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Cellular/Molecular

Non-Nuclear WldS Determines Its Neuroprotective Efficacy
for Axons and Synapses In Vivo

Bogdan Beirowski,1 Elisabetta Babetto,1 Jon Gilley,1 Francesca Mazzola,2 Laura Conforti,1 Lucie Janeckova,1

Giulio Magni,2 Richard R. Ribchester,3 and Michael P. Coleman1

1Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, United Kingdom, 2Institute of Biochemical Biotechnologies, University
of Ancona, Via Ranieri, 60131 Ancona, Italy, and 3Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration
slow (Wld S) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the
hypothesis that Wld S acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of
weakening the phenotype as expected, extranuclear Wld S significantly enhanced structural and functional preservation of transected
distal axons and their synapses. In contrast to native Wld S mutants, distal axon stumps remained continuous and ultrastructurally intact
up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover,
we detect extranuclear Wld S for the first time in vivo, and higher axoplasmic levels in transgenic mice with Wld S redistribution. Cyto-
plasmic Wld S fractionated predominantly with mitochondria and microsomes. We conclude that Wld S can act in one or more non-
nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.

Key words: axon degeneration; Wallerian degeneration; neurodegeneration; slow Wallerian degeneration gene; neuroprotection; neuro-
muscular junction

Introduction
Axon degeneration occurs in many neurodegenerative diseases
and often precedes neuronal cell body death (Raff et al., 2002;
Coleman, 2005; Saxena and Caroni, 2007). Wallerian degenera-
tion, a classical experimental model for axon degeneration, is a
rapid sequence of events in distal axons after a period of separa-
tion from the cell body (Waller, 1850; Beirowski et al., 2005). It is
substantially delayed by the WldS gene in mice (Mack et al., 2001),
rats (Adalbert et al., 2005), and Drosophila (Hoopfer et al., 2006;
MacDonald et al., 2006). Wld S is an in-frame fusion protein aris-
ing from an 85-kb tandem triplication that does not alter expres-
sion of the two parent proteins (Coleman et al., 1998; Conforti et
al., 2000; Mack et al., 2001). It comprises the N-terminal 70 aa of
multiubiquitination factor Ube4b (N70-Ube4b), the complete
sequence of Nmnat1, a key enzyme of nicotinamide adenine
dinucleotide (NAD�) biosynthesis, and a short joining sequence
of 18 aa with no known function.

The WldS gene delays axon degeneration in mouse models of
several neurodegenerative disorders, suggesting a molecular sim-

ilarity between processes regulating Wallerian degeneration and
degeneration in some axonopathies (Coleman, 2005; Beirowski
et al., 2009). This further indicates the need to dissect the molec-
ular mechanisms of Wld S.

Previous studies addressing which Wld S domains are respon-
sible for neuroprotection illustrate the importance of in vivo ex-
periments. Whereas NAD� overproduction by heavily overex-
pressed Nmnat isoforms confers axon protection in neuronal
explant cultures and, to some extent, in Drosophila (Araki et al.,
2004; Wang et al., 2005; MacDonald et al., 2006; Sasaki et al.,
2006), overexpression of Nmnat1 in transgenic mice at levels
similar to Wld S provides no detectable axon protection (Conforti
et al., 2007). Thus, Wld S and NAD� overproduction by Nmnat1
are not interchangeable, and the full axoprotective effect in vivo
and in vitro requires more N-terminal sequences of Wld S.

A key question about the Wld S mechanism surrounds the
subcellular site of its action (Fainzilber and Twiss, 2006). In vivo
studies have consistently detected Wld S only in the nucleus
(Mack et al., 2001; Samsam et al., 2003; Sajadi et al., 2004; Wilbrey
et al., 2008), suggesting that Wld S confers its axonal effect indi-
rectly by putative nuclear mechanisms (Araki et al., 2004; Gilling-
water et al., 2006; Simonin et al., 2007a). However, the complete
absence of Wld S in other cellular compartments could not be
proven experimentally owing to detection limits and there are
precedents for proteins acting in a subcellular compartment
where they are barely detectable (Hamilton et al., 2001). Interest-
ingly, some indirect, in vitro evidence suggests bioenergetic or
other axonal roles for Wld S and its putative mediators (Wang et
al., 2005; Yang et al., 2007b) compatible with cytoplasmic and
axonal Wld S presence.
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To elucidate the subcellular locus of Wld S action in vivo, we
generated transgenic mouse lines with reduced nuclear targeting
and cytoplasmic redistribution of Wld S. These mice showed sur-
prisingly strong protection of axons and synapses suggesting cy-
toplasmic Wld S protected them more effectively for equivalent
expression levels. We also show Wld S exists at low concentrations
in extranuclear compartments, and higher concentrations in the
�NLS Wld S variant, consistent with a direct axonal role for Wld S.

Materials and Methods
In vitro/in vivo expression of Wld S variants
To reduce Wld S nuclear targeting, arginines 213 and 215 were mutated
to alanine using the Stratagene QuikChange Site-Directed Mutagenesis
Kit and the Wld S transgene construct (Mack et al., 2001) as template. The
two primers used were exactly reverse complementary, the forward
primer having the following sequence (R3A encoding mutations un-
derlined): 5�-GCACTGGAAAAGCCTGGGGCGAAGGCGAAGTGGG-
CTGATCAAAAG-3�.

The sequence contained in pBluescript CK� (Stratagene) was verified
and subcloned into pH�-Apr1 containing �-actin promoter (Mack et al.,
2001) or into pcDNA3 vector (Invitrogen). For in vitro expression of
variant Wld S EGFP fusion proteins, the �NLS R213A,R215A Wld S cDNA
was amplified by high-fidelity PCR from the above construct using
BamHI- and HindIII-tagged primers and subcloned in-frame to the
EGFP sequence into pEGFP-N1 vector (BD Bioscience).

For generation of �NLS Wld S transgenic mice, the �NLS R213AR215A

Wld S cDNA including �-actin promoter from above pH�-Apr1 vector
was linearized using EcoRI and NdeI restriction enzymes and pronuclear
injection of the fragment into an F1 C57BL/CBA strain was performed by
the in-house Gene Targeting Facility of the Babraham Institute. Eleven
founder mice for the �NLS Wld S strain and their transgene-positive
offspring were identified by Southern blotting of BamHI plus HindIII
double-digested genomic tail DNA hybridized with a 32P-labeled Wld S

cDNA probe and by PCR using appropriate primers. Founders with
medium to high copy number integrations were selected for further
study (to generate transgenic lines 1– 8) and crossed to homozygous
YFP-H mice (The Jackson Laboratory) to breed mice hemizygous for the
�NLS R213AR215A Wld S and YFP transgene. Subsequently, these mice
were intercrossed to obtain mice homozygous for the �NLS R213AR215A

Wld S and positive for the YFP transgene. Mice positive for the YFP
transgene were identified by Southern blotting using a 32P-labeled YFP
cDNA probe. Furthermore, we used double heterozygous native Wld S/
YFP-H mice, triple heterozygous tg-Wld S/Wld S/YFP-H mice, homozy-
gous natural Wld S mice, and homozygous Wld S transgenic rats from line
79 (Adalbert et al., 2005) for this study. Triple heterozygous tg-Wld S/
Wld S/YFP-H mice express levels of Wld S protein similar to those of
homozygous natural mutant Wld S mice and display a similarly retarded
time course of axon degeneration (Beirowski et al., 2005).

Cell culture
Culture and transfection of PC12 and HeLa cells using Lipofectamine
2000 (Invitrogen) was performed as described previously (Wilbrey et al.,
2008). Dissociated hippocampal and DRG neuron cultures were pre-
pared from embryonic day 14.5 (E14.5)–E16.5 mouse embryos and
transfected using Lipofectamine LTX with PLUS reagent (Invitrogen) as
described previously (Conforti et al., 2007; Wilbrey et al., 2008). Cells
were plated on 35 mm Petri dishes (�-Dish, ibidi) for subsequent label-
ing experiments and high-resolution confocal imaging. For mitochon-
drial colocalization studies, transfected neurons were treated with 40 nM

Mitotracker Red CMXRos (Invitrogen) for 30 min according to the man-
ufacturer’s instructions for live cell staining. Additionally, the pDsRed2-
Mito vector (Clontech, PT3633-5) was used for mitochondrial labeling.

For SCG explant cultures SCGs were dissected from 1- or 2-d-old
mouse pups using sterile technique. Explants were placed into L15 (Lei-
bovitz) medium (Invitrogen) containing 0.01% fetal bovine serum for
removal of other tissue, and three explants were then placed in the center
of 3.5 cm tissue culture dishes precoated with poly-L-lysine (20 �g/ml for
2 h; Sigma) and laminin (20 �g/ml for 2 h; Sigma). Explants were cul-
tured in DMEM containing 4500 mg/L glucose and 110 mg/L sodium

pyruvate (Sigma), 2 mM glutamine, 1% penicillin/streptomycin, and 100
ng/ml 7S NGF (all from Invitrogen), 20 �M uridine and fluorodeoxyuri-
dine (both Sigma) to block proliferation of non-neuronal cells, and 10%
fetal bovine serum (Sigma). After 7 d in culture, explants and their radial
neurite networks from three dishes were separated by transection and
collected separately for lysis directly in Laemmli sample buffer. Explant
fractions contain the cell bodies and proximal neurites while the distal
neurite fraction is almost exclusively neurites.

For dissociated cultures, explants were treated as described previously
(Whitfield et al., 2004). Approximately 10,000 dissociated neurons were
plated in a 1 cm 2 area of a laminin-coated 35 mm Petri dish (�-Dish,
ibidi) and maintained under the same conditions as above.

Biochemical assessment of variant Wld S protein levels
Brains, lumbar spinal cord, and sciatic nerve segments were homoge-
nized in RIPA buffer and prepared for Western blotting as previously
described (Mack et al., 2001; Conforti et al., 2007).

Subcellular fractionation was as previously published with modifica-
tions (Spencer et al., 2000; Okado-Matsumoto and Fridovich, 2001; Liu
et al., 2004; Fang et al., 2005). In initial experiments for generation of
crude nuclear, cytoplasmic, and cytosolic fractions (see Fig. 2 A) mouse
brains were snap-frozen by immersion in liquid nitrogen and stored on
dry ice. The nuclear transcription factor SP1 and �-actin served as nu-
clear and cytoplasmic markers respectively and as loading controls for
these respective fractions (Sau et al., 2007).

Each brain was homogenized using a Teflon-glass pestle (no. B15541,
Thomas; 10 strokes, 700 rpm) at 1:5 (w/v) ratio in ice-cold homogeniza-
tion buffer containing 10 mM HEPES, 6 mM MgCl2, 1 mM EDTA, 10%
sucrose, pH 7.2, and protease inhibitor cocktail (Roche Diagnostics).
Unbroken cells and connective tissue were removed by filtration using a
cell strainer (40 �m nylon, BD Falcon). Homogenized brain tissue was
centrifuged at 2000 � g for 5 min. Further centrifugation of the resulting
pellet A and supernatant B at different speeds yielded the following
fractions.

Nuclear fraction. The pellet A was washed repeatedly and finally resus-
pended in 0.25 ml of homogenization buffer containing additionally 0.5
M NaCl. The suspension was then incubated for 1 h in an ice bath with
frequent vortexing. After incubation the suspension was centrifuged at
8000 � g for 10 min, and the final supernatant was regarded as nuclear
fraction.

Cytoplasmic fraction. The supernatant B was further centrifuged at
8000 � g, and the final supernatant was used as cytoplasmic fraction.

Cytosolic fraction. The supernatant B was centrifuged at 100,000 � g
for 30 min, and the final supernatant was regarded as cytosolic fraction.

In follow-up subcellular fractionation experiments for generation of
enriched mitochondrial and microsomal preparations (see Fig. 9A),
mouse and rat brains were homogenized as described above in buffer
containing 50 mM Tris, 6 mM MgCl2, 1 mM EDTA, 10% sucrose, pH 7.2,
and protease inhibitor cocktail (Roche Diagnostics). After 5 min of cen-
trifugation at 2000 � g, the resulting pellet C and supernatant D were
used for generation of the following fractions.

Nuclear and postnuclear fraction. The pellet C was resuspended in ho-
mogenization buffer plus 0.5 M NaCl for 1 h on ice and the suspension
centrifuged at 8000 � g for 10 min. The resulting pellet was again resus-
pended in homogenization buffer and used as nuclear fraction. The su-
pernatant D was centrifuged at 8000 � g for 10 min to obtain the post-
nuclear fraction (supernatant).

Cytoplasmic and mitochondria-enriched fraction. The postnuclear frac-
tion was centrifuged at 21,000 � g for 20 min to obtain mitochondria-
enriched pellet and cytoplasmic fraction (supernatant). The
mitochondria-enriched pellet was washed in homogenization buffer and
resuspended in buffer containing 150 mM NaCl, 50 mM Tris/HCl, and
10% SDS, pH 8.0. This final suspension was regarded as mitochondria-
enriched fraction.

Microsome-enriched and cytosolic fraction. The cytoplasmic fraction
was centrifuged at 135,000 � g for 1 h to obtain the microsome-enriched
fraction (pellet) and cytosolic fraction (supernatant). The microsome-
enriched pellet was processed in the same way as the mitochondria-
enriched pellet to obtain the final microsome-enriched fraction.
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All described centrifugation steps were performed at 4°C using a Sanyo
MSE Harrier 18/80 and Beckman MAX Ultracentrifuge. Subcellular frac-
tions were stored at �80°C and subsequently used for Western blot
analysis.

For Western blotting SDS-PAGE and standard wet protein transfer
(Bio-Rad) to PVDF membranes were performed as previously described
with modifications (Mack et al., 2001; Conforti et al., 2007). Variant
Wld S was detected using rabbit polyclonal antiserum Wld18 (1:2000)
with mouse monoclonal anti-�-actin (1:3000, Abcam, ab8226) or mouse
monoclonal anti-neuronal class �III-tubulin (1:2000, Covance, MMS-
435P) as loading controls. In fractionation experiments the following
antibodies were used as loading controls: mouse monoclonal anti-SP1
(1:1000, Santa Cruz Biotechnology, PEP2 sc-59); mouse monoclonal
anti-histones H1 (1:500, Chemicon International, MAB052); and mouse
monoclonal anti-COXIV (1:5000, Abcam, ab14744).

For quantification, integrated optical density (OD) of bands from
three blots per experimental group was determined by NIH ImageJ soft-
ware, normalized to the loading controls and expressed as a percentage of
reference Wld S expression level.

Nmnat enzyme activities from sagittally divided half mouse brains
were determined as described previously (Conforti et al., 2007).

Assessment of axon preservation
All experiments were performed in accordance with the Animals (Scien-
tific Procedures) Act, 1986, under Project License PPL 80/1778. Mice
were anesthetized by intraperitoneal injection of Ketanest (5 mg/kg;
Parke Davis) and Rompun (100 mg/kg; Bayer). Right sciatic nerves were
transected or crushed close to the “foramen intrapiriforme” with con-
tralateral side as control. A 5 mm segment was removed to prevent re-
generation from complicating analysis of degeneration at longer lesion
durations (14 – 49 d). The lesion site was also inspected upon nerve re-
moval to be sure the proximal and distal stumps had been fully separated
and remained separate. After 6 h (for crush experiments) and 3, 5, 14, 21,
28, 35, and 49 d (for transection experiments), the mice were humanely
killed and sciatic/tibial nerve segments were dissected.

We tested the structural preservation of axons in the sciatic and tibial
nerve following unilateral sciatic nerve transection by confocal micros-
copy of a YFP-labeled axonal subset (longitudinal imaging) and by light/
electron microscopy using highly established methods for evaluation of
axon integrity (Mack et al., 2001; Beirowski et al., 2004, 2005; Adalbert et
al., 2005; Conforti et al., 2007).

For analysis of axonal preservation in YFP-labeled nerves, �1.5-cm-
long nerve stumps containing the sciatic and tibial nerve segments were
dissected from humanely killed mice following sciatic nerve transection,
processed as previously described (Beirowski et al., 2004, 2005), and
mounted on conventional glass slides in Vectashield mounting medium
for subsequent analysis on a Zeiss LSM 510 Meta Confocal system. Con-
focal z-stack series from both longitudinally embedded sciatic and tibial
nerve were taken using a 20� magnification objective, and z-projections
were electronically generated for final presentation. Criteria for survival
were unfragmented YFP-positive fibers in the analyzed segment.

For semithin light microscopy and electron microscopy, sciatic and
tibial nerve segments were fixed for at least 3 d in 0.1 M phosphate buffer
containing 4% paraformaldehyde and 2.5% glutardialdehyde, embedded
in Durcupan resin (Fluka), and processed as described previously (Con-
forti et al., 2007). Morphological criteria for intact axons were normal
myelin sheaths, uniform axoplasm, and intact mitochondria. The per-
centage of surviving axons in nerve segments was calculated in relation to
unlesioned preparations.

Electrophysiology and vital labeling of neuromuscular junctions
Mice were killed by cervical dislocation. Previous section of the sciatic
nerve was verified by reexposing the wound in the thigh. Tibial nerve–
flexor digitorum brevis (FDB) preparations were dissected and pinned to
a Sylgard-lined dish and bathed in oxygenated mammalian physiological
saline (137 mM Na �, 4 mM K �, 2 mM Ca 2�, 1 mM Mg 2�, 147 mM Cl �, 5
mM glucose, and 5 mM HEPES, pH 7.2–7.4, equilibrated with 100%
oxygen). The nerve was stimulated using a suction electrode connected
to a Powerlab 4/20T and stimulated using 50 –200 �s pulses, 0.1–1 mA

intensity at 1–20 Hz. Muscle contractions were recorded as short (10 –35
s) movies through a Wild M5A dissecting microscope using a Nikon
Coolpix 4500 digital cameral fitted with an ocular adapter. The three
distal tendons of FDB were then tied together using Ethicon 7/0 suture
and connected to a Grass force transducer and the Powerlab bridge am-
plifier. Twitch contractions to single stimuli delivered at 1–5 Hz and
fused contractions evoked by 20 Hz stimulation were recorded using
Chart v4.1.1 and Scope v3.6.8 software on an Apple Macintosh Power-
book computer. The preparation was then dismounted from the force
transducer and a pair of fine electromyographic recording needles, insu-
lated to within 0.2 mm of their tips with a coating of nail varnish, was
inserted into the belly of the FDB muscle. The bathing solution was
earthed (grounded) using an Ag/AgCl wire and all three electrodes were
connected to the Bioamp input of the Powerlab unit. Stimuli to the tibial
nerve were delivered either from the Powerlab using parameters indi-
cated above, or using a A-M Systems 210 isolated pulse stimulator with
variable 1–10 V pulses, 200 �s in duration and at frequencies of 1– 40 Hz.
EMG signals were low-pass (2 kHz), high-pass (10 Hz), 50 Hz notch, and
mains filtered and averaged using Scope software. In some cases, a sim-
pler preparation was used for EMG recording. Isolated hindlimbs were
stripped of their skin and pinned to a Sylgard-lined dish in oxygenated
mammalian saline as above. The tibial nerve was dissected free to the
ankle, the foot was amputated at the tibia, and EMG needles were in-
serted immediately into the FDB/interosseous muscles. The tibial nerve
was stimulated with a suction electrode and the EMG response recorded
and averaged using the Powerlab Scope software. Sample records were
extracted from the Chart and Scope raw data files and pasted into
Powerpoint.

For morphological quantification of functionally preserved neuro-
muscular junctions (NMJs) in tibial nerve–FDB preparations recycled
synaptic vesicles of motor nerve terminals were stained using AM1-43
(Nerve Terminal Staining Kit II, Biotium) with 20 Hz nerve stimulation.
AM1-43 is a fixable form of styryl dye FM1-43, widely used for vital
labeling of NMJs, where it indicates functional synaptic transmission
(Betz et al., 1992; Barry and Ribchester, 1995; Mack et al., 2001). Unspe-
cific background fluorescence of AM1-43 was quenched with
ADVASEP-7 (Kay et al., 1999). Acetylcholine receptors were subse-
quently stained with tetramethylrhodamine isothiocyanate conjugates of
�-bungarotoxin (TRITC-�-BTX) (Biotium). FDB muscles were fixed in
0.1 M PBS containing 4% paraformaldehyde for 30 min, cleaned of con-
nective tissue and mounted on conventional glass slides in Vectashield
mounting medium for analysis. For quantification of endplate occu-
pancy following sciatic nerve lesion occupied and vacant bungarotoxin-
labeled NMJs in the three subcompartments of the FDB muscle (see
supplemental movies, available at www.jneurosci.org as supplemental
material) were counted using an IX81 Olympus fluorescence micro-
scope. Fifty to one hundred endplates were assessed per FDB preparation
and compared with the contralateral unlesioned preparation from each
mouse.

Immunocytochemistry and immunohistochemistry
For conventional indirect immunofluorescence detection of Wld S vari-
ant expression in primary and secondary cell culture, cells were fixed in
4% paraformaldehyde (PFA) 48 h after transfection, permeabilized with
1% Triton X-100 for 10 min, blocked [5% NGS (Sigma) in PBS, 1 h], and
immunostained using rabbit polyclonal Wld18 antibody (1:500) and sec-
ondary Alexa568-goat anti-rabbit antibody (1:200) diluted in 5% NGS/
PBS. Nuclear counterstaining was performed with DAPI and cells were
mounted in Vectashield (Vector Laboratories).

For immunofluorescence detection of variant Wld S protein on brain,
lumbar spinal cord, DRG, and sciatic nerve obtained from perfusion
fixed mice, 20 �m cryostat sections on poly-L-lysine-coated glass slides
(VWR SuperFrost Plus) were incubated overnight in citrate buffer, pH
6.0, at 50°C or for 45 min in 0.05% citraconic anhydride solution, pH 7.4,
at 98°C (Namimatsu et al., 2005) and subsequently permeabilized with
0.1% Triton X-100 plus 0.05 M NH4Cl in 0.05 M TBS for 10 min. The
sections were then rinsed in fresh TBS, immunoblocked with 5% bovine
serum albumin (Sigma) in TBS for 1 h, and incubated overnight at 4°C in
primary antibody solution (Wld18 antibody, 1:500 in 0.8% bovine serum
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albumin in TBS). After extensive washes, the secondary antibody solu-
tion (Alexa568-goat anti-rabbit, 1:200 in TBS) was applied for 1 h at
room temperature and slices were rinsed in TBS and dH2O. The samples
were counterstained with primary mouse monoclonal anti-neuronal
class �III-tubulin (1:500, Covance, MMS-435P), mouse monoclonal
anti-neurofilament 200 (1:500, Sigma, clone 52, N0142), or mouse
monoclonal anti-APP (1:200, Chemicon, MAB348) and secondary
Alexa488-goat anti-mouse (1:200) antibodies as above. Nuclear staining
was performed with DAPI or Hoechst 33258. Samples were mounted in
Vectashield mounting medium (Vector Laboratories).

For high-sensitivity detection of low-abundance Wld S protein vari-
ants on dissociated SCG and DRG neuronal cultures exploiting catalyzed
reported deposition of tyramide-Alexa 488 or tyramide-Alexa 568 con-
jugate (Molecular Probes TSA detection kit, Invitrogen), cells were fixed
for 15 min with 4% PFA in 0.1 M PBS, rinsed, and permeabilized with 1%
Triton X-100 for 10 min. After quenching endogenous peroxidase activ-
ity with 3% hydrogen peroxide in PBS for 1 h, cells were treated with 1%
TSA blocking buffer (Molecular Probes, Invitrogen) for 1 h, and primary
antibody Wld18 (1:500 in 1% TSA blocking buffer) was applied over-
night at 4°C. Cells were extensively washed in PBS and incubated with
HRP-coupled goat anti-rabbit secondary antibody (1:100 in 1% TSA
blocking buffer) for 1 h. The tyramide-fluorophore conjugate solution
was applied for 10 min according to the manufacturers instructions. Cells
were extensively washed and conventionally counterstained with the fol-
lowing primary antibodies: mouse monoclonal anti-neurofilament 200
(1:500, Sigma, clone 52, N0142); mouse monoclonal anti-COXIV (1:100,
Abcam, ab14744); mouse monoclonal anti-KDEL (1:100, MAC 256, gift
from Geoff Butcher, Babraham Institute, Cambridge, UK); mouse
monoclonal anti-LAMP-2 (1:10, ABL-93, gift from Aviva Tolkovsky,
University of Cambridge, Cambridge, UK). Secondary Alexa488-goat
anti-mouse (1:200) antibodies were applied, and cells were washed in
PBS and dH2O and mounted in Vectashield mounting medium.

For high-sensitivity detection of variant Wld S on cryostat sections of
peripheral and central nerves, �5 mm sciatic and optic nerve segments
were dissected and postfixed for 2 h in 4% PFA in 0.1 M PBS. After
extensive PBS washes, the nerves were incubated overnight in 20% su-
crose, embedded in OCT embedding medium (Shandon), and frozen in
a �80°C freezer. Serial 20 �m cryostat sections were cut and mounted
onto poly-L-lysine-coated slides. Sections were incubated at 98°C with
0.05% citraconic anhydride solution, pH 7.4, for 45 min and permeabil-
ized with 0.5 M NH4Cl � 0.25% Triton in 0.1 M PBS, and low-abundance
Wld S protein was detected using HRP-catalyzed tyramide-fluorophore
conjugate deposition as described above. In some experiments, the sec-
tions were counterstained with Hoechst 33258 and finally mounted in
Vectashield mounting medium.

For nonfluorescence immunohistochemical detection of Wld S vari-
ants, frozen sections were pretreated by incubating overnight at 50°C in
citrate buffer, pH 6.0, for antigen retrieval. The Vectastain Elite ABC Kit
(PK-6100, Vector Laboratories) was applied according to the manufac-
turer’s instructions, and the peroxidase reaction was visualized with 3,3�-
diaminobenzidine (DAB) plus nickel enhancement (ABC method). The
WldS18 primary antibody was used at a dilution of 1:500. DAB-labeled
sections were counterstained with nuclear fast red (Vector Laboratories).

Nonfluorescent immunohistochemically stained tissue sections were
imaged with a Leitz DM RB microscope coupled to a Leica DC camera
system and Leica DC Twain Software.

Confocal imaging and fluorescence intensity quantification
Immunostained tissue sections and vital dye-labeled muscle prepara-
tions were imaged on a Zeiss LSM 510 Meta Confocal system, and z-series
were merged using algorithms from Zeiss LSM Software Release 3.2.
Colocalization analysis used Multi-track configuration mode to avoid
cross talk between individual fluorophores and bleed-through. Object
based colocalization analysis was performed by assessment of overlap
between linear fluorescence intensity profiles in individual focal planes.
Nuclear variant Wld S expression in lumbar spinal cord motoneurons
was measured in the ventral horn (10 motoneurons per mouse). Confo-
cal z-series stacks of Hoechst 33258-labeled entire nuclear profiles were
recorded and mean variant Wld S fluorescence intensities were measured

on each single optical section using algorithms from Zeiss LSM Software
Release 3.2. The measured mean intensities were normalized to reference
signal derived from endothelial nuclear profiles without variant Wld S

expression from the same section (nuclei of endothelial cells).

Statistical analysis
Data are presented as mean � SD. One-way ANOVA was used for group
comparisons and statistical significance or high significance was consid-
ered if p � 0.05 or p � 0.005, respectively.

Results
Two point mutations redistribute Wld S from nucleus to
cytoplasm in vitro
To reduce targeting of full-length Wld S protein from nuclei we
introduced two point mutations (R213A, R215A) within the NLS
of the Nmnat1 domain. We confirmed nuclear Wld S reduction
by transiently transfecting primary hippocampal and dorsal root
ganglion (DRG) cultures and HeLa and PC12 cells. Immunoflu-
orescence with Wld18 antibody, directed against the unique
linker region in Wld S (Samsam et al., 2003), showed almost com-
plete exclusion from nuclei in HeLa and PC12 cells and substan-
tially reduced nuclear targeting in primary culture (Fig. 1A and
data not shown). Thus, the previously identified Nmnat1 NLS
(Sasaki et al., 2006) is also the main determinant of nuclear local-
ization of full-length Wld S protein. We additionally identified a
weak predicted NLS (PSORTII and NucPred predictions) within
the N-terminal 16 aa of Wld S but chose not to mutate this region
because its influence on Wld S biochemistry (Laser et al., 2006)
could affect phenotype in other ways.

Interestingly, in neurons we detected a strong signal in neu-
ritic trees, especially prominent in neurites 	500 �m (Fig. 1A
and data not shown). This suggests that the �NLS Wld S molecule
either diffuses or is transported into neurites in vitro. Neuritic
immunosignal was not observed in cells expressing native Wld S

using this method.

Generation of transgenic mice overexpressing �NLS Wld S

After testing in vitro we coupled the �NLS R213A,R215A Wld S

cDNA to a �-actin promoter, a system that consistently confers a
Wld S phenotype in mice and rats using native Wld S (Mack et al.,
2001; Adalbert et al., 2005). Lines were established from seven of
the eight founders (lines 1– 6, 8) by breeding to YFP-H mice
(Feng et al., 2000) for convenient assay of axon degeneration
(Beirowski et al., 2004). Line 3, 6, and 8 hemizygotes showed very
similar total brain expression levels to that of Wld S in heterozy-
gous Wld S mice, whereas variant Wld S levels were higher in lines
2 and 5 (Fig. 1B). Lumbar spinal cord levels were lower relative to
Wld S heterozygotes in lines 3, 6, and 8. This difference between
brain and spinal cord may reflect the increased presence of vari-
ant Wld S in the axon (see below), most of which lies outside the
spinal cord. As expected, breeding to homozygosity elevated
�NLS Wld S protein expression in brain approximately twofold
(data not shown). Variant Wld S was not detectable in Western
blots from lines 1 and 4, even in homozygous mice, probably
reflecting insertional silencing. Enzyme assays showed increased
Nmnat activity in brains of highly expressing lines broadly in line
with these protein concentrations (Fig. 1C), also confirming that
mutation of the NLS did not impair NAD� synthesis efficacy,
which is critical for the neuroprotective phenotype (Araki et al.,
2004) (L. Conforti, A. Wilbrey, G. Morreale, L. Janeckova, B.
Beirowski, R. Adalbert, F. Mazzola, M. Di Stefano, R. Hartley, E.
Babetto, T. Smith, J. Gilley, R. Billington, A. Genazzani, R.
Ribchester, G. Magni, and M. Coleman, unpublished work).
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NLS mutation reduces nuclear targeting of Wld S in vivo
To assess subcellular redistribution of the �NLS WldS protein in
vivo, we performed Western blots of nuclear, cytoplasmic, and cyto-
solic fractions (Fig. 2A). Nuclear targeting was reduced by 	90% in
brain tissue in all expressing lines relative to native WldS (Fig. 2A),
although curiously cytoplasmic levels were consistently increased
only in transgenic line 5. This could reflect the enormous dilution
upon redistribution from nucleus to the much larger cytoplasmic
compartment, especially in projection neurons. We were surprised
to find significant quantities of native WldS in cytoplasm, but this
may have been missed previously due to the use of paraffin-
embedded sections, sometimes a less specific antibody (Mack et al.,
2001), and Western blotting of just one brain region (cortex) (Fang
et al., 2005). In accordance with earlier results (Fang et al., 2005),
however, we did not detect WldS in cytosol.

Immunofluorescence of brain and lumbar spinal cord frozen
sections also showed strongly reduced nuclear targeting (Fig.
2B). In some cortical and cerebellar neurons, confocal imaging
showed only very faint nuclear Wld S staining (Fig. 2B, rows 1– 4).
Faint signals in motor neuron nuclei (Fig. 2B, rows 5–7) were
highly significantly reduced in multiple lines relative to sponta-
neous Wld S mice (Fig. 2C). Reflecting variant Wld S redistribu-
tion, a faint outline of individual cell bodies was readily visible in
homozygotes of lines 2 and 3 (Fig. 2B, row 6, arrows). Similar
redistribution with reductions in nuclear targeting was seen in
DRG neurons (supplemental Fig. 1, available at www.jneurosci.
org as supplemental material).

Using 3,3�-diaminobenzidine immunostaining on frozen sec-
tions, we found clear Wld S cytoplasmic signals in �NLS Wld S

spinal cord motorneurons with distinct labeling of proximal neu-
ronal processes (Fig. 2B, row 7, asterisks). Interestingly, we also
could detect weak cytoplasmic variant Wld S signals in some mo-
torneurons from �NLS line 1 this way, suggesting the transgene is
expressed in this line but at a very low level.

Thus, �NLS Wld S transgenic lines express the variant Wld S

protein with full Nmnat enzyme activity and considerably re-
duced nuclear targeting and relative cytoplasmic redistribution
in various neuronal subtypes.

�NLS Wld S delays Wallerian degeneration more robustly
than native Wld S

We and others have previously shown that delay of Wallerian degen-
eration and related axon pathologies by WldS is strongly dose depen-
dent (Perry et al., 1990; Mack et al., 2001; Samsam et al., 2003; Adal-
bert et al., 2005). In particular, the strength of axon protection in
transgenic mice correlates closely with WldS protein level (Mack et
al., 2001) (and unpublished observations) (note: the lower express-
ing lines are no longer available for comparison). Thus, if WldS

works through an intranuclear mechanism, reducing nuclear target-
ing should weaken the protective phenotype.

Surprisingly, however, axonal continuity was substantially
better preserved 3, 5, and 14 d after nerve lesion in �NLS Wld S

transgenic lines 2, 3, 5, 6, and 8 than in native Wld S mice (Fig. 3A
and data not shown). Fragmentation in wild type and partial
fragmentation in Wld S heterozygotes (Fig. 3A, asterisks) was not

4

blots from brain and lumbar spinal cord crude extracts probed with Wld18 antibody and �-actin
loading control. Bottom, Intensities of individual variant Wld S protein Western blot bands from
brain were densitometrically quantified and normalized to �-actin loading control (N 
 3 mice
for each group tested). C, Normalized brain Nmnat enzyme activities in individual �NLS Wld S

transgenic lines, wild-type controls, and Wld S (N 
 2– 8 mice for each group tested).

Figure 1. Subcellular localization of �NLS Wld S in different cell types in vitro and initial
characterization of �NLS Wld S transgenic mice. A, Immunofluorescence using Wld18 primary
and Alexa dye-coupled secondary antibodies showing �NLS Wld S cytoplasmic translocation in
transfected HeLa and PC12 cells and hippocampal neurons. B, Top, Representative Westerns
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seen in hemizygous �NLS Wld S transgenics. Similar results were
obtained in transverse semithin sections 3–14 d after nerve lesion
(Fig. 3B; supplemental Fig. 2, available at www.jneurosci.org as
supplemental material). Quantification showed significantly to
highly significantly more intact axons in line 2, 3, 5, 6, and 8
hemizygotes than in Wld S heterozygotes ( p � 0.05 and p �
0.005, one-way ANOVA). For example, after 14 d, 24.2 � 2.2%
intact axons were intact in Wld S (N 
 3) compared with 67.4 �
2.8% in line 3 (N 
 3).

Intriguingly, lines 1 and 4 showed axon preservation up to
14 d (supplemental Fig. 3, available at www.jneurosci.org as sup-
plemental material, and data not shown) despite the lack of de-
tectable variant Wld S on Western blots (Fig. 1B). In contrast, we
previously reported that a low but detectable level of native Wld S

was insufficient to confer any detectable axon protection (Wld S

transgenic line 4839 hemizygotes) (Mack et al., 2001). Thus, the
amount of protein expressed in transgenic Wld S line 4839 should
be at least as great, while axon protection is far weaker than in
�NLS Wld S lines 1 and 4. Unfortunately the previously generated
Wld S line 4839 is no longer available for direct comparison, but
this result also suggests Wld S has greater efficacy after a reduction
in nuclear targeting.

Reduction of Wld S nuclear targeting extends the maximum
preservation of axon continuity and ultrastructure
We then asked whether the maximum time for which axon conti-
nuity and ultrastructure can be preserved increases when WldS nu-
clear targeting is reduced. For this we used lines 3 and 8 with expres-
sion levels similar to native WldS mice. In WldS heterozygotes all
axons degenerated by 21 d, whereas in line 3 �NLS WldS transgenics
some axons remained continuous for at least 35 d (Fig. 4A). In
homozygotes the maximum preservation of continuous axons was
extended from �35 to 	49 d (Fig. 4B and data not shown). It is also
interesting to note that YFP has a sufficiently long half-life in these
axons to give a strong signal for 7 weeks after being isolated from any
further synthesis in the cell body. To confirm that the loss of signal in
WldS is not simply due to degradation of YFP, and to study the
underlying axon ultrastructure, we then performed electron micros-
copy at these time points (Fig. 4C). Many ultrastructurally normal
axons were preserved up to 49 d in �NLS WldS lines 3 and 8, with
uniformly distributed axoplasm and unswollen mitochondria,
whereas all axonal profiles were completely degraded in spontane-
ous WldS mice (Fig. 4C).

Denervated �NLS Wld S axons and neuromuscular junctions
remain functional in young and aged transgenics
To test whether NMJs were also preserved after axotomy, we
recorded muscle contractions, electromyography, and vital label-

4

Figure 2. Reduced nuclear targeting of �NLS Wld S in various neuronal subtypes in vivo. A,
Western blots of nuclear, cytoplasmic, and cytosolic brain fractions demonstrating dramatically
reduced nuclear targeting in individual mice from different �NLS Wld S lines compared with
spontaneous Wld S mutant. The bottom graph demonstrates corresponding relative optic den-
sities of nuclear Wld S bands normalized to SP1 for individual mice. These Western blots are
representative of three individual experiments. B, Rows 1– 6, Confocal images showing (vari-
ant) Wld S protein immunolabeling (red) with �-III tubulin (green) and Hoechst 33258 (blue)
counterstaining on frozen sections from homozygous mice. Transgenics shown represent lines
without detectable variant Wld S protein expression in Western blotting (line 1) and with strong
(line 2) and medium (line 3) variant Wld S protein expression levels. Row 7, Light microscopic
pictures from lumbar motorneurons (arrows) showing Wld S immunolabeling using 3,3�-
diaminobenzidine. C, Graph showing normalized fluorescence intensities for nuclear variant
Wld S protein signals in lumbar motoneurons. For each genotype group, three mice were as-
sessed (10 motorneurons each). *p � 0.05; **p � 0.005; ***p � 0.001; one-way ANOVA.
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ing of synaptic terminals in FDB prepara-
tions. Functional protection of axoto-
mized motor nerve terminals and NMJs in
spontaneous and transgenic Wld S mice is
highly age dependent, with innervation 3 d
after a nerve lesion falling from 	80% at
1–2 months to �20% at 12 month (Gill-
ingwater et al., 2002). As expected, young
WldS homozygotes (�2 months) showed
robust conduction of action potentials and
synaptic transmission 3 and 6 d after axo-
tomy, but this protective phenotype was
almost completely lost in older mice (aged
	7 months).

Three days after sciatic nerve transec-
tion, 2-month-old wild-type FDB muscles
showed no activity, while age-matched
FDB from �NLS Wld S line 3 or spontane-
ous Wld S mutants showed robust contrac-
tile and electromyographic responses to
nerve stimulation indicating functional
preservation of both motor axons and
NMJs (supplemental Fig. 4A–F, Movies 1,
2, available at www.jneurosci.org as sup-
plemental material). Quantitative, func-
tional labeling using the activity-
dependent nerve terminal dye AM1-43
showed almost 100% innervated NMJs in
FDB preparations from both �NLS Wld S

and spontaneous Wld S mutants (supple-
mental Fig. 4G, available at www.jneurosci.
org as supplemental material). Six days af-
ter sciatic nerve transection the propor-
tion of occupied NMJs decreased to �50%
in young Wld S mutants, whereas young
�NLS Wld S transgenics still showed al-
most 100% intact NMJs, indicating stron-
ger protection of synaptic terminals (Fig.
5E; supplemental Fig. 4G, available at
www.jneurosci.org as supplemental mate-
rial). After 10 d, �10% of intact NMJs re-
mained in �NLS Wld S FDB (supplemen-
tal Fig. 4G, available at www.jneurosci.org
as supplemental material).

We then studied mice aged 6 –12
months old (Fig. 5), when native Wld S

mice almost completely lose neuromuscu-
lar synaptic protection. As expected, 7.5-
month-old Wld S muscles showed only
weak or no contraction upon stimulation
of the axotomized distal nerve stump
(supplemental Movie 4, available at www.
jneurosci.org as supplemental material;
Fig. 5B). Electromyographic responses
were also very weak (Fig. 5D). AM1-43
functional labeling in a 6-month-old Wld S

mutant confirmed almost complete ab-
sence of occupied NMJs (Fig. 5E). In
marked contrast, axotomized FDB from
7.5-month-old �NLS Wld S mice showed
robust contractions after nerve stimula-
tion, with contractile forces and electro-
myographic responses indistinguishable

Figure 3. Time course of Wallerian degeneration in �NLS Wld S/YFP-H transgenics at 3, 5, and 14 d following sciatic nerve
transection. A, Representative confocal z-series stacks of sciatic and tibial nerves from wild type, heterozygous Wld S (“Wld S het”),
and �NLS Wld S transgenics (“�NLS Wld S het”) additionally expressing YFP in a representative axonal subset (YFP-H transgene)
to facilitate longitudinal imaging of axons 3, 5, and 14 d after transection. No interruptions are detectable in hemizygous �NLS
Wld S nerves, whereas axons in nerves from Wld S heterozygotes increasingly fragment at the indicated time points (asterisks).
Note that we observed proximo-distal gradients of axonal fragmentation along the sciatic/tibial nerve consistent with earlier data
(Beirowski et al., 2005). B, Quantification of axonal preservation following nerve lesion in semithin sections showing percentage
of intact myelinated sciatic nerve axons (percentage of contralateral unlesioned nerve) at 3, 5, and 14 d following axotomy (see
supplemental Fig. 2, available at www.jneurosci.org as supplemental material).
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Figure 4. Long-term axon survival after sciatic nerve lesion in �NLS Wld S transgenics. A, Representative confocal images of lesioned sciatic/tibial nerves from heterozygous Wld S (“Wld S het”)
and hemizygous �NLS Wld S transgenics from line 3 crossed to YFP-H. While sciatic and tibial nerves from Wld S heterozygotes show pronounced degradation of YFP-positive axon fragments from
21 d, �NLS Wld S line 3 hemizygotes have uninterrupted axons up to 35 d (arrows in inset 1 and 2). B, Representative confocal images of lesioned sciatic/tibial nerves from Wld S (“Wld S homo”) and
�NLS Wld S line 3 homozygotes. While Wld S homozygotes show pronounced degradation of YFP-positive axon fragments from 35 d, �NLS Wld S line 3 mice display uninterrupted axons up to 49 d
(arrows in inset 3 and 4). C, Transmission electron microscopy of distal sciatic and tibial nerve from Wld S homozygotes (left) and line 3 (middle) and line 8 (right) �NLS Wld S transgenics 35 and 49 d
following nerve section. In contrast to Wld S, some �NLS Wld S axons 49 d after axotomy are ultrastructurally preserved, showing intact myelin sheaths, uniform, regularly spaced cytoskeleton, and
normal-appearing mitochondria. Scale bars, 2 �m.
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from nonaxotomized muscles (N 
 2)
(supplemental Movie 3, available at www.
jneurosci.org as supplemental material;
Fig. 5A,C). In accord with these results,
quantitative AM1-43 functional labeling
in a 12-month-old �NLS Wld S mouse 6 d
after lesion revealed 95% endplate occu-
pancy (Fig. 5E). Together, these results
suggest that the decline of synaptic protec-
tion with age in native Wld S mice is signif-
icantly reduced by extranuclear targeting
of variant Wld S. Thus, functional survival
of motor axons and their nerve terminals
increases and becomes independent of age
if Wld S is partially translocated from the
nucleus to the cytoplasm in vivo.

Detection of Wld S protein variants
in axons
These findings raise the possibility that
even native Wld S protein may function
within axons. Western blotting with
Wld18 at a dilution at which it is com-
pletely specific for Wld S revealed a faint 43
kDa band in Wld S mouse and transgenic
Wld S rat sciatic nerves that was absent in
wild type (Fig. 6A,B). Consistent with a
local protective action in axons, �NLS
Wld S transgenic mice showed substan-
tially higher amounts in nerve extracts
from lines 3 and 8 (Fig. 6A). Nevertheless,
we could see no Wld S-specific conven-
tional immunofluorescence staining on
sections or whole-mount preparations
from paraformaldehyde fixed PNS and
CNS tissue (data not shown). Interest-
ingly, antigen retrieval using citraconic an-
hydride (Namimatsu et al., 2005) revealed
a marked glial signal in sciatic and optic
nerve sections from native Wld S mice and
rats and �NLS Wld S transgenics (Fig. 6C
and data not shown). This signal increased
near the lesion site in injured nerves (Fig.
6D), but its significance for axon protec-
tion is unknown since neuronal expres-

Figure 5. Maintained preservation of neuromuscular function in aged �NLS Wld S transgenic mice. A, B, Recordings of FDB
repetitive 1 Hz muscle twitch contractions and 20 Hz fused contractile responses, 6 d after sciatic nerve lesion from 7.5-month-old
�NLS Wld S transgenic (A) and age-matched native Wld S mutant (B). Note the amplitude of isometric force generated by nerve

4

stimulation in �NLS Wld S is �50 times that of the native
Wld S. The fluctuating baseline discernible in B is due partly to
the increased amplifier gain required to register the muscle
response and partly to distributed asynchronous spontaneous
contractions typically observed in axotomized Wld S muscle.
C, D, Averaged extracellular EMG recordings using nerve/
muscle preparations from A and B. The initial spike is the
stimulus artifact and the slower waves are produced by mus-
cle fiber action potentials. Note the �10-fold greater ampli-
tude of the evoked EMG response in �NLS Wld S (C) compared
with Wld S (D). E, Representative confocal z-series projections
of paraformaldehyde-fixed FDB nerve muscle preparations
double labeled presynaptically with the activity-dependent
nerve terminal dye AM1-43 and postsynaptically by the ace-
tylcholine receptor marker TRITC-�-bungarotoxin. Colocal-
ization of the green and red signals thus indicates functionally
preserved NMJs.
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Figure 6. Detection of Wld S and variant �NLS Wld S proteins in nerves in vivo. A, Western blot showing presence of variant Wld S proteins in sciatic nerve extracts from both spontaneous Wld S

mice and �NLS Wld S transgenics. Note markedly higher levels of variant Wld S protein in extracts from �NLS Wld S lines 3 and 8 compared with Wld S (heterozygous and homozygous). B, Western
blot showing presence of Wld S protein in sciatic nerve extracts from transgenic Wld S rat (line 79, homozygous). For comparison, detection of Wld S in similar total protein amount from brain
homogenate from the same rat is also shown. C, Fluorescence immunostaining on wild-type, Wld S (homozygous), and �NLS Wld S (line 3, homozygous) longitudinal sciatic nerve sections using
tubulin (green) and Wld18 (red) antibodies. Conventional epifluorescence microscopy (rows 1 and 2) demonstrates more intense Wld18 labeling in sciatic nerve from �NLS Wld S mouse than from
Wld S. Higher-resolution confocal images (rows 3– 6) from the same sections show variant Wld S protein signals in glial cells whose nuclei were counterstained with Hoechst 33258 (blue). Note more
prominent Wld18 staining in sample from �NLS Wld S sciatic nerve. D, Confocal images showing induction of variant Wld S expression (red) in glial cells 6 h after sciatic nerve injury located distally
from the lesion site. Note nuclear Wld S foci in activated glial cells (arrows, upper row) from native Wld S mutant, whereas induced �NLS Wld S protein expression shows a more cytoplasmic staining
pattern demarcating the cell body (arrows, lower row). Blue, Hoechst 33258 counterstain. E, High-power confocal composite (z-series projection) shows presence and homogenous distribution of
variant Wld S protein (red) in the nodal and internodal axoplasm of �NLS Wld S sciatic nerve (line 3) which is counterstained with tubulin (green). Note the fine granular staining pattern of Wld18
antibody within the axoplasm. Variant Wld S protein immunoreactivity is absent from wild-type sciatic axons. F, Confocal images (z-series projection � DIC merge) showing localization of Wld S

protein (red) in nodal and perinodal axoplasm of native Wld S axon in contrast to wild-type fiber where Wld S signal is absent (Wld18 antibody plus Alexa568-tyramide signal amplification).
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sion is sufficient for Wld S neuroprotection
and delay of Wallerian degeneration can
be observed in vitro in the virtual absence
of glia (Glass et al., 1993; MacDonald et al.,
2006; Conforti et al., 2007). Using this
method and high-power confocal imaging
we also observed weak axonal staining in
�NLS Wld S but not in native Wld S and
wild-type sciatic nerve sections (Fig. 6E;
supplemental Fig. 5, available at www.
jneurosci.org as supplemental material;
and not shown). Axoplasmic �NLS Wld S

protein was distributed throughout nodes
and internodes of individual sciatic nerve
axons in a fine granular staining pattern
(Fig. 6E). To test whether variant Wld S

protein remains detectable after axotomy
we conducted Western blotting and im-
munofluorescence on distal sciatic nerve
stumps from �NLS Wld S transgenic mice
1 week following lesion (supplemental Fig.
6, available at www.jneurosci.org as sup-
plemental material). The protein was still
present at this time, consistent with a
direct axonal role, and no changes in stain-
ing pattern could be observed (supple-
mental Fig. 6B, available at www.
jneurosci.org as supplemental material).

The presence of variant Wld S protein
in the axoplasm raises the possibility that it
could be transported anterogradely and/or
retrogradely. To test this and to further en-
hance the signal, we performed focal sci-
atic nerve crush injury and immuno-
stained cryosections with Wld18 as above
and additionally with APP antibody (Fig.
7). As previously shown (Cavalli et al.,
2005), sciatic nerve crush caused a focal
block of axonal transport, and APP accu-
mulated primarily at the proximal side
close to the injury point 6 h following le-
sion in mice of each genotype (Fig. 7A,B).
A small increase in Wld S signal was seen at
crush sites of native Wld S nerves, although
this may reflect glial signal induced by the
lesion (see above). An altogether more
striking and clearly axonal signal was evi-
dent on both sides of the crush in �NLS
Wld S axons. This suggests that at least the
variant �NLS Wld S protein is transported
both anterogradely and retrogradely in fast
axonal transport, to account for this build
up within 6 h, although more direct evi-
dence will be needed to confirm this.

To assess whether presence of Wld S can
be demonstrated in native Wld S axons by
increasing detection sensitivity we ex-
ploited catalyzed reporter deposition
(CARD) of tyramide derivatives (Van
Heusden et al., 1997). Similar to the results
in nerves from �NLS Wld S transgenics,
this method revealed also axoplasmic
Wld S in granular staining pattern at native

Figure 7. Accumulation of variant Wld S at the site of nerve constriction. A, B, Fluorescence double immunostaining on
longitudinal sciatic nerve sections proximal and distal to crush site (6 h p.o.) using Wld18 (red) and APP (green) antibodies.
Confocal projections demonstrate no Wld18 signal in wild type (A, left), weak Wld18 signal in nerve portions from native Wld S (A,
right) and substantial accumulation of variant Wld S protein signal proximal and distal to the crush site in�NLS Wld S sciatic nerves
(B, lines 2 and 3 homozygous). APP immunosignal is enriched in proximal portions close to the crush site in all samples at this time
point. Confocal survey composites in bottom panels show the position of surgical nerve constriction (arrows) in relation to
adjacent nerve segments. C, Control double immunostaining on unlesioned longitudinal sciatic nerve segments from wild-type,
native Wld S, and �NLS Wld S mice for comparison with A and B.
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Wld S nodes and internodes (Fig. 6F), with lack of signal in wild
type indicating specificity.

For further corroboration we then studied axonal Wld S in
superior cervical ganglion (SCG) explants (Fig. 8A) to exclude
glia, reduce the dilution of Wld S into the large axonal volume and
to isolate neurites in the virtual absence of cell bodies. A robust
Wld S phenotype was present in explants from both Wld S and
�NLS Wld S mice (data not shown). Neuritic extracts from Wld S

and �NLS Wld S explants showed a clear Western blotting signal
that was markedly stronger in the latter (N 
 4 experiments) (Fig.

8A). CARD immunostaining confirmed protein redistribution
showing decreased nuclear staining and distinct labeling of neu-
rites in �NLS Wld S SCGs and DRGs (Fig. 8B and data not
shown). Interestingly, cell bodies and occasionally axons of many
neurons showed discrete variant Wld S foci of varying size (Figs.
8C,D, 9B,D). Longer tyramide deposition reaction times re-
vealed cytoplasmic foci also for native Wld S but not for wild-type
controls. Variant Wld S foci were also present in hippocampal
cultures transfected with a �NLS Wld S construct fused to EGFP
(Fig. 8E). However, such foci were never observed in situ in brain

Figure 8. Visualization of Wld S and variant �NLS Wld S distribution in primary neuronal culture. A, Left, Western blot from SCG cell body/proximal neurite (“cell bodies”) and distal neurite
fractions (“neurites”) showing Wld S and variant Wld S in neurites. Note the reduced level of variant �NLS Wld S in cell bodies and significantly increased levels in neurites. To rule out nuclear
contamination derived from glial and other cells in neurite fractions, Western blots were probed with the nuclear marker Histones H1. Right, Densitometric quantification of variant Wld S protein
(normalized to �-actin). Data from two independent experiments are presented as mean � SD. B, Left, Confocal images showing cell bodies (and proximal neurites) from dissociated SCG
preparations labeled with Wld18 antibody (green; Alexa488-tyramide signal amplification), neurofilament antibody (red) and DAPI (blue). Note cytoplasmic redistribution of the�NLS Wld S protein
variant relative to Wld S. Right, Higher magnification confocal images demonstrating variant Wld S in SCG neurites (green; Alexa488-tyramide signal amplification). C, D, High-power confocal
projections demonstrating peri-nuclear variant Wld S foci (green) in SCG preparation from�NLS Wld S transgenic mouse (C) and occasional foci in proximal neurites (D, arrows). E, Confocal projection
showing transfected hippocampal neuron expressing �NLS Wld S-EGFP fusion protein. Note cytoplasmic �NLS Wld S-EGFP foci in cell body and neurites.
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or spinal cord neurons from �NLS Wld S transgenics or sponta-
neous Wld S mice, presumably due to lower concentrations of the
variant Wld S proteins in vivo and/or antigen masking through
fixation and embedding procedures.

Together, these results suggest presence of extranuclear
Wld S in axons with higher axoplasmic levels in �NLS Wld S

transgenic mice and the possibility of axonal transport of
Wld S variants.

Figure 9. Wld S and variant �NLS Wld S proteins associate with mitochondria and microsomes. A, Western blot of Wld S variants in subcellular fractions from mouse brain: N, nuclear; PN,
postnuclear; MT, mitochondrial; CP, cytoplasmic; CS, cytosolic; MS, microsomal. Nuclear SP-1 and mitochondrial marker COX-IV were used to assess the fractionation. B, Confocal images of SCG
neurons labeled with Wld18 (green; Alexa488-tyramide signal amplification) and COXIV (red) antibodies. White squares represent higher magnification insets shown in lower panel. Arrows indicate
partial colocalization of Wld18 and COXIV. C, Confocal live cell imaging of hippocampal neuron expressing variant �NLS Wld S fused to EGFP (green). The preparation was labeled with Mitotracker
Red CMXRos (red). Arrows indicate partial colocalization of �NLS Wld S-EGFP and mitochondria. D, Confocal images of SCG neurons labeled with Wld18 (green; Alexa488-tyramide signal
amplification) and KDEL (red; as ER marker) antibodies. Note many extranuclear variant Wld S foci overlap with the KDEL endoplasmic reticulum marker signals. E, Schematic illustration summarizing
non-nuclear-mediated delay of Wallerian degeneration: altered ratio of nuclear versus cytoplasmic Wld S content results in more robust neuroprotection in �NLS Wld S transgenics. The graphs
demonstrate distribution of Wld S (left) with high concentration in the smaller nuclear compartment and low concentration in the much larger cytoplasmic compartment. In contrast, �NLS Wld S

(right) is altered in favor of the large cytoplasmic compartment resulting in easier detectability and in more robust axon and synapse protection.
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Wld S and variant �NLS Wld S proteins associate with
mitochondria and intracellular membranes
Finally, we studied the association of Wld S and variant Wld S with
organelles in subcellular fractionation of brain tissue and in cell
culture. Wld S and variant Wld S were detectable both in enriched
mitochondrial (MT) and intracellular membrane (microsome)
fractions (MS) but absent in wild type (Fig. 9A). Similar data were
obtained from transgenic Wld S rats (data not shown). In CARD
analysis, �85% of extranuclear native or variant Wld S foci par-
tially colocalized with mitochondria, although many mitochon-
dria were not colocalized (Fig. 9B). Again, wild-type controls
lacked these foci (supplemental Fig. 7A, available at www.
jneurosci.org as supplemental material). In transfected hip-
pocampal primary cultured neurons and PC12 cells, �90% and
60% of �NLS Wld S-EGFP foci partially colocalized with Mito-
tracker Red CMXRos (Fig. 9C) or DsRed2-Mito, respectively,
and linear fluorescence intensity profiles confirmed partial colo-
calization (supplemental Fig. 7B, available at www.jneurosci.org
as supplemental material). Many other Wld S foci were adjacent
to mitochondria, but conversely most mitochondria in PC12 cells
were not detectably associated with Wld S, suggesting association
with a subset of mitochondria. Additionally, we observed partial
association between extranuclear Wld S variants and the endo-
plasmic reticulum marker KDEL (anti-MAC256 antibody) in
SCG neurons (Fig. 9D). Analysis of SCG neurons costained with
LAMP-2 antibodies (anti-ABL-93) did not indicate any associa-
tion with lysosomes (data not shown).

Discussion
These data show that the effectiveness of Wld S mediated neuro-
protection in vivo is highly dependent on non-nuclear levels of
the mutant protein, indicating a cytoplasmic or even direct ax-
onal role for Wld S (Fig. 9E). We detect native Wld S protein out-
side the nucleus and in axons for the first time in vivo and report
novel subcellular localization to mitochondria and microsome
fractions. In addition to these insights into the protective mech-
anism, the increased efficacy will improve assessment of which
neurodegenerative disorders involve Wallerian-like degenera-
tion and points to more optimal therapeutic strategies based
around Wld S.

Wld S protection has been shown to be strongly dose-
dependent by the weaker phenotype of C57BL/Wld S heterozy-
gotes in both injury and disease (Perry et al., 1992; Mack et al.,
2001; Samsam et al., 2003; Mi et al., 2005) and by strong correla-
tion between expression level and phenotype strength in Wld S

transgenic lines (Mack et al., 2001; Adalbert et al., 2005). Surpris-
ingly, we found that reduced nuclear targeting of Wld S without
altering total expression level strengthens the protective pheno-
type, rather than weakening it as a nuclear action would predict.
The maximum axon survival following sciatic nerve transection
was extended from 4 to 7 weeks and very weakly expressing lines
were able to confer a robust Wld S phenotype. Intriguingly, the
increased efficacy of the �NLS Wld S variant is particularly strik-
ing at motor nerve terminals from older mice, where native Wld S

is far less effective than in the axon trunk (Mack et al., 2001;
Gillingwater et al., 2002).

The reason for the substantial weakening of functional NMJ
protection in older Wld S mice is unknown but appears not to
involve any decrease in Wld S expression (Gillingwater et al.,
2002). In contrast to spontaneous and transgenic Wld S mice,
�NLS Wld S dramatically retained its ability to preserve neuro-
muscular synapses in older mice as well as increasing the maxi-
mum survival of axotomized NMJs in younger mice. We previ-

ously reported enhanced NMJ protection after sciatic nerve
lesion in transgenic Wld S rats and speculated that the longer
distal axon stump relative to mice might be responsible (Adalbert
et al., 2005). In Wld S mice lengthening the distal stump delays
degeneration of NMJs by 1–2 d/cm (Ribchester et al., 1995). One
model to explain this could be that Wld S neuromuscular syn-
apses require continuous supply of a neuroprotective factor for
their survival. We hypothesize now that this putative factor could
be axonally transported Wld S itself. As rate of axonal transport
declines with age (Cross et al., 2008) the weakening of protective
phenotype in old Wld S mutants could be explained with this
model. Axonal Wld S protein may fall below an efficacy threshold
for synaptic maintenance as mice age. This might not occur in old
�NLS Wld S transgenics due to the overall higher variant Wld S

levels in axons (as shown for sciatic nerves). Although we provide
preliminary data suggesting fast axonal transport of at least vari-
ant �NLS Wld S protein in sciatic nerve, further experiments ad-
dressing the relative levels of Wld S variants being transported and
at synapses will be needed to test this hypothesis.

Several hypotheses for Wld S action now need to be reexam-
ined to ask how each fits with these new data. For instance, mech-
anisms involving action of Wld S exclusively in nuclei now appear
unlikely, although we cannot rule out a simultaneous action in
both cytoplasm and nuclei. Reports of gene expression changes in
Wld S mice (Gillingwater et al., 2006; Simonin et al., 2007b) may
be less linked to the high nuclear Wld S concentration than ex-
pected and feedback mechanisms from cytoplasmic Wld S could
be one other explanation for the gene expression data. Previous
data based on strong lentiviral overexpression of Nmnat1 in DRG
neurons suggested efficacy was independent of subcellular target-
ing (Sasaki et al., 2006) although it is not clear whether this re-
flects the axon protection mechanism in vivo (Conforti et al.,
2007). Altered gene regulation driven by the NAD� dependent
deacetylase sirtuin 1 (Sirt1), a nuclear enzyme (Araki et al., 2004)
now appears unlikely and a role for Sirt1 was already hard to
reconcile with axon protection in Sirt1 null neurons (Wang et al.,
2005) (M. Avery, S. Sheehan, K. Kerr, J. Wang, and M. Freeman,
unpublished work). A non-nuclear site of action for Wld S now
casts further doubt on a mechanism involving nuclear Sirt1. In-
stead, our data are consistent with local axonal protection mech-
anisms, proposed previously based on in vitro data (Wang et al.,
2005). Although we demonstrate localization of Wld S variants to
axons in vivo additional targeting studies will be needed to ad-
dress whether the critical site is within the axon itself or in the cell
body cytoplasm.

Once Wld S is targeted to a specific non-nuclear site, the asso-
ciated, essential Nmnat activity (Araki et al., 2004) is likely to
produce a high local NAD� concentration. The existence of mul-
tiple pathways for NAD� catabolism (Berger et al., 2004) may
help explain why this increase has not been detected more gener-
ally (Mack et al., 2001; Araki et al., 2004), as once generated
NAD� will be rapidly and locally degraded. While it persists,
however, this tightly localized NAD� may be used to influence
downstream calcium signaling (Berger et al., 2004), bioenergetics
(Di Lisa and Ziegler, 2001; Wang et al., 2005), protein modifica-
tion (Berger et al., 2004) or other functions near its site of pro-
duction (Berger et al., 2007). The presence of Wld S in the mito-
chondrial fraction and the partial colocalization with a subset of
mitochondria in vitro, as observed for other proteins (Kang et al.,
2008), are consistent with a bioenergetics or signaling role, as
mitochondria require NAD� to synthesize ATP and to regulate
signaling pathways necessary for cell viability (Di Lisa and
Ziegler, 2001; Yang et al., 2007a). However, although Wld S axons
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maintain both NAD� and ATP levels after axon lesion better
than wild type (Ikegami and Koike, 2003; Wang et al., 2005), a
causal role for bioenergetic metabolism in Wld S mechanism is
unproven. A recent in vitro study suggests an alternative mecha-
nism based on Nmnat blocking production of reactive oxygen
species (ROS) from mitochondria (Press and Milbrandt, 2008).

Other data regarding the molecular mechanism of Wld S me-
diated axon protection suggest involvement of valosin-
containing protein (VCP) that binds the N-terminal 16 aa of
Wld S through a VCP binding motif (Laser et al., 2006). This
region is necessary but not sufficient for axon protection in mice
(Conforti et al., 2007) (Conforti, Wilbrey, Morreale, Janeckova,
Beirowski, Adalbert, Mazzola, Di Stefano, Hartley, Babetto,
Smith, Gilley, Billington, Genazzani, Ribchester, Magni, and
Coleman, unpublished work) and is necessary for full strength
phenotype in Drosophila (Avery, Sheehan, Kerr, Wang, and Free-
man, unpublished work). Another recent study showed that VCP
binding is required for Wld S to localize to discrete subnuclear
foci (Wilbrey et al., 2008). These nuclear foci were not required
for the protective phenotype, but may reflect a more general fine
localization mechanism that is relevant also to Wld S in other
compartments. VCP is a ubiquitous cellular protein with high
concentrations in the neuronal cytoplasm (Wang et al., 2004;
Laser et al., 2006). The high cytoplasmic VCP content is likely to
drive Wld S-VCP binding, particularly at sites where VCP is most
abundant. One such site is the endoplasmic reticulum (ER),
where protein binding interactions with Hrd1, gp78, and
Derlin-1 recruit VCP (Schulze et al., 2005). The presence of Wld S

in microsome fraction where detection of VCP has been also
reported (Madeo et al., 1998) is consistent with an ER localiza-
tion, although the incomplete colocalization with ER suggests
either that Wld S is restricted to ER subdomains and/or that it is
restricted to a different microsome component.

�NLS Wld S transgenic mice should considerably enhance
axon and synapse protection also in neurodegeneration models.
Thus far, Wld S showed significant axon protection in several
disorders such as progressive motor neuronopathy ( pmn) (Ferri
et al., 2003), peripheral neuropathy (Samsam et al., 2003) and
chronic or induced glaucoma (Howell et al., 2007; Beirowski et
al., 2009), but was less effective in others, most notably in mouse
models of familial ALS (Vande Velde et al., 2004; Fischer et al.,
2005). The modest or even undetectable neuroprotective effect in
Wld S/SOD1 mutants was unexpected, given that these mice have
axonal transport deficiencies (Vande Velde et al., 2004) and that
axonal transport impairment appears to underlie the pmn phe-
notype. In fact, Wld S does confer significant protection of motor
nerve terminals in SOD1 (G93A) mutant mice at least up to 80 d
of age but not thereafter (Fischer et al., 2005), suggesting that the
age-dependent weakening of synaptic protection in Wld S mice
could explain its inability to alter the SOD1 phenotype strongly.
It will be important to test now whether the �NLS Wld S variant
could overcome this limit of neuroprotection.

We conclude that Wld S is able to exert extensive neuroprotec-
tive effects on axons and synapses through a non-nuclear action,
indicating an urgent need to address the roles of NAD� synthesis
and other Wld S functions such as VCP binding in these locations.
We show that the efficacy of Wld S can be increased by appropri-
ate subcellular targeting, so future studies can now address
whether the critical location is axonal or cytoplasmic, whether
mitochondria or one of the microsome compartments are in-
volved, and whether the enhanced protection offered by the
�NLS Wld S variant can be developed into more effective therapy
for axonopathies.
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