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Abstract 

An aligned sample of HD(v=1, J=2, MJ=0) molecules is prepared under collision-free conditions using 

the S(0) stimulated Raman pumping transition. Subsequent coupling to the spins of the deuteron ID and 

the proton IH causes the initial degree of alignment to oscillate and decrease as monitored over the time 

range from 0 to13 µs via the O(2) line of the [2+1] REMPI E,F 
1
Σg

+
 – X 

1
Σg

+
 (0,1) band. The time 

dependence of the rotational alignment is also calculated using both a hierarchical coupling scheme in 

which the rotational angular momentum J is regarded first to couple to ID, and then the resultant Fi to 

couple to IH, to form the total angular momentum F and a non-hierarchical coupling scheme in which the 

HD energy level structure is not assumed to be diagonal in the |IH(JID)FiFMF> basis set. The experimental 

data is in good agreement with the non-hierarchical calculation but not with the hierarchical calculation, 

as expected for this system. Additionally, we calculate the time dependence of the H and D nuclear spin 

polarizations.  

 

Introduction 

Many experimental techniques have been developed to prepare oriented and aligned molecules, either for 

their use as reagents in scattering experiments, or for studying the behavior of such species in isolation. 

Two of the most common and successful methods are alignment by strong electric fields
1,2,3,4

 and optical 

pumping with polarized light.
5,6-14

 While the former is limited to molecules with a dipole moment, optical 

pumping can be applied to a much wider range of species and can be used to align or orient those with 

small or no dipole moments. Optical transitions induced with linearly polarized light can serve to align 

molecules while oriented samples can be produced with circularly polarized light.  

The broad applicability of the pumping technique has allowed for the preparation of several aligned 

reagents in this manner by various groups. Production of aligned HF for the study of stereodynamical 

effects in the Sr + HF reaction has been reported by Karny et al.
6
 using one-photon absorption. The time 

dependence of HCl(v=1, J) alignment, prepared with IR excitation, was studied by Orr-Ewing et al.
7
 The 

photolysis of aligned and oriented HCl (v=2, J) was recently used by Rakitzis and coworkers
8,9

 to prepare 

spin-polarized H and Cl atoms by means of hyperfine coupling. Polarization spectroscopy was applied by 

McKendrick and co-workers
10,11

 to measure the time evolution of OH orientation and alignment 

following inelastic collisions with Ar and He. The two-photon stimulated Raman pumping (SRP) process 

has also become a popular method for polarizing samples of molecules having no dipole moments. Sitz 

and Farrow
12

 studied the time dependence of an aligned sample of room-temperature N2(v=1, J=0-14), as 

prepared by SRP. Kandel et al.
13

 prepared in this manner a sample of aligned HD (v=1, J=2) for 

subsequent use as a target in the Cl + HD hydrogen abstraction reaction. Recently, our group has reported 

the first preparation of an oriented sample of H2(v=1, J=2, MJ=2) using this technique as well.
14
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Molecules aligned (or oriented) by optical pumping methods are subject to subsequent degradation of the 

initial alignment by the coupling of the rotational angular momentum J to other angular momenta, called 

“hidden” angular momenta, which are not affected by the electric dipole allowed transition. In the case of 

HD the hidden angular momenta are the nuclear spin of the H atom, IH = 1/2 and the nuclear spin of the D 

atom ID = 1. As the molecule rotates, there is a current loop from all the negatively charged electrons in 

the molecule and all the positively charged nuclei, and these two current loops are of different 

magnitudes, causing the rotation of the molecule to generate a magnetic field. The hyperfine coupling 

arises from the interaction of the nuclear spins with the magnetic field induced by the rotational motion of 

the molecule. This coupling serves to split the rotational levels into hyperfine levels. In addition nuclei 

with a nuclear spin greater than unity possess a quadrupole moment, which further splits and complicates 

the hyperfine energy level pattern. If the laser excitation of a molecule to a particular rotational sublevel 

|JMJ> occurs without hyperfine resolution (this is true if Δt « 1/Δv, where Δt is the duration of the laser 

pulse, and Δv is the magnitude of the hyperfine splitting), a coherent superposition of hyperfine sublevels 

associated with |JMJ> results. The result of the subsequent time evolution is oscillatory population 

transfer between the different MJ-sublevels, and this beating is referred to as hyperfine depolarization, as 

it serves to reduce the initial degree of polarization of the J vector distribution, although at sufficiently 

long times the degree of polarization will be restored (recurrence phenomenon). This effect has been 

previously studied in detail both theoretically and experimentally for many systems.
2,15,16,17,18

 We also 

note that an analogous depolarization effect can be observed in molecules with net non-zero electronic 

spin S, but we neglect this effect here because HD is in a singlet state (S=0).  

The hyperfine depolarization can also be understood classically using a vector model in which J couples 

to one or more hidden angular momenta that are unaffected by the electric dipole allowed transition to 

form the total angular momentum F, about which J precesses. To simplify this discussion, let us just 

consider the case where only one nucleus has the nuclear spin I. Then the coupling results in the time-

dependent polarization transfer between J and I causing the prepared alignment of the rotation to vary in 

time. As expected, the degradation of the initial polarization is significant when J and I are comparable in 

magnitude, whereas the depolarization effect becomes less important when the magnitude of J is much 

larger than that of I. When J and I are equal in magnitude, complete depolarization of J and complete 

polarization of I can be observed.  

Thus, this mechanism can be used to transfer polarization from molecular rotation to produce large 

nuclear polarizations in molecules. This transfer was demonstrated directly by Sofikitis et al.
8
 by the 

production of highly polarized Cl atoms from the photolysis of state prepared HCl(v=1, J=1, MJ=1) 

molecules, and followed over a timescale of about 200 ns. 

Here, we report on the preparation of aligned HD(v=1, J=2, MJ=0) under collision-free conditions by SRP 

and the subsequent time dependence of the alignment over the range from 0 to 13 µs, as probed by [2+1] 
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REMPI. The theory necessary to understand and analyze the measurements is presented in the following 

section. The time dependences of both the rotational polarization and the polarization of the nuclei are 

calculated and the former is compared to the experimental results.  

We demonstrate the ability to observe the polarization of the molecular rotation out to about 13 µs, which 

is more than a factor of 10 longer than previous measurements using this pump-probe laser technique. 

Our work may be regarded as a descendent of Ramsey’s original technique for precisely measuring 

magnetic moments in atomic or molecular beams by applying two separated oscillating electromagnetic 

fields that excite transitions between ground-state sublevels in a magnetic field.
19

 It might be asked how 

well can hyperfine structure be measured. High resolution is usually achieved by increasing the accuracy 

and precision to which the frequency of a molecular transition is determined. But another approach to 

high resolution exists, namely, increasing the time of a measurement. Recently, a beam of Stark-

decelerated OH molecules was slowed to a speed of 200 m s
-1

 allowing interaction with a microwave 

field for up to a millisecond, resulting in the measurement of the ground-state -doublet splitting with an 

uncertainty of tens of Hertz or less.
20

 It has been suggested that even longer interaction times approaching 

a second will be possible with “molecular fountains” in which molecules that are decelerated to a few 

meters per second prior to launching, fly upwards before falling back under gravity.
21

 In the present 

experiment, the observation time is limited by the construction of our experiment; simple modifications 

would allow significantly longer observation times, so that polarization transfer can be observed in other 

molecular systems for which the hyperfine coupling is still weaker. Polarization transfer in small 

molecules can be used to enhance gas-phase NMR spectra by orders of magnitude,
22

 allowing the 

observation of spectra at low enough pressures that intramolecular effects are negligible. The present 

study should be regarded primarily as a proof of principle of what could be achieved.  

 

Theory 

The spatial distribution of angular momenta J of an atomic or molecular ensemble may be described by 

the (2J+1)
2
 density matrix elements    

   
, or by the (2J+1)

2
 multipole moments   

( )
( ), where k ≤ 2J. 

The two descriptions are equivalent and related by the following expressions:
23
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where the c(k) are normalization constants: c(0) = 1, c(1) = 1, c(2) = 6
1/2

, c(3) = (5/2)
1/2

, c(4) = (35/8)
1/2

, 

etc. When the MJ-sublevel populations, defined with respect to a laboratory axis, are not all equal, the 
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ensemble is said to be polarized. Consider such a sample, which for example, has been prepared by 

pulsed-laser excitation with linearly or circularly polarized light. We assume that initial spatial 

distribution of nuclear spins is random, and that it is unaltered by the optical excitation process. The 

subsequent coupling of two nuclear spins to the rotational angular momentum J, leads to a time 

dependence of a molecule’s rotational polarization, and thus each moment   
( )

(     ), becomes 

multiplied by a depolarization factor G
(k)

(J,t) 

 

  
( )(   )    

( )(     )   ( )(   )      (3) 

 

The depolarization factors have been derived previously by Altkorn, Greene, and Zare
15

 for both the 

cases where a hierarchical coupling scheme does and does not apply. These are expressed, respectively, 

as  
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(5) 

 

Here F is the quantum number associated with the total angular momentum of the system, and Fi is an 

intermediate quantum number resulting from the coupling Fi = ID+J (see Fig. 1 for an illustration of the 
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coupling scheme). Fi is a good quantum number in the limit of hierarchical coupling so that the |IH(IDJ)Fi 

FMF> basis is used in this case to calculate the hyperfine energy splittings. Typically this coupling 

scheme is valid when the coupling of one nuclear spin to the rotation is much stronger than that of the 

other, so that polarization transfer from the rotation to that nucleus is much faster than to the other. When 

hierarchical coupling cannot be used, the hyperfine Hamiltonian written in the |IH(IDJ)Fi F MF> basis 

must be diagonalized, which yields hyperfine energies that depend not on Fi but on α, a quantum number 

that results from general, non-hierarchical coupling. Finally, note that the eigenvectors of the 

Hamiltonian      
( )

 only appear in the non-hierarchical expression. This is because      
( )

→      
when 

hierarchical coupling applies and this substitution yields equation (4). The beating frequencies are thus 

determined by the energy differences between the hyperfine levels while their amplitudes depend on the 

magnitudes of ID, IH, and J.  

In addition, analogous expressions for the nucleus have been derived by Rubio-Lago et al.
24

 The time-

dependent polarization factors (non-hierarchical) are given by 
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and we relate the spatial distribution of each nuclear spin I1 and I2 at time t to the initial spatial 

distribution of the rotation J through the expression 

  
( )(   )   ( )(   )    

( )(     )            (8) 
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In the above,   ( ) and   ( ) are normalization constants that allow moments with differing values of I 

and J to be related, and are reciprocals of the   ( ) defined elsewhere.
25

 Again, the corresponding 

expressions when hierarchical coupling is valid can be obtained by letting the      
( )

→      
. 

Finally, we combine conservation of the projection of the total angular momentum  

〈  ( )〉  〈   ( )〉  〈   ( )〉  〈  (   )〉       (9) 

with expressions for each angular momentum projection term on the left-hand side 

〈  ( )〉  √ (   )  
( )

( )         (10) 

to obtain 

 ( )( )  √
  (    )

 (   )
 ( )(    )  √

  (    )

 (   )
 ( )(    )             (11) 

 

This condition allows us to check our calculated expressions for the rotational depolarization and nuclear 

polarization factors, which is illustrated in the Discussion section.  

 

Experimental  

Here we present only a concise summary of the experimental techniques used in this study and refer the 

reader to a preceding publication
14

 for a detailed description. A mixture of 10% HD (Cambridge Isotopes 

97% purity) in Ar was supersonically expanded into the extraction region of a Wiley-McLaren time-of-

flight (TOF) spectrometer, described in detail elsewhere,
26,27

 through a pulsed nozzle (General Valve) 

with a backing pressure of 500-1000 Torr. This produces almost exclusively HD(v=0) in low rotational 

levels. The HD(v=0, J=0) molecules in the expansion are subsequently excited to the HD(v=1, J=2, M=0) 

state via the S(0) SRP transition using linearly polarized light, producing an aligned sample. The pump 

and Stokes wavelengths necessary for SRP, 532 nm and 670.640 nm respectively, are produced using the 

second harmonic of an injection-seeded Nd
3+

:YAG laser (Continuum PL9020) and the output of a dye 

laser (Continuum ND6000, LDS698 dye), respectively. Upon entering the chamber both SRP beams are 

perpendicular to the TOF axis, and because these beams create the alignment of the molecules, we choose 

their polarization direction to define the Z axis of our laboratory frame. The excited-state HD molecules 

are state-specifically ionized after a variable pump-probe time delay by 2+1 REMPI via the O(2) line of 

the E,F 
1
Σg

+
 – X 

1
Σg

+
 (0,1) band using linearly polarized light at 209.572 nm. The UV light for the REMPI 

is generated by frequency tripling the output of a second Nd
3+

:YAG-pumped dye laser (Lambda Physik 
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LPD3000, DCM dye) using two BBO crystals in series. The linear polarization of the probe light was 

alternated on a shot-to-shot basis so that its electric field vector is either parallel or perpendicular to the 

laboratory Z axis. The HD
+
 ions were detected with the TOF spectrometer for pump-probe delays of 0-13 

µs producing probe polarization-dependent signals denoted by I|| and I. The experimental setup is shown 

in Fig. 2 and the SRP and REMPI scheme is shown in Fig. 3. 

 

Discussion 

In this section we evaluate the rotational depolarization factors G
(k)

 and nuclear polarization factors H
(k)

 

that describe the time-dependent behavior of the HD molecule following excitation to the HD(v=1, J=2, 

MJ=0) state. To do so, it is necessary to calculate the energies of the hyperfine levels, which is done by 

diagonalizing the hyperfine Hamiltonian for the HD molecule in the absence of external fields
28

 

                 
   

(    )(    )
[
 

 
(    )(    )  

 

 
(    )(    )   (   )     ]  

   

(    )(    )
[ (    )  

 

 
(    )    

   ]       (12) 

 

in the |IH(IDJ)FiFMF> basis. When a hierarchical coupling scheme is employed, it is assumed that the 

Hamiltonian is already diagonal in this basis. Here, CH and CD are the spin-rotational interaction 

constants whose values signify the strength of the magnetic field at the hydrogen and deuterium nuclei, 

respectively, arising from rotation of the molecule. The constants d1 and d2 are the nuclear spin-nuclear 

spin magnetic interaction constant and the quadrupole interaction constant. Note that a nuclear 

quadrupole term is only present for molecules which possess nuclei of spin I ≥ 1, and that IH = ½ and ID = 

1. The hyperfine constants have been measured by Ramsey and co-workers
28

 for HD(v=0, J=1) and they 

found CH = 85.600 kHz, CD = 13.122 kHz, d1 = 17.761 kHz, and d2 = -22.454 kHz. We use the ground-

state hyperfine constants in our calculation of the time dependence of the rotational and nuclear 

polarizations, i.e., we assume that the ground-state hyperfine constants are slowly varying functions of 

the vibrational level.  

Figure 4 displays the signal ratio I(0)/I(90) for the detection of HD(v=1, J=2, MJ=0) as well as the 

theoretical predictions for both non-hierarchical and hierarchical coupling schemes. The intensities for 

the signals may be expressed in terms of a multipole expansion
29

: 

    [      
( ) ( )( )  (    )      

( ) ( )( )  (    )]      (13)  

where the   
( )

describe the initial alignment of the system and the sk are the [2+1] REMPI sensitivity 

factors for the corresponding   
( )

. The Pk(cos) are k
th
 order Legendre polynomials, where θ is the angle 



Page 8 of 15 
 

between the laboratory frame Z axis and the polarization direction of the linearly polarized probe laser 

light. Note that detection using linearly polarized light is sensitive only to the even moments of the 

angular momentum distribution. 

 

From equation 13 we obtain 

     [      
( ) ( )( )  ( )      

( ) ( )( )  ( )    [      
( ) ( )( )      

( ) ( )( ) ]   

(14a) 

and 

     [      
( )

 ( )( )  ( )      
( )

 ( )( )  ( )    [  
 

 
    

( )
 ( )( )  

 

 
    

( )
 ( )( )] 

(14b) 

 

The   
( )

 depend only on the values of J and MJ of the prepared state, while the sk depend only on the 

initial and final values of J in the 2+1 REMPI step, and the polarization of the light. For the O(2) line of 

the E,F 
1
Σg

+
 – X 

1
Σg

+
 (0,1) [2+1] REMPI band using linearly polarized light and assuming 100% 

population in the MJ=0 sublevel,    = -10/7,    = 72/7,    
( )

 = 1 and   
( )

 = 1/4. We find that the 

ground-state hyperfine constants produce rotational depolarization factors which, when non-hierarchical 

coupling is used, show good agreement with the experimental data for HD (v=1, J=2). This result 

indicates that the HD(v=1) hyperfine constants are close enough in magnitude to those of the ground state 

that our experimental sensitivity does not allow us to observe the vibrational dependence. The poor 

agreement between the experimental data and the hierarchical calculation is expected because the 

hydrogen and deuterium coupling constants are similar in magnitude; a hierarchical coupling scheme 

describes the system well when one nucleus couples much more strongly to the molecular rotation than 

does the other.  

In Fig. 5 we display the   
( )

alignment moments for both the rotation and the deuterium nuclear spin over 

the time range from 0 to 20 µs following the initial alignment of the HD molecule. As the molecular 

rotation becomes depolarized, the deuterium nuclear spin becomes aligned. We find that the strongest 

deuterium alignment occurs near 3 µs with a value of   
( )

 = -0.271.  

The experiments we have described concern linearly polarized light, for which the rotational angular 

momenta can only be aligned. Briefly, we consider the excitation of HD with circularly polarized light 

for which the rotational angular momenta can also be oriented. In particular, the HD molecules can be 

prepared in the (v=1, J=2, MJ=2) state using circularly polarized light in SRP excitation step, in the same 
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manner
14

 as was previously reported for H2(v=1, J=2, MJ=2). We calculate the time dependence of the MJ 

sublevel expectation values for the rotation and nuclei using equation 10 and display the results in Figure 

6. The sum of the projections of the three angular momenta is constant and is equal to the initially 

prepared projection, <MJ> + <MH> + <MD> = 2. We see that the polarization of the H and D nuclei reach 

60% of their maximal values at times of about 2 and 4.5 µs, respectively, producing highly polarized H 

and D nuclei. 

We demonstrate the ability to monitor the degree of molecular rotational and nuclear polarization on a 

timescale of at least 13 s (and longer times should be feasible). The treatment we have presented above 

is quite general. It applies to other J,MJ levels as well as other molecules that have different hyperfine 

coupling constants.  
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Figures 

 

 

Figure 1. Illustration of (a) the three angular momenta of the hydrogen deuteride molecule and (b) vector 

model of the angular momentum coupling. 

 

 

Figure 2. Schematic diagram of experimental apparatus. Abbreviations are as follows: BBO = β-barium 

borate crystal; E = extractor grid; IG = (nude) ion gauge; MCP = microchannel plates; PEM = 

photoelastic modulator; PN = pulsed nozzle; R = repeller plate; RP = Rochon prism (linear polarizer). 
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Figure 3. SRP and REMPI schemes used to prepare and detect HD(v=1, J=2, MJ=0) from HD (v=0, J=0) 

using linearly polarized light. Purple and red arrows represent the electric field vector of the probe 

radiation parallel and perpendicular to the pump radiation (black arrows). 

 

 

Figure 4. Experimentally measured and calculated time evolution of the HD rotational polarization. The 

data are plotted as the ratio of the parallel to the perpendicular integrated ion signal I||/I⊥ as a function of 

SRP-REMPI time delay from 0 to13 µs. The error bars are calculated as 2σ from three measurements at 

each time delay. 
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Figure 5. The   
( )

 alignment parameter for the HD rotation and deuterium nuclear spin. Maximal 

alignment for ID occurs with a value of   
( )

 = -0.271 near approximately 3 µs following optical 

preparation of HD(v=1,J=2, MJ=0). 

 

 

Figure. Time dependence of <Mi> for the rotational and nuclear spin angular momenta along with their 

sum, following optical preparation of oriented HD in the (v=1,J=2, MJ=2) level. 
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