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ABSTRACT: Indirect modification of animal genom-
es by interspecific hybridization, cross-breeding, and 
selection has produced an enormous spectrum of phe-
notypic diversity over more than 10,000 yr of animal 
domestication. Using these established technologies, the 
farming community has successfully increased the yield 
and efficiency of production in most agricultural species 
while utilizing land resources that are often unsuitable 
for other agricultural purposes. Moving forward, animal 

well-being and agricultural sustainability are moral and 
economic priorities of consumers and producers alike. 
Therefore, these considerations will be included in any 
strategy designed to meet the challenges produced by 
global climate change and an expanding world popula-
tion. Improvements in the efficiency and precision of 
genetic technologies will enable a timely response to 
meet the multifaceted food requirements of a rapidly 
increasing world population.

Key words:  cross-breeding, genetic engineering, genetic technology, hybridization,  
phenotypic diversity, selection
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INTRODUCTION

Agricultural science has been enormously successful 
in providing an inexpensive supply of high-quality and 
safe foods to developed and developing nations. These 
advancements have largely come from the implementa-
tion of technologies that focus on efficient production 
and distribution systems as well as selective breeding 
and genetic improvement of cultured plants and ani-

mals. Although population growth in developed nations 
has reached a plateau, no slowdown is predicted in the 
developing world until about 2050, when the popula-
tion of the world is expected to reach 9 billion (United 
Nations, 2008). To meet the global food demand will 
require nearly double the current agricultural output, 
and 70% of that increased output must come from ex-
isting or new technologies (United Nations, 2002).

The global demand for animal products is also sub-
stantially growing, driven by a combination of popula-
tion growth, urbanization, and rising incomes. Howev-
er, at present, nearly 1 billion people are malnourished 
(United Nations, 2008). Animal products contain 
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concentrated sources of protein, which have AA com-
positions that complement those of cereal and other 
vegetable proteins, and contribute calcium, iron, zinc, 
and several B group vitamins. In developing countries 
where diets are based on cereals or bulky root crops, 
eggs, meat, and milk are critical for supplying energy 
in the form of fats. In addition, animal-derived foods 
contain compounds that actively promote long-term 
health, including bioactive compounds such as taurine, 
l-carnitine, creatine, and endogenous antioxidants such 
as carosine and anserine (Chan and Decker, 1994; Wil-
liams, 2007). Furthermore, those foods are a rich source 
of CLA, forms of which have anti-cancer properties 
(Kelley et al., 2007), reduce the risk of cardiovascular 
disease (Tricon et al., 2004), and help fight inflamma-
tion (Zulet et al., 2005).

A MANDATE FOR ANIMAL SCIENTISTS

Animal production will play a pivotal role in meeting 
the growing need for high-quality protein that will ad-
vance human health. Our technological prowess will be 
put to the test as we respond to a changing world and 
increasingly diverse stakeholders. Intensifying food pro-
duction likely will be confounded by declining feedstock 
yields due to global climate change, natural resource 
depletion, and an increasing demand for limited water 
and land resources (Foley et al., 2005). Additionally, 
whereas the moral imperative to feed the malnourished 
people of the world is unequivocal, a well-fed, well-ed-
ucated, and vocal citizenry in developed nations places 
a much greater emphasis on the environmental sustain-
ability of production, the safety of food products, and 
animal welfare, often without regard for impact on the 
cost of the food. These diverse priorities will place im-
portant constraints on animal agriculture in the coming 
decades. Despite these daunting challenges, the sheer 
magnitude of potential human suffering calls on us 
to assume the reins from our recently lost colleague, 
Norman Borlaug, to harness technological innovation 
within our disciplines to keep world poverty, hunger, 
and malnutrition at bay. As was the case during the 
Green Revolution, advancements in genetics and breed-
ing will provide a wellspring for a needed revolution in 
animal agriculture. Indeed, we have entered the era of 
the genome for most agricultural animal species. Ge-
netic blueprints position us to refine our grasp of the 
relationships between genotype and phenotype and to 
understand the function of genes and their networks in 
regulating animal physiology. The tools are in hand for 
accelerating the improvement of agricultural animals 
to meet the demands of sustainability, increased pro-
ductivity, and enhancement of animal welfare (Green 
et al., 2007).

A FUTURE WITH GENETIC SELECTION

The goals of animal genetic improvement are firmly 
grounded in the paradigm of animal production, which 

naturally refers to concepts of efficiency, productiv-
ity, and quality. Sustainability and animal welfare are 
central considerations in this paradigm; an inescapable 
principle is that the maximization of productivity can-
not be accomplished without minimizing the levels of 
animal stress. Furthermore, the definition of efficiency 
(product per unit input) requires sustainability. Unnec-
essary compromises to animal well-being or sustainabil-
ity are morally reprehensible and economically detri-
mental to consumers and producers alike.

The vast majority of outcomes from genetic selec-
tion have been beneficial for animal well-being. Geneti-
cists try to balance the enrichment of desirable alleles 
with the need to maintain diversity (Lacy, 1997; Not-
ter, 1999) because they are keenly aware of the vulner-
ability of monoculture to disease. Genetic improvement 
programs must always conserve genetic diversity for 
future challenges, both as archived germplasm and as 
live animals (Blackburn, 2004). However, unanticipated 
phenotypes occasionally arise from genetic selection for 
2 reasons. First, every individual carries deleterious al-
leles that are masked in the heterozygous state but can 
be uncovered by selective breeding. Second, the linear 
organization of chromosomes leads to certain genes be-
ing closely linked to each other on the DNA molecules 
that are transmitted between generations. Thus, blind 
selection for an allele that is beneficial to 1 trait also 
enriches for all alleles that are closely linked to it and 
either through pleiotropy (genes influencing more than 
1 trait) or linkage disequilibrium, undesirable corre-
lated responses in other traits may occur. Geneticists 
are aware of this and closely monitor the health and 
well-being of populations that are under selection (e.g., 
Eitan and Soller, 2004) to ensure that any decrease 
in fitness is detected and that ameliorative actions are 
taken to correct problems either by the elimination of 
carriers from production populations, altering the se-
lection objective to facilitate improvement in the af-
fected fitness traits, or by introducing beneficial alleles 
by crossbreeding. Increasingly precise molecular tools 
now allow the rapid identification of genetic variants 
that cause single-gene defects and facilitate the devel-
opment of DNA diagnostics to serve in genetic man-
agement plans that advance the production of healthy 
animals. Whole-genome genotyping with high-density, 
SNP assays will enable the rapid determination of the 
overall utility of parental lines in a manner that is eas-
ily incorporated into traditional quantitative genetic 
improvement programs (Meuwissen et al., 2001). The 
approach is known as genomic selection (GS) and es-
sentially allows an estimation of the genetic merit of 
an individual by adding together the positive or nega-
tive contributions of alleles across the genome that are 
responsible for the genetic influence on the trait(s) of 
interest. Under GS, genetic improvement can be ac-
celerated by reducing the need for performance testing 
and by permitting an estimation of the genetic merit 
of animals outside currently used pedigrees. Genomic 
selection also provides for development of genetic di-
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agnostics using experimental populations, which may 
then be translated to commercial populations, allowing, 
for the first time, the opportunity to select for traits 
such as disease resistance and feed efficiency in exten-
sively managed species such as cattle. The presence of 
genotype × environment interactions will also require 
the development of experimental populations replicat-
ed across differing environmental conditions to enable 
global translation of GS.

The speed with which the performance of animals can 
be improved by GS is determined by generation interval, 
litter, or family size, the frequency of desirable alleles 
in a population (rare variants are likely to be missed in 
the development of genetic prediction models), and the 
proximity (and phase relationship) on chromosomes of 
good and bad alleles. Although predicting genetic merit 
using DNA diagnostics may be less precise than di-
rectly testing the performance of every animal or their 
offspring, the reduction in generation interval by far 
offsets this. For example, in dairy populations, the rate 
of genetic improvement is expected to double with the 
application of GS (Hayes et al., 2009). Preliminary re-
sults from the poultry industry suggest that GS focused 
on leg health in broilers and livability in layers can 
rapidly and effectively improve animal welfare (Cheng 
et al., 2010). Although price constraints currently limit 
the widespread adoption of high-density SNP genotyp-
ing assays (≥50,000 SNP) in livestock species, low-cost, 
reduced-subset assays containing the most predictive 
384 to 3,000 SNP are under development in sheep, beef, 
and dairy cattle. These low-cost assays are expected to 
be rapidly adopted and will be expanded in content as 
the price of genotyping declines. Animal selection based 
on GS is also expected to reduce the loss of genetic di-
versity that occurs in traditional pedigree-based breed-
ing because the ability to obtain estimates of genetic 
merit directly from genotypes avoids the restriction of 
selection to the currently used parental lineages. Also, 
despite the increase in the rate of genetic improvement, 
selection for complex traits involving hundreds or thou-
sands of genes will not result in the rapid fixation of 
desirable alleles at all of the underlying loci.

A FUTURE WITH GENETIC 
ENGINEERING

Whereas GS will accelerate animal improvement in 
the postgenomic era, parallel and overlapping efforts 
in animal improvement based on genome-informed ge-
netic engineering (GE) must ensue to ensure that pro-
ductivity increases at pace with the expanding world 
populations. The tools of functional genomics and the 
availability of genome sequences provide detailed in-
formation that can be used to engineer precise changes 
in traits, as well as monitor any adverse effects of such 
changes on the animal (Miller et al., 2006; Doyon et al., 
2008; Geurts et al., 2009). These tools are also enabling 
a deeper understanding of gene function and the inte-
gration of gene networks into our understanding animal 

physiology (Schadt, 2009). This understanding has be-
gun to identify major effect genes and critical nodes in 
genetic networks as potential targets for GE.

TECHNOLOGICAL REVOLUTION  
IN GENETIC ENGINEERING

The genomics revolution has been accompanied by 
a renaissance in GE technologies. Novel genes can be 
introduced into a genome (Clark et al., 2007), and ex-
isting genes can either be inactivated or their expres-
sion tuned to desirable levels using recently developed 
RNA interference (Fire et al., 1998; NPG, 2005). The 
specificity and efficiency of these approaches is expect-
ed to continue to improve. The technical advancements 
in GE are so significant that Greger (2009) advocated 
that scrutiny of the procedures for generating trans-
genic farm animals is undeserved and that discussion 
should focus on the welfare implications of the desired 
outcome instead of unintended consequences of GE. 
This position is also reflected by the rigorous regula-
tory mechanism established by the FDA for premarket 
approval of GE animals (FDA, 2009), which considers 
the risks of a given product to the environment and 
the potential impact on the well-being of animals and 
consumers. Indeed, this review mechanism was recently 
adopted as an international guideline by Codex Ali-
mentarious (2008), which has already found GE to be 
a safe and reliable approach to the genetic improve-
ment of food animals (US Code of Federal Regulations, 
2009). In addition, guidelines that promote good ani-
mal welfare, enhance credibility, and comply with cur-
rent regulatory requirements, for the development and 
use of GE animals have been developed as a steward-
ship guidance (Biotechnology Industry Organization, 
2009). The stewardship guidance assists the industry 
and academia in developing and adopting stewardship 
principles for conducting research and developing and 
commercializing safe and efficacious agricultural and 
biomedical products from GE animals for societal ben-
efit.

SELECTION AND ENGINEERING  
ARE COMPLEMENTARY

Both GS and GE are viable, long-term approaches to 
genetic improvement, but when should one approach 
be employed over the other? Genes are not all equal in 
their effects upon changes in phenotype. The products 
encoded by some genes have major effects on biochemi-
cal pathways that define important characteristics or 
reactions in an organism. Other genes have lesser, but 
sometimes still important, effects. In general, genetic 
modification by GE is used to add major-effect genes, 
whereas genetic selection is applied to all genes, in-
cluding the far larger number of lesser-effect genes that 
appear to be responsible for about 70% of the genetic 
variation within a given trait (Cole et al., 2009). One 
of the most significant advantages of GE is the abil-
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ity to introduce new alleles that do not currently ex-
ist within a population, in particular, where the allele 
substitution effect would be very large. This approach 
can include gene supplementation and genome editing, 
the latter enabling the precise transfer of an alterna-
tive allele without any other changes to the genome of 
an animal (i.e., without selection markers, or even the 
genome-wide changes caused by crossbreeding). In this 
case, molecular methods can be used to supplement or 
replace a target allele present in one population with a 
preferred allele present in another.

The key issue is, of course, the identification of the 
genes and alleles that should be targeted for GE in live-
stock species. Likely, many genes for which naturally 
occurring variation creates subtle phenotypic effects ex-
ist, whereas GE of these genes with novel alleles might 
provide profound improvements in animal health and 
performance. Undoubtedly, the discovery of these genes 
will come from research with model organisms where 
the effects of the allelic forms on fitness can be exten-
sively studied, emphasizing the importance of support 
for basic agricultural research.

ENHANCED PRODUCTIVITY  
AND SUSTAINABILITY

Early research efforts in livestock GE were focused 
on increasing the efficiency and yield of production for 
a diversity of species. The use of more productive GE 
animals [i.e., animals that produce more units of output 
(e.g., gallons of milk, pounds of meat) with the same 
or less inputs] should be given due consideration in the 
context of sustainability. Making a conscious choice to 
use less productive animals necessitates the use of more 
land per unit of product or the use of more animals 
to produce a constant amount of animal product or 
both. This choice could cause conflict when open land 
is scarce, or other uses (e.g., habitat conservation) com-
pete with the use of land for agriculture. The use of the 
best available technologies and inputs (best genotypes 
and best ecological management) to produce greater 
output per unit of input offers overt sustainability ad-
vantages (Pretty, 2008). Rapid growth and increased 
production result in a reduced number of animals being 
required for a fixed amount of output. Additionally, the 
environmental footprint per unit of animal product is 
reduced for more productive animals, regardless of the 
agricultural production system used. Bradford (1999) 
estimated that a small incremental increase of 2% per 
year in average milk production per cow globally, with 
no change in cow numbers, would result in a 60% in-
crease in the global milk supply by the year 2020.

The observation by Palmiter et al. (1982) that 
supplementing the mouse genome with an extra GH 
gene increased muscle growth greatly stimulated re-
search into this approach for enhancing the productiv-
ity of meat animals. However, early transgenic animal 
GH supplementation experiments (in the late 1980s) 
achieved mixed results. Whereas growth enhancement 

was observed in experiments with both fish and mam-
mals (Nottle et al., 1999; Zbikowska, 2003), in some 
experiments increased GH concentrations compromised 
the health of animals (Hammer et al., 1985; Pursel et 
al., 1989; Nancarrow et al., 1991; Dunham, 2009). From 
this research, much was learned about the GH axis, 
methods for transgenesis, the need for controlled gene 
expression, and best practices for transgenic animal 
stewardship. One successful outcome of this early work 
was a transgenic salmon whose genome contains an ex-
tra copy of the salmon GH gene (Table 1).

After nearly 15 years of research and development, 
the GH-transgenic salmon are now in an advanced 
stage of regulatory review by the FDA and could con-
stitute the first transgenic animal product approved for 
human consumption in the United States. These fish 
produce the same amount and kind of circulating GH 
as wild-type salmon, but they produce it throughout 
the entire year. This modification has resulted in fish 
that reach market weight faster and consume less food 
per kilogram of product than wild-type salmon because 
they process their food 10 to 30% more efficiently. The 
more efficient utilization of protein in the diet of an ani-
mal leads to a reduction in the excretion of nitrogenous 
waste (Coffey, 1996; Sillence, 1996). Concerns over the 
potential environmental impact of feral transgenic fish 
have been studied extensively (Devlin et al., 2004, 2009; 
Sundstrom et al., 2007) and practically addressed by 
eliminating the possibility of gene flow from transgenic 
to wild salmon by implementing a redundant biologi-
cal and physical containment production system, which 
exclusively utilizes sterile female fish. These fish are 
reared in land-based facilities with multiple redundant 
physical containment features. Because of the controlled 
production environment, the fish are neither exposed to 
disease challenges nor are they reservoirs for disease 
transmission as they might be in conventional salmon 
net pen aquaculture. The ability to grow these salmon 
in land-based facilities closer to population (consump-
tion) centers dramatically reduces transportation costs 
compared with conventional salmon aquaculture, af-
fecting the economics and environmental footprint of 
salmon production. Finally, because these fish can be 
raised in inland fisheries, they represent a unique food 
security opportunity, potentially rejuvenating a nearly 
extinct US Atlantic salmon industry.

To address the sustainability of pork production, a 
line of GE pigs was developed with the ability to digest 
and metabolize natural P in their feed, which non-GE 
pigs cannot accomplish. These pigs referred to as Envi-
ropigs, have a genome supplemented with a gene from 
Escherichia coli that produces phytase exclusively in 
their salivary glands (Golovan et al., 2001). This genetic 
modification reduces the excretion of undigested P in pig 
feces by 30 to 60%, which will ameliorate surface water 
eutrophication from swine production, as well as elimi-
nate the environmental footprint of phytase production 
as a feed supplement (Forsberg et al., 2003). Clinical 
analysis of the health of Enviropigs using hematology, 
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clinical chemistry, and urology revealed no substantive 
difference between these GE and non-GE pigs except 
for a marked improvement in P retention, an outcome 
expected to enhance animal health by improving nutri-
ent utilization and bone strength. Proteomic analysis of 
liver and muscle tissues from Enviropigs demonstrated 
no significant difference in the proportions of the major 
proteins as compared with those of age-matched non-
GE pigs (Golovan et al., 2008; Hakimov et al., 2009).

ENHANCING ANIMAL WELFARE

As mentioned, a focus on animal welfare positively 
influences productivity, and, therefore, indirectly en-
hances the sustainability of animal production. Nu-
merous targets of GE aim to deliver even more direct, 
simultaneous improvements in animal welfare and sus-
tainability (Table 1). For example, GE could provide a 
humane method for sex selection in dairy and egg in-
dustries, where cows and hens provide the animal prod-
uct. The development of male animals could be avoided 
ab initio and eliminate inefficiencies in animal produc-
tion and welfare concerns associated with sex selection 
and castration. Gene supplementation that feminizes 
male embryos (Smith et al., 2009) or eliminates the 
production of male sperm in sires (Herrmann et al., 
1999) is technically feasible; the latter approach has the 
desirable outcome that the animals that are produced 
are not themselves genetically engineered.

Based on the global importance of pork, researchers 
have developed GE pigs to improve the sustainability 
of production, enhance animal welfare, and add nutri-
tional value (Table 1). For example, the expression of 
bovine α-lactalbumin and IGF in the mammary gland 
of lactating sows results in increased milk production, 
which directly enhances animal welfare as demonstrated 
by improved growth, intestinal development, and over-
all survival of piglets at weaning (Wheeler et al., 2001). 
In a striking example of the value of GE in enhancing 
animal welfare, Wall et al. (2005) at the USDA-ARS 
engineered Jersey cattle to express the antibacterial 
protein lysostaphin in their milk, an accomplishment 
that dramatically enhanced the resistance of these cows 
to infection by Staphylococcus aureus, the most com-
mon and most difficult to treat cause of mastitis. This 
genetic improvement, could not only improve the well-
being of around 2 million dairy cattle per year in the 
United States alone, but also could decrease the eco-
nomic costs of mastitis, which are currently estimated 
to exceed $2 billion per year in the United States (A. 
Saeman, National Mastitis Council, Verona, WI, per-
sonal communication).

ENHANCING HUMAN NUTRITION  
AND HEALTH

One promising aspect of GE is the potential for the 
development of functional foods that enhance food safe-

ty, human nutrition, and health (Table 1). For example, 
in China the nutritional value of bovine milk has been 
improved by GE to express human α-lactoglobulin and 
human lactoferrin, proteins normally found in human 
milk but missing from bovine milk (Wang et al., 2008; 
Yang et al., 2008). Given the increasing prevalence of 
obesity and cardiovascular disease in developed nations, 
changes in product composition in conjunction with im-
provements in dietary practices could contribute to im-
provements in consumer health. The amounts and type 
of fats in animal products are topics of frequent public 
discourse, and from the perspective of sustainability, im-
proved feed conversion efficiency increases the ratio of 
lean-to-fat deposition in livestock. Net benefits include 
reduced production costs, improved product quality, re-
duced excretion of nitrogenous wastes into the environ-
ment, decreased grazing pressure on fragile landscapes, 
and reduced pressure on world feed supplies (Sillence, 
2004). A decrease in the prevalence of deleterious fats 
and cholesterol and an increase in the prevalence of 
MUFA and n-3 fatty acids are consistent with dietary 
recommendations for cardiovascular health and an ob-
jective difficult to achieve in the absence of GE. In fact, 
3 proof-of-principle studies have been published: 1) GE 
goats that expressed a rat stearoyl-CoA desaturase in 
the mammary gland and yielded milk with a reduced 
saturated fatty acid content and increased content of 
CLA, a beneficial antioxidant fatty acid (Reh et al., 
2004); 2) a GE pig made transgenic for a Δ12 fatty acid 
desaturase gene from spinach that produced the PUFA, 
linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3), 
which are essential for human (and pig) nutrition (Sae-
ki et al., 2004); and 3) a GE pig that was developed to 
express an n-3 fatty acid desaturase capable of convert-
ing n-6 fatty acids to n-3 fatty acids (Lai et al., 2006). 
Although fish provide an excellent source of dietary n-3 
fatty acids, which are important for fertility, cardiovas-
cular health, immune system health, mental health, and 
cancer prevention (Prather, 2006), worldwide fisheries 
will be challenged to sufficiently supply n-3 fatty acids 
to the developing world. As the most widely consumed 
meat, pork logically should be considered as an alterna-
tive source of n-3 fatty acids. Consistent with this strat-
egy, the pigs developed by Lai et al. (2006) produce 
increased content of n-3 fatty acids from n-6 analogs, 
and their tissues have a reduced ratio of n-6/n-3 fatty 
acids. Such animals may be useful as models for human 
health and for providing a dietary source that could 
enhance the health of consumers in developed and de-
veloping countries.

The first FDA approval of a GE animal product, the 
anticoagulant ATryn (recombinant human antithrom-
bin), firmly established the importance and safety of 
engineered mammary gland-based protein expression 
systems. Additional GE projects in cattle and goats 
have targeted the mammary gland for the expression 
of proteins to enhance the welfare of animals, and the 
safety and stability of milk products (Table 1). Bacte-
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rial diarrhea, which is responsible for more than 2 mil-
lion infant deaths per year in developing countries, re-
sults from campylobacter, salmonellae, shigellae, and 
some strains of E. coli infections. Transgenic goats 
that express the human lysozyme protein, a natural 
antimicrobial protein in breast milk, were developed 
to produce milk with an enhanced shelf life that would 
improve the gastrointestinal health of goat kids and 
children (Maga et al., 2006a,c; Brundige et al., 2008). 
Experiments in vitro and in vivo have established that 
milk from these goats has antimicrobial properties, 
whether pasteurized or not, and that this milk inhib-
its the enteric bacteria E. coli when fed to piglets (a 
nonruminant model for children; Maga et al., 2006b). 
Approval of this product could make a significant 
contribution to the alleviation of hunger and disease 
(Brundige et al., 2009).

FOOD AND HEALTH SECURITY

Transgenic technologies can also provide and effec-
tive means for enhancing animal health. Because hosts 
and pathogens have coevolved, long-term selection may 
not be the most effective approach for the enhance-
ment of disease resistance. Although GS has provided 
enhanced disease resistance to some organisms (e.g., 
parasites; Stear et al., 2007), it is unlikely to generate 
specific resistance to microorganisms (bacteria and vi-
ruses) because they evolve more rapidly than do their 
hosts. Precise and efficient GE tools instead provide 
a route to make significant, sudden improvements in 
general and pathogen-specific innate and humoral im-
munity (Table 1). The improvement of disease preven-
tion in livestock will increase the quality of life of pro-
duction animals, contribute to the needed acceleration 
of food production, and serve to enhance food security 
worldwide. Developing animals resistant to viral pan-
demics (Reed et al., 2009) is in the best interest of all 
constituencies as a means to improve animal welfare 
and to enhance food and human health security.

CONCLUSIONS

The dietary needs of the world in the very near fu-
ture cannot be met without the immediate and ongoing 
utilization of GS and GE. Obfuscation by opponents of 
animal genetics, and more generally by opponents of 
animal agriculture, will stall the delivery of solutions in 
the face of mounting risks (Murray and Maga, 2010). 
Humane applications of GS for sustainable animal pro-
duction, in conjunction with genetic improvement by 
GE, are key technologies that will be vital for meeting 
the future food needs of the world. Although animal 
genetics alone will not solve the future food problems of 
the world, to fail to apply the best available technolo-
gies to the solution of contemporary and future food 
shortages would be morally reprehensible.
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