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Summary  47 

The incorporation of genetic information such as quantitative trait loci (QTL) data into 48 

breeding schemes has become feasible as DNA technologies have advanced. Such 49 

strategies allow the frequency of desirable QTL to be controlled over a predefined time 50 

frame, allowing the allele trajectory for QTL to be manipulated. A continuous 51 

approximation to changes in allele frequency was developed to approximate the selection 52 

procedure as a continuous rather than a discrete process, and analytical solutions were 53 

obtained which shed light on how allele trajectories behave under different objective 54 

functions. Three different objectives were considered: (1) minimising the total selection 55 

intensity; (2) minimising the sum of squared selection intensities; and (3) equalising the 56 

selection intensity applied over time. Simulations and genetic algorithms were performed 57 

to test the accuracy and robustness of the continuous approximation. Theory shows that 58 

firstly the total selection intensity required for moving an allele from a starting frequency 59 

to another frequency point can be predicted independent of its trajectory, and secondly 60 

that objective (2) and (3) are equivalent as the number of selection opportunities (T) 61 

becomes large. The prediction of total selection intensity provides good fit for these two 62 

objectives, with the accuracy of prediction improving as T increases. However, for (1) the 63 

continuous approximation does not fit due to the existence of a discontinuous solution in 64 

which the continuous approximation is applied before the frequency of selected allele 65 

reaches 0.5 followed by rapid fixation. 66 

67 
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1. INTRODUCTION 68 

As identification of quantitative trait loci (QTL) becomes routine, genotype assisted 69 

selection (GAS) has become possible and even desirable for populations with managed 70 

breeding. GAS is where the frequency of a known allele, which affects the trait of 71 

selection, is managed generation by generation within the population, often to fixation. 72 

One of the known hurdles of the application of GAS is the Gibson effect, a phenomenon 73 

whereby GAS results in higher short-term genetic gain but lower long-term genetic gain 74 

than conventional selection methods which ignore the information on QTL (Gibson 1994). 75 

The explanation is, although GAS can fix the QTL in shorter time, the loss of variation 76 

on polygenes associated with the strong positive selection of QTL will lead to reduced 77 

selection response on polygenes, which can not be fully recovered. Various authors have 78 

shown that this effect can be ameliorated by optimising the selection procedures for the 79 

QTL over multiple generations, i.e. the optimisation of allele trajectory (Dekkers & van 80 

Arendonk 1998; Dekkers & Chakraborty 2001; Villanueva et al. 2002; Meuwissen & 81 

Sonesson 2004; Villanueva et al. 2004; Sanchez et al. 2006).  82 

  83 

This optimisation process has led to a variety of approaches to manage the trajectory: 84 

maximising progress over the long term (Pong-Wong & Woolliams 1998; Villanueva et 85 

al. 2004), with pre-defined time horizons (Dekkers & van Arendonk 1998); or 86 

constrained to a constant rate of inbreeding (Villanueva et al. 2002). These studies make 87 

selection decisions based on estimated breeding values in one form or another, so 88 

optimum allele trajectory is therefore defined only implicitly.  However the method of 89 

Dekkers & van Arendonk (1998) allows the optimised trajectory to be defined explicitly 90 
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as a set of time points for the allele frequency, so defining the selection pressure that is 91 

directly applied to the allele to be analysed.  Based on an observation of Dekkers & van 92 

Arendonk (1998), Meuwiseen & Sonesson (2004) directly defined the allele trajectory by 93 

making selection intensity on the allele constant over the period of selection. More 94 

recently, Sanchez et al (2006) pointed out that the effective population size was inversely 95 

proportional to the square of selection intensity, so that the optimum trajectory to 96 

minimise the accumulated inbreeding due to fixation should minimise the average 97 

squared selection intensity on the major gene over generations up to the given fixation 98 

time, in another words it should minimise the sum of squared selection intensities 99 

(simplified as sum of squared intensities thereafter) applied to the allele over generations. 100 

  101 

A common theme to these studies of allele trajectories is that they use discrete generation 102 

models. This discrete time model imposes limitations on obtaining analytical solutions 103 

for the problem of approximating the optimal pathway, and the lack of analytical solution 104 

leaves unresolved the degree to which these approaches are distinct. Furthermore, the 105 

iterative solutions from the equalising selection intensities method leave open questions 106 

such as what is the total selection intensity (simplified as total intensity thereafter) 107 

required to fix the QTL given the circumstances. Therefore, this study establishes a 108 

continuous time model of the process of fixing an allele, and explicitly optimises the 109 

trajectory with respect to various objective functions of the selection intensity applied to 110 

the gene using the calculus of variations. This continuous model serves as a common 111 

platform allowing further investigation and comparison between different optimising 112 

objectives. The predictions from the continuous time model are compared to 113 
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optimisations using discrete generations to quantify the precision of the continuous time 114 

model.  115 

 116 

2. METHOD 117 

(i) Theory 118 

Continuous Approximations   119 

Consider the process of moving a desired allele Q from frequency p0 at time 0 to pT at 120 

time T in discrete generations and assume for simplicity of notation that there is only one 121 

other allele, q, at that locus. The trajectory consists of the set of frequency points 122 

 and optimisation of the trajectory is the set of pt that maximise a certain 123 

objective function. Commonly, when considering fixation of alleles in GAS  124 

and , as it models the fixing of a new mutation occurring in a diploid population of 125 

size N. This scenario is equivalent to the situation of eliminating a known allele from a 126 

population (  and ), as removing one allele forces the frequency of all 127 

alternative alleles to 1. However the theory developed here will not be specific to these 128 

starting and finishing frequencies.  129 

 130 

In this paper, following Meuwissen & Sonesson (2004) and Sanchez et al (2006), the 131 

objective functions considered are functions of the selection intensity applied directly to 132 

the allele. Let  be the frequency of Q allele of individual k born at time t, so  will 133 

take values 0, ½ or 1 depending on whether k has genotype qq, qQ or QQ. Using  as 134 

the definition of an additive trait of selection, the population mean is pt, the variance is 135 

, the selection intensity  can be defined as: 136 
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  (1) 137 

for , and the trajectory is a sequence of points . 138 

 139 

The trajectory can be considered in continuous time rather than as a set of discrete 140 

generations. It is an assumption, to be tested later, that the use of continuous time will 141 

approximate the original problem better as the selection opportunities for changing allele 142 

frequency become greater, i.e. when T is large. Let the trajectory over time be given 143 

by , which is assumed to be a differentiable function of time t, then 144 

 wher  ,and . Therefore 145 

provided the trajectory  is differentiable so that its derivative, , exists, the sums 146 

over of the trajectory may be approximated by integrals.  147 

 148 

Different objective functions that optimise the trajectory are considered and analysed 149 

using the continuous approximation, including: (1) the trajectory that minimises the total 150 

intensity; (2) the trajectory that minimises the sum of squared intensities; and (3) the 151 

trajectory that equalises selection intensity. Due to the amount of mathematical details 152 

involved, only the essential information and core equations are shown in this section, 153 

however, more details can be found in Appendix 1. 154 

 155 

Minimising the Total Intensity  156 

The total intensity for fixing an allele with a trajectory p(t) as T becomes large can be 157 

given by: 158 
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  (2) 159 

Transformation and integration of the above equation gives the following:  160 

  (3) 161 

Note that this solution only depends on the starting point p0 and the ending point pT, 162 

suggesting that there is no such thing as minimising the total intensity if the 163 

approximation is valid – the total intensity is fixed between a pair of frequency points 164 

regardless of its trajectory or the value of T. For a new mutation moving to fixation, 165 

 and , the total intensity applied to the allele during fixation is 166 

, which tends to  as N becomes large, i.e. when starting 167 

frequency approaches zero.  168 

 169 

Minimising Sum of Squared Intensities  170 

The specific optimisation considered by Sanchez et al (2006) was the trajectory of the 171 

allele frequencies required to minimise the impact of the process on accumulated 172 

inbreeding during the fixation. It is assumed here that the accumulated inbreeding can be 173 

well-approximated from summed rates of inbreeding (∆F) achieved in each generation, 174 

and that the allele can be fully identified throughout the process so its frequency can be 175 

explicitly managed over time. The value of ∆F will vary according to the impacts of all 176 

the different selection advantages inherent in a selection scheme, not only the carrier 177 

status of individuals for the allele of interest (Woolliams & Bijma 2000), and will depend 178 

upon the square of the selection intensities applied (Woolliams et al. 1993). Therefore the 179 
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objective for minimising the impact of the fixation is to minimise , which can be 180 

shown as follows: 181 

  (4)                                   182 

Solving the above equation gives  or, equivalently as: 183 

  (5) 184 

, where A and B are constants of integration and vary depending on p0, pT, and T. Values 185 

of A and B can be obtained by substituting these parameters into Equation (5). For 186 

example, assume that fixation is desired from a new mutation, i.e., p0 = (2N)-1 ≈ 0 for 187 

large N, and pT = 1. With these conditions B = π/2 and A = -π/T to give 188 

. The optimal trajectory for minimising the sum of 189 

squared intensities applied to the allele is therefore a segment of a sine wave.    190 

 191 

Equalising Selection Intensities  192 

Based on the observation from Dekkers & van Arendonk (1998) that the selection 193 

intensities achieved in each generation are roughly constant in their simulated result with 194 

best long term gain, Meuwissen & Sonesson (2004) suggest optimising the trajectory to 195 

maximise the cumulative selection response is by making the selection intensities 196 

constant over time. Applying this objective in the continuous approximation gives a 197 

differential equation that is identical to that obtained above for the objective of 198 

minimising the sum of squared intensities. This indicates that the objective from 199 

Meuwissen & Sonesson gives an optimum trajectory identical to that from minimising 200 

the sum of squared intensities. This conclusion is analogous to the minimisation of sum 201 
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of squares for n numbers whose sum is fixed to some value c − the solution has all 202 

numbers equal to c/n. Therefore the theory suggests that as the continuous approximation 203 

provides becomes more apt, so the distinction between the objectives of Sanchez et al 204 

(2006) and Meuwissen & Sonesson (2004) disappears. The question remains over how 205 

close an approximation. 206 

 207 

(ii) Simulation Methods 208 

Two types of simulation methods are included in this section, the first a genetic algorithm 209 

with small population size (N=10), and the other a simulation of breeding populations 210 

with large population size (N=500). Together they test the validity and robustness of the 211 

continuous approximation under various scenarios.  212 

 213 

Genetic Algorithm  214 

The genetic algorithm used differential evolution (Shepherd & Kinghorn 1992) to 215 

optimise the allele frequency in order to find the optimal trajectories with N=10, for the 216 

three objectives considered above: (i) equalising selection intensities; (ii) minimising sum 217 

of squared intensities; and (iii) minimising total intensity. Equalising the selection 218 

intensities was achieved by minimising the sum of all squared differences among the 219 

selection intensities. 220 

 221 

Simulations of Breeding Schemes 222 

Computer simulations of the breeding schemes start with a base population (t=0) of 500 223 

diploid individuals and this population size was maintained through out the simulation. 224 
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One individual from the base population was randomly chosen to carry a single copy of 225 

positive allele (initial frequency ) with allelic effect a, which equals 0.5 as 226 

the addition or removal of one positive allele result a change of 0.5 in terms of frequency. 227 

Random mating with possible selfing was assumed for simplicity, i.e. the genetic make-228 

up of the offspring was randomly assigned from selected parents with replacement. As 229 

the theory shows that the objective of minimising sum of squared intensities resembles 230 

the objective of equalising selection intensities when T is large, only the objective of 231 

equalising selection intensities is used for its ease to execute. In addition, other selection 232 

strategies with oscillating intensities in a saw tooth pattern, i.e. intensity profiles of the 233 

form {0.3, 0.1, 0.3, 0.1…}, were also employed to test whether the continuous 234 

approximation still holds under more extreme conditions.  235 

 236 

One should note that the time unit applied in this study was the opportunities for selection 237 

and mating. Hence the word cohort will be used hereafter to represent a group of animals 238 

which are the direct result of last selection and mating. The frequency of the positive 239 

allele was then calculated and recorded for each cohort, and simulation ended when the 240 

positive allele was either fixed (pt  ≥ (2N-1)/2N) or lost (pt ≤ (2N)-1). In the case of the 241 

allele being lost, the data was excluded from the final data set as we considered the 242 

pathway of allele fixation only. One thousand simulations were run for each set of 243 

parameters and the average number of cohorts required to fix selected allele was obtained 244 

to be compared to the expected number of cohorts required from the approximation. 245 

 246 
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Discrete generation: A pre-defined constant selection intensity (i) was applied over every 247 

cohort by restricting the average frequency of the selected individuals. Calculation was 248 

then performed for each cohort to obtain the target pt+1 from the pt: 249 

  (6) 250 

Selection candidates were composed of all individuals from the current cohort and were 251 

ranked according to their allelic value. Selection candidates were then removed 252 

sequentially from lower rank until the target pt+1 was achieved. However, as mating 253 

between selected parent are random, the average allele frequency in the resultant 254 

population could not be guaranteed and may deviate from the target pt+1. For oscillating 255 

intensities, a similar procedure as described above was used, except that the intensity is 256 

not constant over every cohort. 257 

 258 

Overlapping generation: The overlapping generation model was largely identical to the 259 

discrete generation model except that the candidates available for selection were not only 260 

restricted to the current cohort, but also extended to include 2 previous cohorts. For 261 

selection candidates with same allelic value, a randomisation process was used to 262 

determine which candidate would become a parent. Generation interval (L) was 263 

calculated as the age of parents (in units of cohorts) when the offspring born.  264 

 265 

When several cohorts contribute to the selection, the genetic variance is higher than 266 

shown in Equation (6), i.e. . Apart from the variance within all selected 267 

cohorts, the true genetic variance also contains an additional term for the variance 268 

between different cohorts: 269 
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  (7) 270 

where E[p] denotes expectations over the selected cohorts. Simulations were carried out 271 

using Equation (6) with Vtotal replacing . This was compared to using Equation 272 

(6) without modification.  273 

 274 

3. RESULTS 275 

As shown in the theory, the continuous approximation provides a prediction for the total 276 

intensity required to move a target allele from a specific frequency to another. The 277 

prediction is only affected by the starting and ending frequencies alone, and is 278 

independent of T or N, although in the case of new mutation, the starting frequency is 279 

inversely related to the population size. Assuming fixation is the goal (i.e. ending 280 

frequency is 1), the predicted total intensity is   (≈ 4.44) for fixing a mutation in a 281 

large population, and 3.80 for a starting frequencies of 0.05. 282 

 283 

(i) Goodness of fit for small T, using genetic algorithm 284 

Table 1 summarises and compares the results obtained from different GA evolutions and 285 

the continuous approximation for N = 10, i.e. p0 = 0.05, with small T values up to 11.  For 286 

these parameters the predicted total intensity from continuous approximation is 3.80 287 

regardless of trajectory, in the other words, regardless of the objective functions of the 288 

GA evolution. When equalising intensities across generations, the precision of predicting 289 

total intensity was very good initially with an error of 1.7% at T = 2, deteriorating as T 290 

increases, and then improving again, with the greatest error of predicting the total 291 

intensity being 9.2% at T = 5. The continuous approximation introduces marginally 292 
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greater errors to the predicted total intensity when minimising sum of squared intensities, 293 

with errors peaking at 12.3% for T = 5 and reducing to 10.4% for T = 11. Note the similar 294 

trend on the goodness of fit of the continuous approximation varies with T for both 295 

objectives. A very different trend was observed for the objective of minimising total 296 

intensity, with total intensity continuing to reduce with T to 3.06 at T = 11 which is very 297 

different from the prediction of 3.80. Reasons leading to this observation will be 298 

explained in the discussion section.  299 

 300 

Looking at the profile of these different GA evolutions reveals more detail about them. 301 

The intensity profile of equalising intensities objective is quite similar to minimising sum 302 

of squared intensities objective with their intensity achieved each generation became 303 

more and more uniform over time (Figure 1a and 1b). This illustrates the derivation 304 

showing that the solutions for the two objectives converge given the validity of the 305 

continuous approximation. 306 

 307 

Assuming the convergence of objectives of equalising intensities and minimising sum of 308 

squared intensities, the minimum sum of squared intensities predicted from the 309 

continuous approximation is equal to 3.802/T since .  Figure 1a shows that as 310 

T increases up to 11, the selection intensities become much more uniform, although Table 311 

1 shows the prediction of minimum sum of squared intensities still has significant error at 312 

T = 11 despite that the magnitude of the error is reducing. It might be expected that 313 

minimising the sum of squared intensities will have approximately twice the error of 314 

minimising total intensity (see Appendix 2).  315 
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 316 

(ii) Goodness of fit for large T, using simulations 317 

The simulations allowed the goodness of fit to be tested for large T by varying the 318 

selection intensity applied. For the results presented in this section, p0 is 0.001 (N=500), 319 

with the predicted total intensity being 4.35 from the continuous approximation.  320 

 321 

Discrete Generation with Constant Selection Intensity  322 

The comparisons between simulation of breeding with discrete generation and the 323 

continuous approximation for a range of different but constant selection intensities 324 

applied are shown in Figure 2. The results are presented as the mean number of cohorts 325 

required to fixation with the expected number of cohort being calculated by dividing the 326 

expected total intensity with the constant intensity applied during the simulation. Figure 2 327 

shows that for constant intensities > 0.5, where T < 10, the scale of errors agrees with the 328 

result shown in Table 1. However, the simulations show that the approximation fits the 329 

results progressively more closely for all intensities < 0.5. For all intensities < 0.75, the 330 

differences between prediction and actual results are less than one cohort.  331 

 332 

Discrete Generation with Oscillating Selection Intensity  333 

The independence of the total intensity applied to trajectory was further tested by 334 

oscillating selection intensities across cohorts as in a saw tooth pattern. Table 2 shows 335 

comparison of total intensity applied for oscillating selection intensities patterns 336 

compared to constant selection intensity with same pair-wise average. Results show that 337 

the prediction errors are only slightly larger for oscillating selection intensities compared 338 
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to constant selection intensities with comparable average selection intensity. The 339 

approximation still provides good prediction under such conditions, with errors around 340 

2.3% for oscillating selection intensities {0.3, 0.1} and increased to 11.7% for selection 341 

intensities {0.6, 0.4}. The increase in error with higher selection intensities and lower 342 

fixation times would be expected from the result of constant selection intensities. There 343 

were only small differences between complementary patterns, i.e. {0.3, 0.1} compared to 344 

{0.1, 0.3} (results not shown). 345 

 346 

In all breeding simulations, the prediction often appears as an under-estimation of the 347 

simulated result, which is unsurprising because that the selection intensity applied in the 348 

simulation could not always be achieved, i.e. in the last few cohorts the target p could 349 

exceed 1.0 in order to achieve the selection intensity applied – which is not possible. This 350 

is particularly important for large i selection, when only small selection intensity might 351 

have been required to move the frequency to 1.  352 

 353 

Overlapping Generation  354 

Table 3 summaries the results for simulations with overlapping generations. It shows total 355 

intensity required for fixation is predictable from the continuous approximation for low 356 

selection intensities but the % errors increase as selection intensity applied per cohort 357 

increases. When the unmodified Equation (6) was used, the result is almost identical to 358 

those shown in Figure 2. However the use of Vtotal, which represents the full genetic 359 

variance, introduces an additional error. The 8.4% error for intensity of 0.5 represents 360 
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approximately 1 cohort difference between predicted and observed time to fixation. In 361 

this case the mean actual number of cohorts was 9.4. 362 

 363 

4. DISCUSSION 364 

The theory developed in this paper shows that providing the continuous approximation is 365 

valid, then the total intensity applied to move between two frequencies is directly 366 

proportional to the difference between the arcsines of (1-2p) for the end points p0 and pT 367 

irrespective of trajectory − including standard logistic trajectories, . 368 

For fixation of a rare mutant, a frequent subject of interest, as p0 tends to 0 and pT tends to 369 

1, the total intensity tends to . Further the strategies of (i) equalising selection 370 

intensities throughout the trajectory (Sonesson & Meuwissen, 2004), and (ii) minimising 371 

the sum of squared intensities (Sanchez et al, 2006) converge to the same optimal 372 

trajectory which is a function of time described by a segment of a sine wave. The results 373 

showed that the goodness of fit of the continuous approximation became progressively 374 

better as T increased, with prediction errors for total intensity reducing becoming 375 

reasonable as  T ~ 10, or average i ~ 0.4 during the period. Further this result remained 376 

true for trajectories in which i was varied over time rather than constant, or where 377 

generations were overlapping rather than discrete.   378 

 379 

The continuous approximation will have a lack of fit for two reasons. First, a smooth 380 

curve is used to approximate a step function; second, the dominator for  in  is 381 

related to , not  which would be more natural for the use of the 382 

continuous approximation. This affects the goodness of fit under positive selection since 383 
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 is greater than expected from approximation by  when , 384 

but less than the approximation when . The sizes of error are 385 

comparable for the pair of  that are in equal deviation from 0.5. These trends are most 386 

extreme for p close to 0 or 1, or for small T when p(t) changes rapidly, and there are 387 

greater opportunities for cancelling when trajectories move from p < 0.5 to p > 0.5. 388 

 389 

The difference in the sign of errors when p is greater than or less than 0.5 helps to explain 390 

the results found for minimising the total intensity, since for all T a trajectory with total 391 

intensity less than predicted by the continuous approximation can be found (Table 1). 392 

Figure 3 shows the trajectories that minimise total intensity shown in Table 1, and it is 393 

seen the trajectory resembles a continuous curve for p < 0.5 with a jump in the final 394 

generation from close to 0.5 directly to 1. As T increases this represents a discontinuity in 395 

the trajectory, which can be seem as a combination of the continuous approximation from 396 

p0 (assumed < 0.5) to 0.5 and a direct jump from 0.5 to 1,  For T = 11 used in Table 1, the 397 

expected value from the discontinuous solution is 3.02 (c.f. 3.06) affirming the 398 

continuous approximation can fit well to intervals that do not span both sides of 0.5. 399 

. 400 

The existence of the discontinuous solution for minimising the total intensity creates a 401 

distinction between minimising sum of squared intensities and equalising selection 402 

intensities. The sum of squared intensities can be broken down into two components: the 403 

sum of selection intensity and the variance of selection intensity: 404 

 405 
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The strategy of equalising selection intensities promotes reduction in the sum of squared 406 

intensities by having no variance term, while the discontinuous solution is effective 407 

through reducing total intensity. For small T, the trajectory minimising the sum of 408 

squared intensities is temporarily effective in reducing the sum of squared intensities by 409 

reducing the total intensity acquired and therefore allowing some variance. However, as T 410 

increases the benefits from reducing total intensity become less than the penalty from the 411 

variance among the selection intensities, and the optimum trajectory moves towards the 412 

trajectory of equalising intensities (see Appendix 4).    413 

 414 

Genomics is at the start of giving values to many small segments of chromosomes, 415 

sometimes with QTL identified, and sometimes simply marked. Simultaneously we are 416 

also at the threshold of being able to manage inbreeding at the level of the segment, i.e. 417 

requiring slow change in diversity, or wishing to reduce the impact of negative LD on 418 

what segments can be fixed in the population. Therefore we envisage the field of 419 

“designer genomes” where the target trajectories of multiple loci are mapped out on a 420 

genome-wide scale. This is not a problem with only one locus. However, to achieve 421 

targets on frequency and inbreeding at multiple loci we need to understand in the long 422 

term what is required to fix/eradicate an allele or to move from a frequency point to 423 

another, and hence consider how closely the designed genome can be achieved. It is 424 

precisely this approximation that allows such predictions over time to be made in a 425 

simple fashion albeit that it is but one step towards achieving the wider goal. 426 

 427 
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One of the possible uses of this approximation is on the removal of the recessive mutant 428 

allele that causes foal immunodeficiency syndrome (FIS), more commonly known as the 429 

Fell pony syndrome. This fatal condition affects not only Fell ponies but also Dales 430 

ponies, and the causal mutant has recently been identified (personal communication: June 431 

Swinburne). Although the eradication of this mutant allele is highly desirable, two 432 

reasons makes the execution difficult: first, the frequency of carrier is high within the 433 

population (~0.4 in the Fell breed, personal communication: June Swinburne), and 434 

second, the Fell breed is a small breed. In the other word, this allele is wide-spread in a 435 

small gene pool; hence options such as culling of all carriers are not sensible as they 436 

might lead to the loss of genetic diversity and the emergence of new recessives. Therefore 437 

it is necessary to plan the removal of this mutant allele over a prior time scale to minimise 438 

the impact on diversity. Theoretically the process of eradication should be carried out 439 

slowly and carefully in order to minimise the reduction on genetic diversity within the 440 

breeds. The approximation in this study can provide a simple means of getting a series of 441 

stage goals for moving the frequency to zero, i.e. target frequency points, to be achieved 442 

over the pre-determined horizon whilst minimising the diversity loss. With the mutant 443 

allele frequency ~0.25, the total intensity required to remove the mutant allele is ~1.48, 444 

and the intensity in each generation is 1.48/T.  445 

 446 

Aspects of the results may be generalised to more than one QTL, and there is a synergy 447 

with the results of Goddard (2009), where trajectories for two QTL are optimised with 448 

respect to a profit function. The study of Goddard recognises allele frequencies do not 449 

change linearly with the selection intensity applied, and uses a transformation to a scale 450 
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(denoted z in the paper) upon which linearity holds − this requires the continuous 451 

approximation to hold since derivatives are required. Appendix 3 shows that the scale, 452 

z(p), can be interpreted as being directly proportional to accumulated selection intensity 453 

applied to the locus for moving from an infinitesimally small frequency to p.  This study 454 

shows that to move m loci from p0 to pT whilst minimising inbreeding at a neutral locus 455 

(and one that is affected by selection through the development of the pedigree only) 456 

constant selection intensity is required to be simultaneously applied at each locus – albeit 457 

with intensity differing among loci. This trajectory is represented by straight lines in an 458 

m-dimensional z-space with the relative strength of selection on each locus determining 459 

direction, and the line is traversed in T segments of equal length. However the actual 460 

inbreeding accumulated will depend on T, the size of the population, and also upon the 461 

linkage disequilibrium among the loci being selected. 462 

 463 

In conclusion, the continuous approximation shows that: (i) the optimising approaches of 464 

equalising intensities (Meuwissen & Sonesson, 2004) and minimising sum of squared 465 

intensities (Sanchez et al., 2006) have the same limiting form and converge over time to a 466 

sine wave; and (ii) the total intensity required to move an allele from a given frequency 467 

point to another can be very closely approximated and only depends on the starting and 468 

end frequency.  469 

 470 
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Table 1. The total intensity (Sum it) and sum of squared intensities (Sum it2) required for 515 

N=10 and a range of T values, using three optimisation strategies: 1) equalising selection 516 

intensities across generations, 2) minimising Sum it2, and 3) minimising Sum it, and 4) 517 

calculated from the continuous approximation.  518 

Strategy Criterion T=2 % 
error T=5 % 

error T=8 % 
error T=11 % 

error 

Equalise it 
Sum it 3.869 -1.7 3.456 9.2 3.474 8.7 3.509 7.8 

Sum it2 7.486 -3.4 2.390 17.5 1.509 16.6 1.119 15.0 

Minimise 
Sum it2 

Sum it 3.790 0.4 3.338 12.3 3.364 11.6 3.411 10.4 

Sum it2 7.296 -0.8 2.300 20.6 1.460 19.3 1.088 17.3 

Minimise 
Sum it 

Sum it 3.748 1.5 3.166 16.8 3.088 18.8 3.059 19.6 

Sum it2 7.670 -6.0 3.154 -8.9 2.604 -43.9 2.404 -82.7 

Prediction 
Sum it 3.805  3.805  3.805  3.805  

Sum it2 7.239  2.896  1.810  1.316  

 519 
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Table 2. Comparison between the total intensity (Sum it) required to fix an allele under 1 

simulations with discrete generations and predicted from continuous approximation for a 2 

range of different selection intensities. The selection intensity can be either constant all 3 

through the simulation or oscillating between a pair of different values (shown as {a, b}). 4 

Population size (N) equals 500 in all cases.  5 

 6 

Selection Intensity 0.2 {0.3,0.1} 0.3 {0.4,0.2} 0.5 {0.6,0.4} 

Predicted Sum it 4.35 4.35 4.35 4.35 4.35 4.35 

Simulated Sum it 4.40 4.45 4.50 4.55 4.68 4.86 

% error 1.1 2.3 3.4 4.6 7.6 11.7 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 3. A comparison between the total intensity (Sum it) required to fix an allele in 1 

simulations with overlapping generations for different constant selection intensities 2 

applied and for genetic variance calculated by different methods. In “Unmodified” 3 

Equation (6) was used directly, but in “Modified” the true genetic variance Vtotal replaced 4 

 in Equation (6). In all cases population size (N) equals 500 and predicted Sum 5 

it = 4.35. Standard errors, % error in prediction, and generation interval (L) are also 6 

shown. 7 

 8 

  
Selection intensity/cohort = 0.2 Selection intensity/cohort = 0.5 

Unmodified Modified Unmodified Modified 

Sum it 4.33 ± 0.012 4.30 ± 0.006 4.51 ± 0.016 4.72 ± 0.012 

% error -0.5 -1.1 3.7 8.4 

L 2.29 2.32 2.06 2.21 

 9 

10 
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Figure 1. The composition of total intensity obtained from GA with the objective of (a) 1 

minimising sum of squared intensities and (b) equalising selection intensities. Each block 2 

represents the amount of selection intensity achieved in a single mating/frequency change. 3 

Shading is for the purpose of illustration only. 4 

(a) 5 

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10 11
No. of cohorts to fixation (T)

S
el
ec
tio
n 
in
te
ns
ity

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10 11
No. of cohorts to fixation (T)

S
el
ec
tio
n 
in
te
ns
ity

 6 

 (b) 7 
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Figure 2. Comparison between the numbers of cohorts required to fix an allele for a range 1 

of different selection intensities, for (a) simulations with discrete generation (open circle) 2 

and (b) continuous approximation (filled circle). Population size (N) equals 500 in all 3 

cases. The standard deviations are shown as error bars and the standard errors are 4 

negligible. 5 

 6 
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Figure 3. The frequency path (trajectory) obtained by GA with the objective of 1 

minimising total intensity for different T values. For each profile with different T, the 2 

frequency points are shown as the solid circles along the horizontal line, with the first 3 

frequency point being at p=0.05. The last frequency points, pT-1, from all profiles are 4 

joined by dashed line to illustrate how pT-1 approaches 0.5 as T increases. 5 
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Appendix 1 1 

Minimising the Total Intensity 2 

By noting that  can be replaced by , and then substituting p for p(t), Equation (2) 3 

can be transformed to the following equation, where its direct integration leads to 4 

Equation (3):  5 

                                                             (A1) 6 

 7 

Minimising Properties of Allele Trajectories 8 

An important methodology for optimising trajectories is the calculus of variations 9 

(Weisstein 2005). When the function to be optimised is of the form:  10 

                                                                             (A2) 11 

then the solution can be obtained from the Euler-Lagrange equations providing 12 

trajectories p(t) are differentiable. This equation states that the optimum trajectory 13 

satisfies: 14 

 15 

This solution can be further simplified if   is independent of explicit dependence 16 

on t, i.e. the partial derivative of f[ ] with respect to t is 0 (i.e. ), then the 17 

condition may be simplified to the Beltrami identity: , where C 18 

is a constant of integration. 19 

 20 
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Minimising Sum of Squared Intensity: The function f[ ] required to minimise the sum of 1 

squared intensity is as follows:   2 

                                                   (A3) 3 

where p’ is the derivative of p with respect to t, and , 4 

representing the square of the selection intensity at time t.  Applying the method of 5 

calculus of variation (Weisstein 2005) to the sum of squared intensities gives the 6 

following result:  and p must satisfy: 7 

                                                                       (A4) 8 

Solving this differential equation gives  or, equivalently, 9 

, where A and B are constants of integration. This comes from 10 

noting that , where  to convert the function into a 11 

recognizable standard integral form. A and B are determined by the desired change from 12 

 and have units of radians (not degrees). The optimal trajectory for 13 

minimising the sum of squared intensity applied to the allele is therefore a segment of a 14 

sine wave.   15 

 16 

Equalising Selection Intensities: The objective function of equalising the selection 17 

intensities is equivalent to making the selection intensity constant i.e. 18 

, which is the same differential equation as that obtained above for 19 

the criterion of minimising sum of squared intensities (Equation A4).  20 

 21 

Appendix 2 22 



 33

Because the error associated with minimising sum of squared intensity (as a percentage to 1 

the total), can be simplified as:  given  can 2 

be neglected; which is twice the error of minimising total intensity ( ). 3 

 4 

Appendix 3 5 

This study considers the total intensity required to move from p0 to pT, as: 6 

 7 

Note that in Goddard (2009)   and that  8 

 9 

Therefore the increment in z is the accumulated selection intensity applied to the locus. 10 

  11 

Appendix 4 12 

For large N, the total intensity for the continuous solution , while the total intensity 13 

for the discontinuous solution approaches . This is obtained by calculating 14 

separately the intensity from p0 (assumed < 0.5) to 0.5 and the intensity from 0.5 to 1. 15 

The first of these is , which tends to  as N becomes large, 16 

whilst the second is , giving a minimum of  for large N. 17 

 18 

 Hence, for continuous solution the sum of squared intensities  and 19 

for discontinuous solution . 20 

 21 

The sum of squared intensities from the two solutions for a range of T values are 22 

summarised below. When T = 7, the two solutions yield roughly equal results, and for T > 23 

7, the continuous solution performs better than the discontinuous solution. 24 

 25 

 26 

 27 



 34

e Continuous Discontinuous 

2 9.87 6.93 

3 6.58 4.47 

4 4.93 3.64 

5 3.95 3.23 

6 3.29 2.99 

7 2.82 2.82 

8 2.47 2.70 

9 2.19 2.62 

10 1.97 2.55 

 1 


