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Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) retrieval mode in
central nerve terminals during periods of intense neuronal activity. Despite this fact there are very few
real time assays that report the activity of this critical SV retrieval mode. In this paper we report a simple
and quantitative assay of ADBE using uptake of large flourescent dextrans as fluid phase markers. We show
that almost all dextran uptake occurs in nerve terminals, using co-localisation with the fluorescent probe
FM1-43. We also demonstrate that accumulated dextran cannot be unloaded by neuronal stimulation,
ndocytosis
luid phase
ynaptic vesicle
luorescence
M1-43
erve terminal

indicating its specific loading into bulk endosomes and not SVs. Quantification of dextran uptake was
achieved by using thresholding analysis to count the number of loaded nerve terminals, since monitoring
the average fluorescence intensity of these nerve terminals did not accurately report the extent of ADBE.
Using this analysis we showed that dextran uptake occurs very soon after stimulation and that it does not
persist when stimulation terminates. Thus we have devised a simple and quantitative method to monitor
ADBE in living neurones, which will be ideal for real time screening of small molecule inhibitors of this

key SV retrieval mode.

. Introduction

Neurotransmitter release is dependent on the fusion of small
ynaptic vesicles (SVs) with the neuronal plasma membrane. The
aintenance of neurotransmitter release is dependent on the sub-

equent retrieval and recycling of fused SVs. There are at least three
odes by which a SV can be internalised. Both clathrin-dependent

ndocytosis and kiss-and-run modes of retrieval internalise single
Vs (Edeling et al., 2006; Harata et al., 2006) and are the dominant
odes of SV retrieval during low intensity stimulation (Granseth et

l., 2006; Zhang et al., 2009; Zhu et al., 2009). However, during high
ntensity stimulation another SV endocytosis mode is triggered to
ncrease the retrieval capacity within the nerve terminal, called
ctivity-dependent bulk endocytosis (ADBE) (Cousin, 2009). ADBE
s an activity-dependent fluid phase uptake mode that generates
ndosome-like structures direct from the plasma membrane. SVs
an then bud from these endosomes to rejoin the recycling pool of

Vs (Richards et al., 2000). Due to its large capacity, ADBE is the
ominant SV retrieval mode in central nerve terminals during high

ntensity stimulation.

Abbreviations: SV, synaptic vesicle; ADBE, activity-dependent bulk endocytosis.
∗ Corresponding author. Tel.: +44 131 650 3259; fax: +44 131 650 6537.

E-mail address: M.Cousin@ed.ac.uk (M.A. Cousin).

165-0270/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2009.09.016
© 2009 Elsevier B.V. All rights reserved.

Fluorescence-based approaches have been predominantly
employed to visualise SV recycling in neuronal culture, mainly due
to the fact that it is difficult to directly measure either SV fusion
or retrieval in a typical small central nerve terminal. The great
majority of these methods utilise either the uptake of small fluores-
cent molecules (such as FM1-43, Cochilla et al., 1999; Cousin and
Robinson, 1999) or the fusion of SV proteins to fluorescent proteins
that report the pH of their immediate environment (Ryan, 2001).
Unfortunately these methods do not differentiate between differ-
ent SV retrieval modes such as clathrin-dependent endocytosis and
ADBE. Therefore it is impossible to determine the contribution of
either mode to SV retrieval during intense stimulation.

Because of the limitations in existing fluorescence approaches,
we decided to establish a selective assay of ADBE, using dex-
tran, a large inert fluid phase marker. Fluorescent-tagged dextrans
are too large to be internalised within a single SV (Berthiaume
et al., 1995; Araki et al., 1996; Holt et al., 2003; Teng et al.,
2007). This means that any observed internalised fluorescence
should be due to ADBE, since all other SV retrieval modes occur
at the level of a single SV. We now report the development of
a reliable, quantifiable and accurate method to monitor ADBE in

a typical central nerve terminal in culture. The extent of ADBE
was monitored by quantifying the number of nerve terminals
loaded with dextran, rather than the fluorescence intensity of
the nerve terminals themselves. This simple and efficient assay
will allow the molecular mechanism of ADBE to be specifically

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:M.Cousin@ed.ac.uk
dx.doi.org/10.1016/j.jneumeth.2009.09.016


Neuro

m
g

2

2

m
E
o

2

p
a
p
I
c
N
m
5
7

2

c
t
f
1
u
a
i
t
g
N
a
w
(
u
t
e
g

2

F
p
r
r
v
m
c
d
d
i
(
t
r
a
b
l
n

E.L. Clayton, M.A. Cousin / Journal of

onitored using both pharmacological and molecular technolo-
ies.

. Materials and methods

.1. Materials

FM1-43, tetramethyrhodamine–dextran, penicillin/strepto-
ycin, phosphate buffered salts, foetal calf serum and Minimal

ssential Medium were obtained from Invitrogen (Paisley, UK). All
ther reagents were from Sigma (Poole, UK).

.2. Primary culture of cerebellar granule neurones

Primary cultures of cerebellar granule neurones were pre-
ared from the cerebella of 7-day old Sprague–Dawley rat pups
s previously described (Tan et al., 2003). All experiments were
erformed on neuronal cultures between 8 and 10 days in vitro.

n all experiments granule neurone cultures were removed from
ulture medium and repolarised in incubation medium (170 mM
aCl, 3.5 mM KCl, 0.4 mM KH2PO4, 20 mM TES (N-tris[hydroxy-
ethyl]-methyl-2-aminoethane-sulphonic acid), 5 mM NaHCO3,
mM glucose, 1.2 mM Na2SO4, 1.2 mM MgCl2, 1.3 mM CaCl2, pH
.4) for 10 min before starting experiments.

.3. Dextran internalisation protocol

Cultures were mounted in a Warner (Hamden, CT, USA) imaging
hamber (RC-21BRFS) and SV turnover was stimulated by applica-
ion of 50 mM KCl (50 mM NaCl removed to maintain osmolarity)
or defined time periods. Tetramethyrhodamine–dextran (either
0 kDa or 40 kDa, both 50 �M) was present either during the stim-
lus followed by immediate washing, or absent during stimulation
nd then present for 2 min after stimulation. Cultures were imaged
mmediately after these experimental protocols had finished. Dex-
ran uptake was visualised by exciting the cultures at 550 nm and
athering fluorescence emission at greater than 575 nm using a
ikon Diaphot epifluorescence microscope (Yokyo, Japan) and 20×
ir objective. In all experiments the gain and exposure settings
ere fixed. Fluorescent images were captured using a Hamamatsu

Hamamatsu City, Japan) Orca-ER CCD digital camera and processed
sing offline imaging software (Simple PCI, Compix Imaging Sys-
ems, USA). In all experiments 10 fields of view were captured for
ach coverslip of neurones and at least 3 coverslips were investi-
ated for each experimental condition (30 fields of view in total).

.4. Analysis of dextran uptake

Dextran uptake was analysed using two different approaches.
irstly the average fluorescence intensity of individual dextran
uncta was calculated. This was achieved by selecting a defined
egion of interest and manually assigning cloned copies of the
egion to all labelled puncta in a field of view. For each field of
iew the average fluorescent intensity per region of interest was
easured, then by combining all fields across coverslips for each

ondition the final average dextran fluorescence per puncta was
etermined. Second, the number of nerve terminals containing
extran puncta was determined. This was achieved by count-

ng the number of fluorescent puncta in a defined field of view
130 �m × 130 �m). Thresholding analysis was performed using
he Simple PCI software to discount regions that were too large to

epresent individual nerve terminals (diameter greater than 2 �m)
nd regions so small (less then 300 nm) that they represented
ackground noise. This lower limit was selected since it is the reso-

ution limit for fluorescence light microscopy (1.22�/2 × N.A.). The
umber of dextran puncta in all 10 fields of view was averaged,
science Methods 185 (2009) 76–81 77

and then these values were averaged between coverslips from the
same experimental condition. To ensure the density of nerve termi-
nals was consistent between experimental conditions, experiments
were performed on the same set of cultures.

2.5. Co-localisation of dextran uptake with nerve terminals

Cultures were stimulated with elevated KCl (50 mM) for 2 min
in the presence of either 10 kDa or 40 kDa tetramethyrhodamine–
dextran (50 �M). Dextran was washed away immediately after
stimulation and loaded dextran was imaged using excitation at
550 nm (emission of >575 nm). After a 10-min rest period cultures
were loaded with FM1-43 (10 �M) that was co-applied during a
2-min KCl stimulation. Dye was washed away immediately after
stimulation. Dye loading was visualised by excitation at 480 nm,
while monitoring emission at greater than 510 nm. Co-localisation
of dextran and FM1-43 puncta was achieved by overlaying cap-
tured images from both the dextran and FM1-43 loaded fields. The
extent of co-localisation was determined by counting the number
of dextran labelled puncta in a defined region, and then calculating
the number of dextran puncta which corresponded to a FM1-43
labelled synapse and vice versa. These values were calculated and
averaged across 3 fields of view from independent coverslips.

2.6. Unloading of dextran puncta from nerve terminals

Cultures were stimulated with elevated KCl (50 mM) for 2 min
in the presence of either 10 kDa or 40 kDa tetramethyrhodamine–
dextran (50 �M). Dextran was washed away immediately after
stimulation and loaded dextran was imaged using excitation at
550 nm (emission of >575 nm). After a 30-min rest period cultures
were stimulated for 2 min with elevated KCl (50 mM). A second
image was then captured using the same imaging settings. The
number of dextran puncta released by stimulation was calculated
by counting the number of dextran labelled puncta in a defined
region before and after stimulation. This value was averaged with
others from identical experiments from 3 independent coverslips.

3. Results

3.1. Fluorescent dextrans are internalised in typical central nerve
terminals in culture

To confirm the specificity of dextran uptake as a marker of ADBE,
we first determined whether uptake occurred at synaptic sites. Two
different dextran sizes (10 kDa or 40 kDa tetramethyrhodamine–
dextran) were chosen to determine the size of particle that could
be accumulated by fluid phase bulk uptake. Cultures were stim-
ulated with 50 mM KCl to evoke ADBE in the presence of either
the 40 kDa or 10 kDa dextran. After washing, a punctate loading
was observed for both dextrans (Fig. 1A and D). To determine
whether these puncta corresponded to synaptic sites, the same
cultures were stimulated in the presence of the small fluorescent
dye FM1-43 to load all recycling membrane compartments. A char-
acteristic punctate pattern of FM1-43 loading was observed after
this protocol (Fig. 1B and E). The subcellular distribution of both
accumulated dextran and FM1-43 was then compared by overlay-
ing the images (Fig. 1C and F). There was a striking co-localisation
of dextran puncta with FM1-43 for both 10 kDa and 40 kDa dex-
trans (Fig. 1G) illustrating that almost all dextran uptake occurred

in nerve terminals. When the reciprocal analysis was performed,
only a subset of nerve terminals were found to accumulate dex-
tran (approximately 60% for 10 kDa dextran and 35% with 40 kDa
dextran, Fig. 1H). Thus both 40 kDa and 10 kDa dextrans are only
internalised by central nerve terminals during strong stimulation,
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Fig. 1. Large fluorescent dextrans are accumulated in nerve terminals. Granule neurone cultures were stimulated with elevated KCl (50 mM) for 2 min in the presence of
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0 �M of either 10 kDa or 40 kDa tetramethyrhodamine–dextran. Dextran was was
M1-43 using a 2-min stimulation with 50 mM KCl. Dye was washed away immedi
extran and then loaded with FM1-43 (B, for 10 kDa dextran or E for 40 kDa dextran
uantification of either the extent of dextran co-localisation with FM1-43 (G) or FM

owever this uptake occurs in a distinct subpopulation of nerve
erminals.

.2. Fluorescent dextrans are not released after their
nternalisation

Having shown that both 10 kDa and 40 kDa dextrans could be
nternalised into nerve terminals, we next assessed whether they
ould also be released in a stimulation-dependent manner. A large
omponent of stimulation-dependent unloading of either dextran
ould suggest a non-specific uptake into single SVs, since these
ill readily fuse with the plasma membrane on stimulation. Cul-

ures were loaded with either 10 kDa or 40 kDa dextran using

Cl stimulation and after a 30-min rest period were subjected

o a KCl stimulus to attempt to release the marker. Images were
cquired both before and after KCl application and then overlaid
o determine the number of dextran puncta that disappeared dur-
ng stimulation (Fig. 2). When this analysis was performed very

ig. 2. Large fluorescent dextrans are not released by nerve terminal stimulation. Gran
etramethyrhodamine–dextran (D–F) using elevated KCl (50 mM) for 2 min. Dextran was w
ith 50 mM KCl for 2 min. Images were captured either before (A and D) or after (B and E

he field of view before (green) and after (red) stimulation. (G) Quantification of the num
way immediately after stimulation. After 10 min cultures were loaded with 10 �M
fter stimulation. Images show cultures loaded with either 10 kDa (A) or 40 kDa (D)
ged images (C and F) show the overlay between dextran (green) and FM1-43 (red).
co-localisation with dextran (H) is displayed (±S.E.M., n = 3).

few puncta disappeared, suggesting little release of either 10 kDa
or 40 kDa dextran had occurred (Fig. 2G). This confirms that both
dextrans were not internalised into SVs, since they would have been
released by this stimulation protocol.

3.3. Fluorescent dextran uptake is rapid and does not occur after
stimulation

Having confirmed that fluorescent dextrans can be internalised
but not released during intense nerve terminal stimulation, we
next determined the speed of their uptake. ADBE has traditionally
been thought to be a slow process that persists for minutes after
termination of stimulation (Koenig and Ikeda, 1989; Takei et al.,

1996; Gad et al., 1998; Richards et al., 2000). However this view has
been recently challenged, with a number of complementary stud-
ies demonstrating a rapid activation and inactivation that closely
follows the depolarising stimulus (Teng et al., 2007; Wu and Wu,
2007; Clayton et al., 2008).

ule neurone cultures were loaded with 50 �M of either 10 kDa (A–C) or 40 kDa
ashed away immediately after stimulation. After 30 min cultures were stimulated

) the second KCl stimulation. Merged images (C and F) show an overlaid image of
ber of dextran puncta that did not disappear with stimulation (±S.E.M., n = 3).
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Fig. 3. Large fluorescent dextrans are only accumulated during, not after, strong stimulation. Granule neurone cultures were loaded by co-applying 50 �M of 40 kDa
tetramethyrhodamine–dextran with elevated KCl (50 mM) for increasing periods of time (A, 10 s; B, 60 s; C, 2 min) followed by immediate washing. Alternatively cultures
w E, 60 s
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ere stimulated with elevated KCl (50 mM) for increasing periods of time (D, 10 s;
or 2 min. The schematic located above the images illustrates the loading protocol
rrow indicates where dextran was washed away. Images displayed are representa

To determine the kinetics of dextran internalisation, we incu-
ated cultures with the 40 kDa dextran and then stimulated for

ncreasing periods of time with 50 mM KCl (Fig. 3A–C). A robust
ptake of dextran was observed within 10 s of stimulation, con-
rming that ADBE is rapidly triggered in central nerve terminals
Fig. 3A). A comparable loading was also observed for all longer
timulation periods, suggesting that the majority of dextran uptake
ccurred within the first 10 s (Fig. 3B and C). To determine whether
DBE also persisted after termination of stimulation, a similar pro-

ocol was performed, however in this instance the 40 kDa dextran
as applied for 2 min immediately after varying periods of KCl

timulation. A dramatic decrease in the extent of dextran loading
as now observed at all time points (Fig. 3D–F), indicating that
DBE terminated co-incident with cessation of stimulation. Thus
DBE is triggered immediately by intense stimulation and does not
ersist when this stimulation ceases.

.4. Quantification of activity-dependent dextran uptake

The differences in the extent of 40 kDa dextran uptake occur-
ing either during or after stimulation are striking, however for
his assay to be used as a readout of the extent of ADBE these dif-
erences have to be easily quantified. Quantification of the extent
f loading of small extracellular probes such as FM1-43 is usu-
lly performed by determining the fluorescence intensity of visible
uncta (Cochilla et al., 1999; Cousin and Robinson, 1999). This pro-
ides a reliable estimate of the number of SVs that have retrieved
uring the loading period, since the uptake of these molecules
s quantal (Ryan et al., 1997). We performed a similar analysis
o determine whether differences in the intensity of fluorescent
extran puncta were a reliable reporter of the extent of ADBE.
o our surprise we observed no difference in the average fluores-
ence intensity of dextran puncta for any experimental condition
; F, 2 min) followed by application of 50 �M dextran in the absence of stimulation
re hatched bars indicate KCl stimulation, and grey bars indicate dextran addition.
elds of view for these stimulation conditions.

(Fig. 4A). To highlight the fact that average fluorescence intensity
does not accurately report the extent of ADBE, the few dextran
puncta that were observed in the complete absence of stimulation
had the same average intensity as those that were formed during
stimulation (Fig. 4A). Therefore average intensity of individual dex-
tran puncta do not accurately report the extent of ADBE in central
nerve terminals.

Since there is no correlation between the fluorescence intensity
of dextran puncta and the extent of ADBE, we quantified dextran
uptake using a different approach. Rather than measuring their flu-
orescence intensity, we instead determined the number of dextran
puncta occurring within a defined region. We achieved this by using
standard thresholding analysis software to discount any dextran
puncta above 2 �m (which is too large for a single nerve terminal)
and below 300 nm (which is likely to be noise, since it is at the res-
olution limit of fluorescence microscopy). This method of analysis
now revealed striking differences between the number of dextran
puncta in cultures that were exposed to dextran during stimulation,
in comparison to after stimulation (Fig. 4B). For cultures incubated
with the 40 kDa dextran during stimulation, a maximum number
of puncta was observed within 10 s, confirming that the majority
of ADBE occurred very soon after initiation of stimulation (Fig. 4B).
Very little dextran uptake was observed in the absence of stimu-
lation, indicating the great majority of the recorded puncta during
stimulation came from internalised dextran. The lack of dextran
uptake without stimulation also indicates that it cannot drive its
own internalisation. In addition, the analysis highlighted that no
dextran puncta were observed when the marker was applied after

termination of stimulation, since the number of puncta was equiv-
alent to those in cultures that had received no stimulation (Fig. 4B).
Thus the extent of ADBE can be accurately quantified by calculating
the number of nerve terminals that take up dextran but not by the
average amount of dextran accumulated.
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Fig. 4. The number of dextran puncta, but not their fluorescence intensity reports
the extent of ADBE. Granule neurone cultures were loaded with 50 �M of 40 kDa
tetramethyrhodamine–dextran using the protocols described in Fig. 3. Cultures
were also incubated with dextran for 2 min in the absence of stimulation (−KCl).
(A) Average fluorescence intensity of puncta that were labelled with 40 kDa dextran
either during stimulation (grey bars) or after stimulation (open bars). (B) Num-
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er of fluorescent puncta that occurred either during stimulation (hatched bars)
r after stimulation (open bars). All experiments n = 3 ± S.E.M. One-way ANOVA,
**<0.001 between during and delayed for each KCl stimulation period; all other
onditions > 0.05.

. Discussion

We have developed a simple, quantitative assay of ADBE in
rimary neuronal culture using the uptake of large fluorescent dex-
rans. The assay accurately reports the extent of this SV retrieval

ode by quantifying the number of nerve terminals undergoing
DBE, not the amount of ADBE within individual nerve termi-
als.

.1. Dextran uptake selectively labels ADBE

The major hypothesis underlying the assay is that large inert
extrans will be excluded from retrieving SVs due to their size, but
ill be accumulated by ADBE as a fluid phase marker since this
ode retrieves larger volumes of extracellular fluid. Evidence pre-

ented in this paper suggests that this is the case. Firstly, only a
ubpopulation of nerve terminals accumulates dextran in compar-
son to FM1-43. If dextran were labelling single SVs, then a much
igher co-localisation between FM1-43 and dextran-containing
erve terminals would have been observed. Secondly, the great
ajority of accumulated dextran cannot be released by a subse-

uent stimulus. This suggests that dextran is not inside single SVs
hat are competent for fusion, in agreement with previous studies
Holt et al., 2003).
Theoretically both dextrans could fit inside a single SV. Assum-
ng the dextrans are globular proteins, the approximate diameter
f the 40 kDa dextran is 9 nm and the 10 kDa dextran is 5 nm
Lynch et al., 2008). Considering the lumen of a SV is approxi-

ately 24 nm in diameter (Zhang et al., 2009), at least one molecule
science Methods 185 (2009) 76–81

of dextran could theoretically be accumulated during stimulation.
However this is unlikely, since the loading concentration of dextran
employed (50 �M) should be low enough not to bias non-specific
fluid phase uptake into single SVs (volume accumulated by single
SV – 7 × 10−21 l). This is exacerbated by the fact that dextrans are
simple fluid phase markers and thus are not enriched on mem-
branes for internalisation like FM1-43 (Cochilla et al., 1999; Cousin
and Robinson, 1999), or are not actively clustered on membranes
as cargo for clathrin-dependent endocytosis (Edeling et al., 2006).
The same arguments also hold true for dextran accumulation into
SVs that are budding from endosomes. Since dextran is not actively
accumulated by ADBE, it will not be enriched within endosomes
and therefore it is unlikely that it will be a internalised inside a
budding SV.

The smaller 10 kDa dextran labels almost 60% of active nerve
terminals, whereas the larger 40 kDa dextran only labels approxi-
mately 35%. At first glance this seems to suggest that the smaller
dextran may partially label SVs, however its inability to be subse-
quently released strongly argues against this. In agreement with
a selective labelling of ADBE by this smaller dextran, its loading
follows an identical time course and pattern in response to trains
of action potentials of differing intensity (data not shown) to that
seen with 40 kDa dextran (Clayton et al., 2008). The disproportion-
ality in loading between the dextrans is most likely explained by
the fact that the 10 kDa dextran is accessible to the lumen of a for-
mative bulk endosome for a longer period of time than the large
dextran. For example, during both the formation and closure of
the bulk invagination a stage should be reached where the smaller
dextran will have access, but the 40 kDa will not. Since little is
known about the morphology of nascent bulk endosomes, differ-
ential accessibility of dextran molecules could provide important
real time information on both the dilation and closure of these
structures.

4.2. Quantification of dextran uptake

Large fluorescent dextrans have been employed to moni-
tor fluid phase uptake routes in non-neuronal cells for many
years. However, only a few groups have attempted to moni-
tor ADBE in neurones using the same approach (Holt et al.,
2003; Teng et al., 2007). Dextran uptake was used to visualise
fluid phase uptake in lizard neuromuscular junctions (Teng et
al., 2007), however no quantification was attempted. ADBE was
also monitored using dextran uptake in large bipolar nerve ter-
minals (Holt et al., 2003). However neither of these studies
examined the uptake of dextran in a typical small central nerve
terminal.

The key finding during characterisation of the assay was that
standard approaches previously used to quantify differences in
fluorescence intensity of loaded puncta do not accurately report
the obvious visual discrepancies in bulk dextran uptake. This is
probably due to a combination of factors. Firstly, extensive mor-
phological studies have shown that only a few bulk endosomes
are formed in a small nerve terminal during strong stimulation
(typically between 3 and 8 per nerve terminal; Evans and Cousin,
2007; Clayton et al., 2008, 2009). Secondly it is unlikely that
many dextran molecules are accumulated into bulk endosomes
even considering their larger size. Considering these two factors
it is easy to see why the dynamic range of the assay is not large
enough to accurately monitor differences in fluorescence inten-
sity of individual puncta. Fluorescent intensity measurements have

been used to estimate dextran uptake in bipolar nerve terminals
(Holt et al., 2003), however this system had a far higher proportion
of endosomes per nerve terminals (lower approximation 29 per
nerve terminal) possibly providing a narrow but useable dynamic
range.
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Since monitoring the fluorescence intensity of individual nerve
erminals did not provide an accurate quantification of ADBE, we
nstead monitored the number of nerve terminals that accumulated
extran within a defined region. Once thresholding analysis was
erformed to discount puncta that were too large to be nerve ter-
inals and small enough to be discounted as noise, we obtained an

ccurate estimation of the extent of ADBE throughout the neuronal
ulture. This method of quantification is robust and has recently
een employed to monitor both the physiology and molecular
echanism of ADBE. For example, this approach was used to mon-

tor the activity-dependent triggering of ADBE by different trains
f action potentials (Clayton et al., 2008). In addition it has been
sed to quantitatively measure inhibition of ADBE by a range of
harmacological antagonists (Clayton et al., 2009). Importantly the
esults obtained from these dextran uptake assays were indepen-
ently corroborated by morphological analysis at the level of the
ingle nerve terminal using the fluid phase marker horse radish
eroxidase (Clayton et al., 2008, 2009).

A potential drawback of the assay is that it does not differentiate
etween internalised and non-internalised dextran. We are confi-
ent that the majority of the signal we observe is due to internalised
robe, since very dextran puncta are observed in the absence of
timulation. To overcome this problem we are currently attempting
o conjugate dextran to the pH-sensitive dye CypHer5E which only
uoresces in acidic environments (Adie et al., 2002). This should

ncrease the dynamic range of the assay further by only reporting
ignal from dextran accumulated inside acidic endosomes.

Since this dextran uptake assay has an extremely simple pro-
ocol and post-hoc analysis, it should easily translated into a
igh throughput assay system. This would allow the screening of
mall molecule inhibitors with potential effects on ADBE. Alter-
atively the assay can also be translated into a high-resolution
echnique, allowing investigations of ADBE at the level of the single
eurone. This has recently been achieved using shRNA silenc-

ng of syndapin expression in primary neuronal culture (Clayton
t al., 2009). In this assay the number of dextran puncta in
ndividual transfected neurones were calculated to estimate the
nhibition of ADBE during syndapin knockdown. Thus this sim-
le assay has a number of potential applications to investigate
oth the physiology and molecular mechanism of ADBE, a key
etrieval mode for the nerve terminal during intense neuronal
ctivity.
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