure in a 

surprise session one year later. Also tested in Session 2 were 40 ‘average-memory 

controls’, orthogonally crossed for sex and age (6 vs. 7 years) who were classified as 
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‘average-memory’ in that they had achieved the average score for their age in Session 1 

(across letters and numerals combined). Our second test session provided two scores: 

immediate consistency in Session 2 (i.e., the number of consistent colours across 10 

seconds in Session 2) and delayed consistency [i.e., the number of consistent colours 

across 12 months (see Results)]. Synaesthetes were identified as those ‘potential 

synaesthetes’ who continued to out-perform controls in immediate consistency in 

Session 2, as well as being significantly more consistent over 12 months (in delayed 

consistency) than their peer-group had been over 10 seconds (in immediate consistency 

in Session 1). Hence, we ‘stacked the deck’ against our synaesthetes by holding them to 

a considerably higher standard than their peers in terms of the time across which their 

high consistency must be achieved (12 months vs. 10 seconds). ‘Potential synaesthetes’ 

who failed these criteria were classed as ‘high-memory’ non-synaesthetes, in that their 

superior scores in immediate consistency in Session 1 likely arose simply from a 

superior memory span for that task. 

A three-part verbal questionnaire was submitted to synaesthetes and high 

memory participants at the end of Session 2. Participants were asked about the 

automaticity, consistency and certainty of their colour experiences, and these questions 

have been shown to distinguish between synaesthetes and non-synaesthetes in adult 

studies (Simner et al., 2006). In the verbal questionnaire, children gave one of six 

responses (never, almost never, not very often, sometimes, often, always) to each of the 

three questions below:  

1. When playing the game, did you know for certain what the colours should be? 



11 

2. When you see or think about letters or numbers, do you automatically have a 

colour for them? 

3. Do your colours for letters and numbers stay the same? 

These questions represent a modification of an earlier six-part adult 

questionnaire (Simner et al., 2006) which we minimally reworded for our child 

participants (e.g., referring to the experiment as ‘the game’) and from which we 

excluded three questions that would have required a linguistic competence beyond the 

abilities of our child participants (e.g., questions involving double negatives: ‘There 

were never not enough colours to choose from’). Children’s responses (never, almost 

never, not very often, sometimes, often, always) were scored 0-5.  

 

Results 

Prevalence 

Children made grapheme-colour selections twice in each of our two test sessions and we 

label these: Selections 1a/1b; Selections 2a/2b. Our results are based on three different 

analyses of consistency: immediate consistency in Session 1 (Selections 1a vs. 1b); 

immediate consistency in Session 2 (Selections 2a vs. 2b); and delayed consistency 

(Selections 1a vs. 2a; or Selections 1b vs. 2b). Note that because children gave four 

colours in total for each grapheme, delayed consistency could, in theory, be calculated 

by any of four different comparisons (Selections 1a vs. 2a; 1b vs. 2b; 1a vs. 2b; 1b vs. 
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2a). We conservatively discounted matches across first and second presentations (e.g., 

Selections 1a vs. 2b), and conservatively disallowed high consistency to be achieved by 

a mix of consistency from within first presentations and within second presentations 

(e.g., four consistently coloured graphemes in Selections 1a vs. 2a, and three 

consistently coloured graphemes in Selections 1b vs. 2b does not equal a score of 

seven). For further conservativeness, we discounted any matches across light and dark 

versions of the same colour (e.g., ‘light green’ vs. ‘dark green’ was considered a 

mismatch). 

 We first assessed immediate consistency in Session 1 for letters (/26) and for 

numerals (/10), for all 615 children. Girls and boys performed equivalently to each 

other, both for letters [respective means = 2.6 and 2.4; SDs = 2.1 and 1.9; F(1,611) = 

2.3, p > .05] and numerals [respective means = 1.0 and .9; SDs = 1.0 and .9; F(1,611) = 

1.2, p > .05], and there was no interaction with age [F(1,611) < 1 for letters; F(1,611) < 

1 for numerals]. However, 7 year olds out-performed 6 year olds [for both letters: 

respective means = 2.8 and 2.3; SDs = 2.3 and 1.7; (F(1,611) = 12.5, p < .001) and 

numerals: respective means = 1.1 and .9; SDs = 1.1 and .9; F(1,611) = 4.2, p < .05)]. 

Hence, our data was analysed separately for children age 6 versus 7 years, but was 

collapsed across the sexes. The selection criterion for our ‘average-memory controls’ 

was a consistency of 3 or 4 out of 36 graphemes in immediate consistency in Session 1, 

since the population mean was 3.2/36 and 3.9/36 for children age 6 and 7 years 

respectively. There were 47 ‘potential synaesthetes’, whose colours were significantly 

more consistent (in Z scores at p < .05) than the mean for their entire age-group, in their 

colours for letters (Ss = 20), for numerals (Ss = 21) or for both (Ss = 6). In consistency 
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for all 36 graphemes, the mean score for the entire population (n=615) was 9.7% 

(3.5/36) while the mean for ‘potential synaesthetes’ was 24.2% (8.7/36). 

 Of these 47 ‘potential synaesthetes’, nine continued to score significantly highly 

(in Z scores at p < .05) in their immediate consistency in Session 2 compared to age-

matched controls for letters (control means: age 6 = 3.4; age 7 = 3.0) and/or numerals 

(control means: age 6 = 1.5; age 7 = 1.0), as well as being significantly more consistent 

in delayed consistency over 12 months compared to age-matched peers over 10 seconds 

(immediate consistency in Session 1). For added conservativeness, we removed one 

participant (CB) who may have used a verbal learning strategy not reminiscent of 

genuine synaesthetic reports. Forty-three percent of her consistent colour choices arose 

from pairing each colour term to its initial grapheme or phoneme (e.g., r = red), 

compared to only 16.5% (SD = 11.1) for the remaining 8 participants in this group (Z = 

2.4, p < .01) and this verbal strategy is known to be employed by non-synaesthetes more 

than synaesthetes (Simner et al., 2006). Moreover, CB was the slowest participant in 

both test sessions, and she took four times longer to respond than the population mean 

in Session 1 (CB’s mean RT = 15.0 sec; vs. population mean = 3.5 sec; SD 1.8; Z = 6.4, 

p < .001) and almost three times longer in Session 2 (CB’s mean RT = 10.7 sec; vs. 

population mean = 3.8 sec; SD 1.7; Z = 4.1, p < .001). Both factors indicate a strategy 

or rehearsal of a type not found for genuine synaesthetes, and not found in our 

remaining synaesthete participants (see below). Hence we classed 8 children as 

synaesthetes and the remaining 39 as high-memory non-synaesthetes. Our n=8 group 

comprised three synaesthetes for letters only (females age 6 and 7; male age 6), two for 

numerals only (females age 6) and three for both (female age 6; males age 6 and 7). 
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Figure 1 shows the colours chosen by example synaesthete JC across 12 months, and by 

an average age-matched control over 10 seconds. 

-------------------------- 

Insert Figure 1 here 

-------------------------- 

 Across 12 months, synaesthetes were approximately four times more consistent 

(42.0%) in their mean of letters and numerals combined than their peers had been over 

only 10 seconds (9.7%). For synaesthetes (n = 8), the mean score in delayed consistency 

over 12 months was 11.3/26 for (n = 6) letter-colour synaesthetes (vs. 2.5/26 consistent 

for all 615 children over 10 seconds) and 3.8/10 for (n = 5) digit-colour synaesthetes 

(vs. 1.0/10 for all 615 children over 10 seconds). The superior performance of 

synaesthetes was all the more remarkable given that they did not incur a time penalty in 

the retest compared to high-memory children (whom they significantly outperformed; 

mean delayed consistencies 42.0% and 14.2% respectively). Mean RTs in Session 2 

were 4.8 sec for synaesthetes and 4.2 sec for high-memory participants (Bonferroni test 

p> .05). A three-way group difference emerged, however [F(2,84) = 329.9, p < .05], 

because average-memory controls took significantly less time to respond (mean RT = 

3.3 sec) than high-memory non-synaesthetes (Bonferroni test p = .05) and were also 

near-significantly faster than synaesthetes (Bonferroni test p < .06). This is reflected in 

the mean delayed consistency of average-memory controls, which was only 10.4%. 

 Questionnaire scores (out of 5) from synaesthetes and high-memory non-

synaesthetes also lend supports for our classifications. These indicate that synaesthetes’ 

colours were selected with greater certainty (respective means: 2.8 and 2.5), are 
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generated more automatically (respective means: 3.1 and 1.6) and are felt to be more 

consistent over time (respective means: 3.0 and 1.3), and similar findings have been 

shown to distinguish between synaesthetes and non-synaesthetes in adult studies 

(Simner et al., 2006). A mixed ANOVA, crossing group (synaesthetes vs. high-memory 

participants) and question (questions 1-3) shows these differences to be significant: 

there was a main effect of group [F(1,45) = 5.3, p < .05], no main effect of question 

[F(2, 90) > 1] and no interaction [F(2, 90) =1.8, p> .05]. 

Given the size and female/male composition of our sample population, we find 

the prevalence of synaesthesia in children ages 6-7 years to be 1.3%, with a female: 

male ratio of 1.6:1. Our small sample size of synaesthetes means the female skew 

cannot be verified statistically, although our trend fits with two of three adult 

investigations that also established prevalence via consistency in non-self-referred 

samples [i.e., 1.1:1, Simner et al., 2006; 1.7:1, Ward and Simner, 2005; but cf 0.9:1, 

Simner et al., 2006].   

 

Development 

We examined the number of new consistent associations acquired by grapheme-colour 

synaesthetes across 12 months, and compared this with improvements found from 

normal development in children with average and superior memories for comparable 

stimuli. Synaesthetes are assumed to have acquired a synaesthetic association (e.g., a = 

red) if this association is stable enough to remain consistent in an immediate retest. 

Hence, by comparing a synaesthete’s immediate retest consistency in Session 1 
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(Selection 1a vs. 1b) with her immediate retest consistency in Session 2 (Selection 2a 

vs. 2b), we are able to determine how many stable associations were acquired over the 

12 months that elapsed between the two sessions. Figure 2 shows (n = 8) synaesthetes’ 

immediate consistencies for 36 graphemes in each of the two test sessions, as well as the 

performance of high-memory non-synaesthetes (n = 39), and average-memory non-

synaesthetes (n = 40).  

-------------------------- 

Insert Figure 2 here 

-------------------------- 

Statistical tests allow us to compare the developmental trajectories of each group. First, 

we examined the development of consistent colours over time, by comparing mean 

scores for immediate consistency in Session 1 with those in Session 2, as shown in 

Figure 2. A 2x3 mixed design ANOVA, crossing group (synaesthetes, high-memory 

group, average memory group) and test session (Session 1, Session 2) showed main 

effects of group [F(2,84) = 56.0, p < .001] and session [F (1,84) = 12.9, p < .01] as well 

as an interaction [F(2,84) = 28.9, p < .001]. Planned comparisons (with the Bonferroni 

test) showed that synaesthetes’ immediate consistency improved across the two test 

sessions (from 29% to 47%) at a sharper rate than the average memory group (who 

improved from 9% to 12%; p < .001). Repeated measure t-tests show that while both 

synaesthetes and average-memory controls improved their immediate consistency 

across test sessions [t(7) = 4.1, p < .01; t(39) = 2.6, p < .02], the high-memory group 

actually fell slightly [from approximately 23% to 16%; t(38) = 4.3, p < .001]. Planned 

comparisons with the Bonferroni test showed that the numerical advantage for high-

memory participants was non-significantly different (p> .05) to average-memory 
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participants in Session 2. Finally, a comparison of synaesthetes’ and high memory 

participants’ immediate consistencies in Session 1 showed that -- although we were 

unaware of this at the time -- synaesthetes were already significantly out-performing the 

high memory group in our first test session (see Figure 2; 29% vs 23% respectively; 

Bonferroni test p < .05). Both these groups were necessarily more consistent than 

average-memory controls, since this reflects the criterion on which synaesthetes and 

high-memory participants were originally selected (i.e., that they were superior 

performers in Session 1).  

In summary, synaesthetes were already significantly outperforming both their 

average- and high-memory peers in Session 1, and they improved at a significantly 

sharper rate than either group. Both synaesthetes and average-memory controls 

significantly improved their immediate consistency across the test sessions, while the 

high-memory group fell slightly: in Session 2 they were numerically, but not 

significantly different from the average-memory group. We assume therefore that a 

subset of children achieved high-memory status in Session 1 by using a mnemonic 

strategy they failed to apply in Session 2.  

 

Conclusions 

Our study represents the first assessment of synaesthesia in a randomly sampled 

child population, illustrating the prevalence of grapheme-colour synaesthesia and its 

development in comparison to age-matched non-synaesthetes. A perfect (or near-

perfect) consistency of synaesthetic mappings over time has been judged the 
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‘behavioural hallmark’ of adult synaesthesia (Rich et al., 2005), but our data show that 

this is a trait that develops over time. In our study, young child synaesthetes were 

required to outperform their peers in what would be a hugely challenging task for non-

synaesthetes (i.e., surprise recall over 12 months, compared to 10-seconds from peers) 

and we also sought corroborating evidence of synaesthesia from quantitative 

questionnaire scores, and diverging developmental patterns over time. This allowed us 

to identify child synaesthetes, even where the adult hallmark of 100% consistency was 

not yet present. 

Our prevalence of grapheme-colour synaesthesia at 1.3% implicates over 

170,000 children age 0-17 in the UK alone, and over 930,000 in the USA and suggests 

that the average primary school in England and Scotland (n = 168 pupils) contains 2.2 

grapheme-colour synaesthetes at any time, while the average-sized US primary school 

(n = 396 pupils) contains 5.1 (National Statistics: All people Part 1; General Register 

Office for Scotland: Table 1; Northern Ireland Statistics and Research Agency: Table 

S001; US Census Bureau: Table DP-1; Schools and Pupils in England: January 2006; 

Pupils in Scotland 2006; IES National Center for Education Statistics. Table 5). This is 

an estimate for grapheme-colour synaesthesia only, while the combined figure for all 

variants of the condition is likely to be much higher (see Day, 2005 for the 50+ variants 

so far identified). Moreover, our prevalence for grapheme-colour synaesthesia is a 

necessary underestimate, because our methodology relies on the assumption that 

synaesthetes are consistent in their grapheme-colours, while our study has shown that 

this consistency is not yet fully achieved in young children. Adult synaesthetic 

associations are consistent at approximately 90-100% (e.g., Dixon et al., 2000; Rich et 

al., 2005; Simner and Ward, 2006; Simner et al., 2006; Smilek, Moffatt, et al.; 2002; 
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Smilek, Dixon, et al., 2002; Yaro and Ward, 2007) and adult prevalence of grapheme-

colour synaesthesia has been established at 2% from similar methodology (Simner et 

al., 2006). Hence, our childhood prevalence figure should be taken as a reliable lower 

cut-off, and indeed, there is reason to believe that synaesthesia in younger age groups 

may in fact be more common than in adults (Flournoy, 1893; Werner, 1957). In 

anecdotal accounts, adults have reported synaesthesia in childhood that died out, while 

the reverse pattern (i.e., developmental synaesthesia spontaneously appearing in 

adulthood) is not reported. This same pattern is hinted at by the current study, where our 

ratio of synaesthetes age 6 versus 7 years was 2.5:1, although this cannot be verified 

statistically from our small sample size.  

Most adult synaesthetes report that they have had synaesthesia for as long as 

they can remember, but our study demonstrates that grapheme-colour synaesthesia 

emerges along a developmental path. Our research has shown this development in 

action, since synaesthetes acquired on average 6.4 new grapheme-colour associations 

during the course of our 12-month longitudinal testing. Synaesthetes had, on average, 

10.5 stable grapheme-colour associations age 6/7 years, but 16.9 stable associations in 

the same test age 7/8 years. The trajectory of this acquisition was more rapid than 

expected from memory developments in non-synaesthetic children for comparable 

stimuli, and these gains suggest that grapheme-colour synaesthesia may rely on, or 

endow, exceptional mechanisms in this domain, and that these may be implicated in 

other assets associated with the condition. It is not known whether the developmental 

pattern shown by our synaesthetes (i.e., 6.4 new coloured graphemes per year) 

represents a linear acquisition, or whether greater gains are made in later years. A linear 

acquisition would predict that synaesthetes will have acquired all 36 grapheme-colour 
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associations only by approximately 10/11 years, and our lab is currently tracking the 

development of this group to follow their transition into adult-like consistency. This will 

also allow us to establish independent measures in abilities for synaesthetes and 

controls, since the current study classified non-synaesthetes as ‘high’ or ‘average 

memory’ only with respect to how they performed in a task of matching colours to 

graphemes. Such future research will be important for determining exactly what 

implications synaesthesia might have for children’s general cognitive performance in 

schools. Our ongoing research is also examining the order with which grapheme-colour 

associations are acquired: one intriguing recent study of non-synaesthetes suggests that 

colours may first be assigned to letters that have naturally occurring shapes (e.g., o and 

x; Spector and Maurer, 2008) while studies on adult synaesthetes suggest that early 

mappings may also favour graphemes that are frequently occurring within language 

(Simner et al., 2005).  

Our data show that grapheme-colour synaesthetes were already significantly 

outperforming their ‘high-memory’ peers in Session 1, suggesting that the roots of the 

synaesthetic experience are already emerging by age 6 years. This coincides with 

developmental stages that are relatively recent to the acquisition of alphabet and number 

sequences. The average 3-year old child can recite sequenced numbers to at least 6 

(Wynn, 1990; 1992), although meaningful understanding lags considerably behind this 

rote learning. By the end of the fourth year, most children have acquired the meanings 

of the smallest counting words, and learn to map higher numbers onto numerocities over 

the following year (Wynn, 1990; 1992). In alphabet acquisition, normally developing 

children know an average of six letters by age 3;9 years (Gallagher et al., 2000) and it 

takes until 5;7 years before the average middle class English-speaking child can name 
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18 or 19 of the 26 letter sequences from their uppercase and lowercase forms (Treiman 

et al., 1998). Hence the youngest children in our study (in the 6-year group) will have 

acquired the complete alphabetic sequence only very recent to their testing in Session 1. 

Nonetheless, a subset of those units were already bound to consistent cross-modal 

synaesthetic sensations for our child synaesthetes, and it is possible that some 

graphemes are accompanied by a concurrent mapping of a colour at the very initial 

stages. For other graphemes, colour may be stimulated only after some delay (perhaps 

once familiarity with the grapheme is more developed). The fact that our synaesthetes 

aged 8 years did not have a full compliment of consistent synaesthetic colours, even 

though their alphabet would have been known in full, suggests some temporal gap 

between a complete knowledge of inducers, and the consistent neurological mapping of 

inducers to their sensory cross-modal concurrents.  

Since grapheme-colour synaesthesia is intimately tied to knowledge of culturally 

acquired symbols, it could not have existed as such in infancy (but may have been 

present in other forms; see Duffy 2001). Although neuroimaging data suggests that 

perisylvian language areas are already well-organized for the perception of language 

even in pre-verbal infants (Dehaene-Lambertz, Hertz-Pannier, and Dubois, 2006; 

Dehaene-Lambertz, Hertz-Pannier, Dubois et al., 2006), it is only later, once specific 

linguistic items have been acquired (i.e., letters and numerals), that the types of 

representations required to drive grapheme-colour synaesthesia can be established. A 

small number of imaging studies have examined the development of reading skills in 

young children, and suggest a reorganization of the ventral visual areas in response to 

the pressures of learning to read (see McCandliss et al., 2003). An area of the left 

fusiform gyrus (the VWFA) becomes particularly specialised for reading functions (for 
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reviews see Dehaene and Cohen, 2007; McCandliss et al., 2003) across a range of 

language backgrounds (e.g., Bolger et al., 2005) and this specialisation appears to arise 

from developments in reading proficiency, rather than maturation per se (Shaywitz et 

al., 2002). Since the VWFA is adjacent to colour selective regions implicated in 

synaesthetic colour perception (Hubbard et al., 2005; Nunn et al., 2002; Rouw and 

Scholte, 2007), it is the development of the VWFA that would make a plausible 

candidate for observation during synaesthesia’s ‘growth’. Interestingly, recent work 

(Balsamo, Xu, & Gaillard, 2006) indicates that this specialisation for reading in the 

VWFA may be pre-dated by an early sensitivity to auditory input. If this pre-existing 

responsiveness to auditory language plays a role in the specialisaton of the VWFA for 

reading in later life, there may be some contiguity in the development of coloured 

graphemes from coloured speech. That literacy acquisition is parasitic on the system for 

spoken language has been seen in other regions, also (see van Atteveldt, et al., 2004 for 

evidence of the integration of speech sounds and letters in the superior temporal gyrus, 

for example) but connections between spoken representations and letter forms are 

particularly linked to synaptic growth in the VWFA. Such regions may therefore 

provide interesting areas of study, although any direct observation of synaesthesia’s 

neural development would require the difficult task of very early identification of 

randomly sampled child synaesthetes, as well as improved imaging techniques in early 

childhood (Dehaene and Cohen, 2007). 

In summary, we have presented a study of developmental synaesthesia based on a 

randomly sampled population of child grapheme-colour synaesthetes and age-matched 

controls assessed in longitudinal testing. We have provided the first direct evidence that 

this variant of synaesthesia evolves over time following environmental exposure to 
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learned linguistic units, notwithstanding its likely genetic roots. We have shown, too, 

that this synaesthesia develops along an exceptional trajectory for grapheme-colour 

pairings, and that adult states showing consistent inducer-concurrent mappings are 

achieved only through stages of incremental acquisition. 
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Figure 1. Colour choices in the first presentation of numerals 0-9 in Session 1 and in 

Session 2, for synaesthete JC (over 12 months) and age-matched control EY (over 10 

seconds). 

Figure 2. Mean number of consistent colours selected by synaesthetes, high-memory 

non-synaesthetes, and average-memory non-synaesthetes, in the immediate retest of 36 

graphemes in Session 1 and in Session 2. 
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1 Although synaesthetes’ colours are highly specific (e.g., Ward et al., 2005) and could be closely 
approximated with sufficient time and effort using an extensive palette comprising many thousands of 
colours (as we have done elsewhere; e.g. Simner et al., 2006), prior studies have shown that a 
presentation of our condensed palette allows for a successful assessment of synaesthesia that is practical 
for large numbers of participants, or for those with limited attention (Day, 2005; Simner et al., 2006). 
When faced with the core palette, synaesthetes are systematic in their choices, while non-synaesthetes are 
significantly more random (Simner et al., 2006). 


