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Abstract 

The synthesis of the mono-uranyl complex [UO2(THF)(H2L
Me

)] of a ditopic Schiff-base pyrrole macrocycle is 

described and is shown to adopt a Pacman wedge-shaped structure in which the uranyl dication is 

desymmetrised and sits solely in one N4-donor compartment to leave the other vacant. While investigating the 

mechanism of the previously reported, base-initiated, reductive silylation chemistry of [UO2(THF)(H2L
Me

)], 

we found that uranyl hydroxide complexes could be isolated. As such, the reaction between 

[UO2(THF)(H2L
Me

)] and KH in THF generated the dimeric cation-cation hydroxide 

[{UO2(OH)K(C6H6)(H2L
Me

)}2] when crystallised from C6H6, or alternatively, when crystallised from THF, the 

monomeric THF-adducted cation-cation complex [UO2(OH)K(THF)2(H2L
Me

)] was isolated. These compounds 

result formally from the substitution of the equatorial THF molecule byhydroxide, and it was also shown that 

the reaction between dry KOH and [UO2(THF)(H2L
Me

)] generated [{UO2(OH)K(C6H6)(H2L
Me

)}2]. 

 

Introduction 

The uranyl dication, [UO2]
2+

 is the most prevalent form of uranium in solution chemistry and in the 

environment, and is characterised by strong and inert uranium oxo multiple bonding, with a rigorously linear 

O U O geometry and a formal U–O bond order of approximately 2.5 as a result of relativistic effects on the 

energies of the uranium valence orbitals.
1
 Accordingly, ligand chemistry takes place almost exclusively in the 

equatorial plane.
2
 We described recently the synthesis of mononuclear uranyl complexes of the macrocycle 

H4L (Scheme 1), and showed that a folded, Pacman structure in solution and in the solid state was adopted and 

that substitution of the THF molecule that occupies the fifth, equatorial position by pyridine to form 

[UO2(C5H5N)(H2L)] was straightforward.
3
 

Significantly, we also found that reactions between [UO2(THF)(H2L
Me

)], an analogue of [UO2(THF)(H2L)], in 

which the aryl hinge groups are methylated, and KN(SiMe3)2 in the presence of two molar equivalents of a 

divalent transition metal halide, e.g. FeI2 or ZnI2 resulted in the remarkably selective reductive silylation of 

the uranyl dication, so forming the U
V
 complexes [UO(OSiMe3)(THF)(MI)2(L

Me
)] (M = Fe, Zn; Scheme 1).

4
 

The use of KH as the base in the presence of either N–Si or C–Si substrates resulted in E–Si bond cleavage (E 

= N, C) and O–Si bond formation, with the generation of the same U
V
 reductively-silylated complexes. 

Therefore, we reasoned that the deprotonation of the vacant N4-donor cavity by the potassium base caused the 

bonding in the [UO2]
2+

 group to be disrupted such that the exo-U O bond was able to participate in radical 

abstraction reactions. This mechanism has been corroborated recently by theoretical calculations that show 

that the deprotonation of macrocyclic uranyl model complexes results firstly in the highly exergonic formation 

of an intermediate in which two potassium cations are bound to one U O only. This activating-interaction 

then promotes an SN2 radical reaction between the exo U O group and silanes to form initially the 

reductively-silylated species which is then stabilised by addition of transition metal cations.
5
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Scheme 1. Synthesis and reactions of the macrocyclic uranyl complexes. Conditions: (i) 

[UO2(THF)2{N(SiMe3)2}2], -78 °C, THF, 88%; (ii) KN(SiMe3)2, MI2, -78 °C, THF, M = Fe, 81%, M = Zn, 

46% (alternatively: KH, N(SiMe3)3, MI2 -78 °C, THF). 

 

The interactions of the oxo groups of the uranyl dication with other metal cations are known as cation-cation 

interactions, or CCI's. Sullivan pioneered the study of CCI's, first noting the unusual interaction of the [UO2]
2+

 

ion with the pentavalent [NpO2]
+
 cation in acidic solution,

6
 and recognising that CCI's form much more 

readily in f
1
 systems such as pentavalent uranyl, and also in neptunyl, and plutonyl salts that incorporate a 

more Lewis basic oxo group.
7
 Weak interactions have been seen in a handful of X-ray structures of f

0
 uranyl 

complexes such as [Na(THF)2][UO2{N(SiMe3)2}3],
8
 and Li4[(UO2)10O10(Mo2O8)].

9
 CCI's change the 

solubilities of the actinyl salts in solution, and have important implications for the PUREX process that has 

been used for the last few decades by the nuclear industry to separate the dissolved components of spent 

nuclear fuel.
10

 The precise interactions of solvated hydroxyl uranyl complexes with other cations is also 

attracting interest in the study of nuclear waste behaviour.
11

 

Herein, we describe the full details of the synthesis and crystal structure of the uranyl complex 

[UO2(THF)(H2L
Me

)] and its reaction with KH and K that generate complexes arising formally from addition of 

KOH to [UO2(THF)(H2L
Me

)], isolated as two different solvates, [{UO2(OH)K(C6H6)(H2L
Me

)}2] and 

[{UO2(OH)K(THF)2(H2L
Me

)}2]. The single crystal X-ray structures of these solvates contain a variety of CCIs 

with potassium cations; as such, structural features of these complexes are compared with those in 

[{UO2(O)K2(C6H6)(H2L)}2], the structure of which we communicated previously.
12
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Results and discussion 

Formation and characterisation of the uranyl complex [UO2(THF)(H2L
Me

)] 

In a manner similar to that described by us previously,
3
 the transamination reaction between the uranyl 

silylamide [UO2(THF)2{N(SiMe3)2}2] and H4L
Me

 in THF at low temperature resulted in the sole formation of 

the mono-uranyl complex [UO2(THF)(H2L
Me

)] as an analytically-pure, dark brown solid in high yield 

(Scheme 1). Dark red columnar crystals suitable for X-ray diffraction studies were grown by the slow 

diffusion of hexane into a THF solution and the solid state structure was determined by X-ray diffraction (Fig. 

1); selected bond lengths and angles are detailed in Table 1, with crystal data shown in Table 2. In a manner 

similar to that shown by us previously, one N4-donor set of the macrocycle is sufficiently flexible to 

accommodate the large uranyl ion in a pentagonal bipyramidal geometry. The N-donors are found to occupy 

four equatorial sites with the fifth occupied by an oxygen atom of a bound THF molecule; the axial positions 

contain the two trans-oxo ligands. The second N4-donor compartment of the macrocyclic ligand remains 

metal free with the pyrrole nitrogens protonated and results in a wedge-shaped geometry that differentiates 

between the two uranyl oxo groups. The uranyl-oxo bond lengths (U1-O1 1.787(3), U1-O2 1.770(3) Å) are 

similar to those in the related complex [UO2(THF)(H2L)] (U1-O1 1.790(4), U1-O2 1.766(4) Å),
3
 and show an 

elongation in the endo U O bond distance of similar magnitude (0.017 Å) due to hydrogenbonding 

interactions with the pyrrole hydrogens of the vacant compartment.
13

 

 

 

 

Figure 1. Side-on and face-on views of the solid state structure of the mono-uranyl complex 

[UO2(THF)(H2L
Me

)]. For clarity, solvent of crystallisation and all hydrogens except those on the pyrrole 

nitrogens are omitted (50% probability displacement ellipsoids). 
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The uranyl complex was characterised further by 
1
H and 

13
C{

1
H} NMR spectroscopy, which revealed that the 

solid state structure is retained in solution. Discrete resonances are observed in the 
1
H NMR spectrum for the 

metal free and complexed N4-donor compartments, e.g. two distinct resonances at 8.74 and 7.99 ppm 

attributable to the Schiff base imine protons were seen, and also for the uranium-bound molecule of THF with 

four separate resonances at 4.83, 3.94, 0.86, 0.71 ppm. This equatorially-bound THF molecule is labile and 

undergoes fast exchange, as the 
1
H NMR spectrum in d8-THF no longer contains resonances due to 

coordinatedTHF. Furthermore, it has been shown previously by us that this THF molecule can be displaced by 

pyridine (Scheme 1).
3
 The IR spectrum exhibits a strong absorption at 908 cm

−1
 that is attributed to the uranyl 

asymmetric stretch, is similar to that seen in [UO2(pyr)(H2L)] (ν 910 cm
−1

) and is indicative of a weakened U

O bond. 

 

Reactions of [UO2(THF)(H2L
Me

)] with KH, KOH, and K 

While probing the mechanism of the reductive silylation of [UO2(THF)(H2L
Me

)] (Scheme 1), in particular in 

an attempt to isolate and identify compounds such as [UO2(THF)K2(L
Me

)] formed by deprotonation using a 

potassium base, we instead found that the reaction between [UO2(THF)(H2L
Me

)] and some samples of KH in 

the absence of a silyl substrate formed a brown solid that, on crystallisation from benzene, generated the U
VI

 

dimeric hydroxo complex [{UO2(OH)K(C6H6)(H2L
Me

)}2] in moderate yield (Scheme 2). Furthermore, 

recrystallisation of this material from a mixture of THF and benzene generated quantitatively the monomeric 

THF adduct [UO2(OH)K(THF)2(H2L
Me

)]. 

 

Scheme 2. Reactions of [UO2(THF)(H2L
Me

)] with KH, KOH, and K. Conditions: (i) KH, -78 °C, THF, 

recrystallise from C6H6, 35% (alternatively: KOH, THF, recrystallise from C6H6, 25%), (ii) THF–C6H6, 100%; 

(iii) K, C6H6, 10% (ref.12). 
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It therefore appears likely that the incorporation of KOH in these complexes has resulted through either the 

use of impure KH (i.e. some KOH is present) or from the decomposition of the potassium salt 

[UO2(THF)(K2L
Me

)] by reaction with adventitious water. To corroborate the presence of KOH and to find a 

reproducible route to these complexes, the reaction between dry KOH and [UO2(THF)(H2L
Me

)] was carried 

out and was found to form [{UO2(OH)K(C6H6)(H2L
Me

)}2] aftercrystallisation from benzene in moderate 

isolated yield (effectively quantitative by 
1
H NMR spectroscopy); X-ray quality crystals were grown and were 

found to have the same unit cell parameters as material derived from KH reactions. 

The 
1
H NMR spectrum of [{UO2(OH)K(C6H6)(H2L

Me
)}2] in a mixture of C6D6 and THF supports the presence 

of the OH group with a characteristic broad resonance at 10.15 ppm and also suggests that the Pacman solid 

state structure is retained in solution with two separate resonances for the imine protons at 8.75 and 7.89 ppm 

associated with different N4-donor compartments. The 
1
H NMR spectrum of this complex derived from the 

reaction between [UO2(THF)(K2L
Me

)] and KOH is very similar with subtle differences which is likely due to 

facile THF solvent exchange and the difficulty encountered in accurately defining concentrations andsolvent 

mixture ratios. The IR spectrum shows an absorption at 894 cm
−1

 and is attributed to the uranyl asymmetric 

stretch. This vibration lies within the expected range for the uranyl asymmetric stretch and is shifted to lower 

energy compared to that of the uranyl macrocyclic precursor [UO2(THF)(H2L
Me

)] which may indicate slight 

elongation of the U O bond (see below for solid state structure). There are also absorptions at 3608 and 3360 

cm
−1

, consistent with OH and NH stretches respectively that support further the presence of the hydroxo 

ligand and the metal-free N4-donor compartment. 

Dissolution of [{UO2(OH)K(C6H6)(H2L
Me

)}2] in a mixture of THF and benzene resulted in the quantitative 

deposition of red-orange rectangular block shaped crystals of the THF adduct [UO2(OH)K(THF)2(H2L
Me

)]. 

Elemental analysis of this material supported its formulation, and the 
1
H NMR spectrum is similar to that of 

[{UO2(OH)K(C6H6)(H2L
Me

)}2] in that the spectrum is diamagnetic and discrete resonances are observed for 

the separate uranyl-containing and metal-free N4compartments; as such this indicates that a Pacman structure 

is adopted in solution. Notable features in the 
1
H NMR spectrum of the complex are the imine resonances at 

8.73 and 7.88 ppm, the broad resonance for the OH proton at 10.41 ppm, and the NH protons at 8.66 ppm. 

The IR spectrum of [UO2(OH)K(THF)2(H2L
Me

)] shows an absorption at 895 cm
−1

 that is similar to that seen 

for [{UO2(OH)K(C6H6)(H2L
Me

)}2]. Also, there are absorptions at 3626 and 3329 cm
−1

 that support further the 

presence of a hydroxo ligand and a metal-free N4-donor compartment. 

 

X-ray crystallography 

X-ray quality crystals of [{UO2(OH)K(C6H6)(H2L
Me

)}2] were grown from C6H6 and 

[UO2(OH)K(THF)2(H2L
Me

)] from a mixture of THF and C6H6; the solid state structures are shown in Fig. 2, 

with selected bond lengths and angles detailed in Table 1 and crystal data listed in Table 2. We have also 
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attempted previously the chemical reduction of [UO2(THF)(H2L)] with an excess of potassium metal (Scheme 

2), but only isolated a small quantity of orange crystalline material (ca. 10% yield) characterised as the 

dimeric potassium oxide adduct [{UO2(O)K2(C6H6)(H2L)}2] by single crystal X-ray diffraction (Fig. 2, 

bottom, for comparison).
12

 

 

 

← Figure 2. Solid 

state structures of the 

KOH uranyl adducts 

[{UO2(OH)K(C6H6)(H

2L
Me

)}2] (top), 

[UO2(OH)K(THF)2(H2

L
Me

)] (middle), and 

[{UO2(O)K2(C6H6)(H2

L)}2] (bottom, mixed 

50 : 50 disorder 

between K2 andH, 

only oxo complex is 

shown). 

For clarity, all 

hydrogens except 

those on thepyrrole 

nitrogens, and solvent 

of crystallisation are 

omitted (where 

present, displacement 

ellipsoids are drawn at 

50% probability). 
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The presence of KOH in [{UO2(OH)K(C6H6)(H2L
Me

)}2] does not disrupt the general Pacman structural motif, 

and the uranyl fragment remains complexed by the four nitrogen atoms (U1-N1 2.532(2), U1-N2 2.476(2), 

U1-N3 2.505(2), U1-N4 2.604(2) Å) in one half of the macrocycle. The uranium-oxo bond distances (U1-O1 

1.7949(16), U1-O2 1.8029(16) Å) are longer than those reported for [UO2(THF)(H2L
Me

)] although they are 

still consistent with the hexavalent oxidation state.
14

The pentagonal bipyramidal coordination sphere of the 

uranium metal centre is completed in the equatorial plane by a hydroxo ligand, which resides in the same fifth 

equatorial site as the oxygen atom of the usually bound THF molecule, in-between the macrocyclic aryl rings. 

The uranyl-hydroxo U1-O3 bond length of 2.1854(19) Å is significantly shorter than those found in (UO2)2(μ-

OH) complexes (range 2.29-2.51 Å, mean 2.34 Å)
15

 with a relatively acute U1-O3-K1 angle of 102.25(6) ° 

(range for (UO2)2(μ-OH) complexes 102.0-145.4°, mean 113.4°);
15

 there are no structurally-characterised 

hydroxyl bridged uranyl-alkali metal complexes for comparison. 

The potassium cation resides above the plane of the macrocycle at a distance approximately equidistant from 

the exo-oxo atom (K1-O2 2.8130(19) Å) and the oxygen atom of the hydroxo ligand (K1-O3 2.657(2) Å) and 

leads to a slight elongation of the exo-oxo-uranium bond length compared to that of [UO2(THF)(H2L
Me

)] (ca. 

0.03 Å). Hexavalent uranyl complexes with CCI interactions to a potassium cation are rare, and only a handful 

of calixarene and carboxylate complexes of the uranyl ion with potassium CCIs have been structurally 

characterised. For example, Thuéry and Masci reported the complex [(UO2)K2(L)(H2O)2(NC5H5)] (L = p-tert-

butyltetrahomodioxacalix[4]arene) derived from the combination of uranyl nitrate, the free base calixarene 

and KOH. This complex incorporates potassium cations bridging pairs of uranyl cations to form polymeric 

chain structures, with the potassium–oxo interactions similar to those in [{UO2(OH)K(C6H6)(H2L
Me

)}2].
16

 The 

mean O–K distance in U O K CCI structures reported to date is 2.788 Å.
17

 The presence of the potassium 

cation in [{UO2(OH)K(C6H6)(H2L
Me

)}2] results in dimerisation as K1 not only interacts strongly with O3 of 

the hydroxyl ligand and the O2 oxo group, but also with O2′ of an adjacent complex in a symmetric bridging 

arrangement (K1-O2′ 2.8389(18) Å); this is reinforced by an intermolecular η
5
-interaction to a pyrrole ring of 

the adjacent macrocycle. The coordination sphere of K1 is completed by an η
2
-interaction with a molecule of 

benzene solvent of crystallisation. The bottom compartment of the macrocycle remains metal-free, and both 

the pyrrolic nitrogens are protonated. As in [UO2(THF)(H2L
Me

)], the endo-oxo ligand forms hydrogen bonds 

with the hydrogen atoms on the pyrroles (N6 O1 3.056 Å, N7 O1 3.202 Å), interactions that presumably 

help stabilise the complex. The structure of [{UO2(OH)K(C6H6)(H2L
Me

)}2] is clearly related to that of the 

previously communicated K2O adduct [{UO2(O)K2(C6H6)(H2L)}2] through exchange of (O)-H with (O)-K 

(Fig. 2, bottom).
12

 This latter complex adopts a similar dimeric structural motif in which the two macrocycles 

are conjoined by K cations (Fig. 2, bottom), and the second K cation (K1) is bound to both the endo-uranyl 

oxygen and the oxo O3; the coordination sphere of K1 is completed through complexation by the macrocyclic 

imine nitrogens and an η
6
-benzene. 
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In the X-ray crystal structure of [UO2(OH)K(THF)2(H2L
Me

)] (Fig. 2, middle), it is clear that the addition of 

THF has caused the scission of the intermolecular K-macrocycle interactions in the dimer of 

[{UO2(OH)K(C6H6)(H2L
Me

)}2] with the migration of the potassium cation K1 to the U-free half of the 

macrocyclic wedge. The geometry of the uranyl dication remains pentagonal bipyramidal with the oxo ligands 

trans (O1-U1-O2 178.5(3)°) and the equatorial coordination occupied by one N4donor compartment and the 

hydroxo group; the bond distances between these donor atoms and U1 are similar to those seen in the structure 

of [{UO2(OH)K(C6H6)(H2L
Me

)}2]. The potassium cation again adopts a bridging geometry, although in this 

case K1 bridges the hydroxo group O3 (K1-O3 2.547(5) Å) and the oxo ligand O1 (K1-O1 3.194(7) Å) in an 

asymmetric manner within the macrocyclic cleft. The remaining coordination sphere of K1 is completed by 

coordination with pyrrole andimine nitrogens of the vacant donor compartment and by two molecules of THF. 

This structural mode clearly affects the bonding in the uranyl fragment, as significant elongation of the endo-

U1-O1 bond distance is seen (1.821(6) Å) compared to the exo-U1-O2 distance (1.788(6) Å) and also to the 

U–O bond distances in [{UO2(OH)K(C6H6)(H2L
Me

)}2] (1.8029(16) and 1.7949(16) Å). In a similar manner to 

[UO2(THF)(H2L
Me

)] and [{UO2(OH)K(C6H6)(H2L
Me

)}2], a hydrogen bonding interaction between the endo-

oxo group O1 and the pyrrole hydrogens is observed (N6 O1 3.046 Å, N7 O1 3.079 Å). 

 

Conclusions 

We have shown that reactions between the uranyl Pacman complex [UO2(THF)(H2L
Me

)] and the potassium-

based reagents K metal, KH, and KOH result in the isolation of KOH or K2O adducts that have been 

characterised in the solid state and in solution. Structural data show that these complexes retain their overall 

Pacman structural motif in which the O-atoms at the uranyl are arranged in a T-shape. The K cations are 

coordinated either outside or within the macrocyclic framework which results in cation-cation interactions 

with the oxo-groups of the uranyl dication and bridging interactions with the equatorial hydroxide or oxide 

ligand. 

 

Experimental details 

All manipulations were carried out under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk 

techniques or in MBraun Unilab or Vacuum Atmospheres OMNI-lab gloveboxes unless otherwise stated. 

THF and hexane were degassed and purified by passage through activated alumina towers prior to use, while 

benzenewas boiled over K and distilled. All deuterated solvents were boiled over potassium, vacuum 

transferred, and freeze-pump-thaw degassed three times prior to use. The compounds H4L
Me

 and 

[UO2(THF)2{N(SiMe3)2}2] were synthesised according to literature procedures,
18

 and KOH was prepared by 

the addition of degassed waterto potassium in toluene; all other reagents were used as purchased without 
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further purification. 
1
H and 

13
C NMR spectra were recorded on Bruker DPX 300 and Avance 360 MHz NMR 

spectrometers at 300 K. Chemical shifts are reported in parts per million, and referenced to residual proton 

resonances calibrated against external TMS. Infrared spectra were recorded on Nicolet 210 and Jasco 410 

spectrophotometers. Elemental analyses were carried out by Mr. Stephen Boyer at London Metropolitan 

University. Solutions for UV-vis spectrophotometry were made in a nitrogen filled glovebox and spectra were 

recorded in either a Teflon-tapped 10 mm quartz cell or a 1 mm quartz cell sealed by a tight fitting Subaseal 

on a Unicam UV1 spectrophotometer. Mass spectra were recorded by Mr. Tony Hollingsworth at the 

University of Nottingham on a VG Autospec instrument. 

 

Synthesis of [UO2(THF)(H2L
Me

)] 

A solution of H4L
Me

 (2.64 g, 4.0 mmol) in THF (20 mL) was added slowly to a stirred solution of 

[UO2(THF)2{N(SiMe3)2}2] (2.94 g, 4.0 mmol) in THF (20 mL) at -78 °C. The resulting solution was allowed 

to warm to room temperature over 16 h, after which the volatiles were removed under vacuum and the 

residual solids redissolved in THF (15 mL). Addition of hexane (20 mL) to this solution resulted in a 

precipitate that was isolated by filtration, washed with hexane (2 × 10 mL), and dried under vacuum to yield 

[UO2(THF)(H2L
Me

)] as a brown/red solid (3.76 g, 88%). 

Analysis found: C 56.00, H 5.55, N 10.51%; C50H58N8O4U requires: C 55.96, H 5.46, N 10.44%; 
1
H NMR 

(C6D6): δH 8.74 (s, 2H, imine), 8.49 (s, 2H, NH), 7.99 (s, 2H, imine), 7.18 (s, 2H, aryl), 6.81 (s, 2H, aryl), 6.78 

(d, 2H, pyrrole), 6.71 (d, 2H, pyrrole), 6.27 (d, 2H, pyrrole), 5.86 (d, 2H, pyrrole), 4.83 (m, 2H,THF), 3.94 (m, 

2H, THF), 2.23 (s, 3H, methyl), 2.13 (s, 6H, 2 × methyl), 2.08 (s, 3H, methyl), 2.00 (s, 6H, 2 × methyl), 1.31 

(s, 3H, methyl) 0.86 (m, 2H, THF), 0.71 (m, 2H, THF), 0.52 (s, 3H, methyl); 
1
H NMR (d8-THF): δH 8.87 (s, 

2H, imine), 8.21 (s, 2H, imine), 8.09 (s, 2H, NH), 7.13 (s, 2H, aryl), 7.08 (s, 2H, aryl), 6.84 (d, 2H, J = 3.5 Hz, 

pyrrole), 6.34 (d, 2H, J = 3.5 Hz, pyrrole), 6.19 (d, 2H, pyrrole), 5.71 (d, 2H, pyrrole), 2.32 (s, 6H, 2 × 

methyl), 2.23 (s, 6H, 2 × methyl), 1.99 (s, 3H, methyl), 1.79 (s, 3H, methyl), 1.42 (s, 3H, methyl), 0.83 (s, 3H, 

methyl); 
13

C{
1
H} (C6D6): δC 164.9 (q), 161.0 (q), 148.1 (imine), 146.5 (imine), 144.1 (q), 143.2 (q), 139.3 (q), 

134.0 (q), 132.0 (q), 124.5 (q), 122.2 (aryl), 117.8 (pyrrole), 114.7 (pyrrole), 109.8 (aryl), 105.7 (pyrrole), 

75.6 and 78.0 (THF), 40.8 (q), 35.7 (methyl), 34.4 (quaternary), 29.1 (methyl), 27.7 (methyl), 26.2 and 25.7 

(THF), 25.0 (methyl), 18.9 (methyl), 18.8 (methyl); EIMS: m/z 928.3 (3.87%, M
+
), 913.2 (6.61%, M-O

+
); IR 

(Nujol): ν 3373(br, NH), 1619, 1601, 1583, 1281(s), 1263, 1214, 1181, 1049(s), 1019, 959, 908 (s, U O 

asymmetric stretch), 895, 780, 766 cm
−1

; UV-vis (THF, 25 °C): 322 nm (ε = 42048 dm
3
mol

−1
cm

−1
). 

 

Reaction between [UO2(THF)(H2L
Me

)] and KH: isolation of [{UO2(OH)K(C6H6)(H2L
Me

)}2] 

THF (20 mL) was added to a stirred mixture of [UO2(THF)(H2L
Me

)] (0.10 g, 0.09 mmol) and KH (11 mg, 0.18 

mmol) at -78 °C and was allowed to warm to room temperature over 16 h. After this time, the mixture was 
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filtered by cannula, the residual solids washed with THF (5 mL) and the washings and filtrate combined. The 

volatiles were removed under vacuum leaving a brown solid that was recrystallised from benzene to yield 

[{UO2(OH)K(C6H6)(H2L
Me

)}2], (0.034 g, 35%). Orange hexagonal block-shaped crystals suitable for X-ray 

diffraction studies were grown from a saturated benzene solution. 

Analysis. Found: C 54.22, H 4.60, N 10.47. C48H49KN8O3U requires C 54.22, H 4.65, N 10.54%; 
1
H NMR 

(C6D6 + THF, double presaturation): δH 10.15 (s, 1H, OH), 8.75 (s, 2H, imine), 8.62 (s, 2H, NH), 7.89 (s, 2H, 

imine), 7.05 (d, 2H, pyrrole), 6.89 (s, 2H, aryl), 6.68 (d, 2H, pyrrole), 6.63 (s, 2H, aryl), 6.14 (m, 2H,pyrrole), 

5.72 (m, 2H, pyrrole), 2.17 (s, 6H, 2 × methyl), 2.10 (s, 6H, 2 × methyl), 2.04 (s, 3H, methyl), 0.71, (s, 3H, 

methyl), 0.18 (s, 3H, methyl). The remaining 1 ×methyl resonance is under the THF resonance of the solvent; 

IR (Nujol mull): ν 3608 (br, OH), 3360 (br, NH), 1620, 1601 (s), 1584, 1353, 1286 (s), 1267, 1214, 1179, 

1047 (s), 1016, 960, 894 (U O asymmetric), 860 (s), 779, 688 cm
−1

. 

 

Synthesis of [UO2(OH)K(THF)2(H2L
Me

)] 

Dissolution of the crystals of [{UO2(OH)K(C6H6)(H2L
Me

)}2] in a mixture of THF and C6H6 resulted in the 

quantitative deposition of X-ray quality, red-orange rectangular block shaped crystals of 

[UO2(OH)K(THF)2(H2L
Me

)] 

Analysis. Found: C 53.18, H 5.27, N 9.95. C50H59KN8O5U requires: C 53.18, H 5.27, N 9.92%; 
1
H NMR 

(C6D6 + THF double presaturation): δH 10.41 (s, 1H, OH), 8.73 (s, 2H, imine), 8.66 (s, 2H, NH), 7.88 (s, 2H, 

imine), 7.06 (d, 2H, pyrrole), 6.71 (m, 4H, aryl), 6.66 (d, 2H, pyrrole), 6.15 (m, 2H, pyrrole), 5.75 (m, 

2H,pyrrole), 2.19 (s, 6H, 2 × methyl), 2.08 (s, 6H, 2 × methyl), 2.06 (s, 3H, methyl), 0.64 (s, 3H, methyl), 0.22 

(s, 3H, methyl); IR (Nujol): ν 3626 (br, OH), 3329 (br, NH), 1601 (s), 1583 (s), 1562 (sh), 1352, 1284 (s), 

1269, 1215, 1184, 1153, 1043 (s), 1018, 960, 895 (U O asymmetric), 866 (s), 795, 777, 760, 621, 594 cm
−1

. 

 

Direct synthesis of [{UO2(OH)K(C6H6)(H2L
Me

)}2] 

THF (20 ml) was added to an equimolar mixture of [UO2(THF)(H2L
Me

)] (0.089 g, 0.089 mmol) and dry KOH 

(0.005 g, 0.089 mmol) at 25 °C. The resulting solution was stirred for 16 h, and the volatiles removed under 

vacuum. The resulting pink red solid was recrystallised from benzene to yield [{UO2(OH)K(C6H6)(H2L
Me

)}2] 

as orange rectangular block-shaped crystals (0.024 g, 25%). The crystals were analysed by X-ray 

crystallography and were found to have the same unit cell parameters as those formed using the above 

alternative route. 
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1
H NMR:(C6D6+THF double presaturation): δH 11.19 (s, 1H, OH), 9.17 (s, 2H, imine), 9.08 (s, 2H, NH), 8.59 

(s, 2H, imine), 7.40 (s, 2H, aryl), 7.32 (s, 2H, aryl), 7.22 (d, 2H, pyrrole), 6.84 (d 2H, pyrrole), 6.68 (m, 2H, 

pyrrole), 6.22 (m, 2H, pyrrole), 2.72 (s, 6H, 2 × methyl), 2.68 (s, 6H, 2 × methyl), 1.34 (s, 3H,methyl), 0.55 (s, 

3H, methyl); 
1
H NMR (CDCl3): δH 9.96 (s, 1H, OH), 9.00 (s, 2H, imine), 8.35 (s, 2H, NH), 8.25 (s, 2H, 

imine), 7.29 (d, 2H, pyrrole), 7.07(s, 2H, aryl), 6.89 (s, 2H, aryl), 6.69 (d 2H, pyrrole), 6.52 (m, 2H, pyrrole), 

6.05 (m, 2H, pyrrole), 2.50 (s, 6H, 2 × methyl), 2.39 (s, 6H, 2 × methyl), 2.25 (s,3H,methyl), 2.13 (s,3H, 

methyl),1.68 (s, 3H, methyl), 1.09 (s, 3H, methyl). 

 

Crystallographic details† 

X-Ray diffraction data from single crystals of [UO2(THF)(H2L
Me

)], [UO2(OH)K(THF)2(H2L
Me

)] and 

[{UO2(OH)K(C6H6)(H2L
Me

)}2] were collected at 150 K usinggraphite monochromated Mo-Kα radiation (λ = 

0.71073 Å) on a Bruker SMART APEX diffractometer equipped with a CCD detector. Details of the 

individual data collections and refinements are given in Table 2. All structures were solved by direct methods 

and refined using full-matrix least square refinement on |F|
2
 using SHELXL-97. Unless otherwise stated, all 

non-hydrogen atoms were refined with anisotropic displacement parameters while hydrogen atoms were 

placed at calculated positions and included as part of a riding model. In [UO2(THF)(H2L
Me

)], two half-

occupied THF solvent molecules per asymmetric unit were refined isotropically using distance and similarity 

restraints. In [{UO2(OH)K(C6H6)(H2L
Me

)}2], some of the benzene solvent of crystallisation was disordered 

over two sites and was refined isotropically with 50 : 50 occupancy. In [UO2(OH)K(THF)2(H2L
Me

)], the twin 

law (0 -1 0, -1 0 0, 0 0 -1) was applied and the twin component fraction refined to 0.1198(11). The two 

molecules of THF bound to the K, and one THF solvent of crystallisation could not be modelled accurately 

and so were refined isotropically. Furthermore, the two molecules of benzene that lie on crystallographic 

mirror planes could not be modelled accurately and so were also refined isotropically using distance and 

similarity restraints. 
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Tables 

Table 1. Selected bond length (Å) and angles (°) for [UO2(THF)(H2L
Me

)], [{UO2(OH)K(C6H6)(H2L
Me

)}2], and 

[UO2(OH)K(THF)2(H2L
Me

)] 

[UO2(THF)(H2L
Me

)] [{UO2(OH)K(C6H6)(H2L
Me

)}2] [UO2(OH)K(THF)2(H2L
Me

)] 

Symmetry code/s: (i) -x+1, -y+1, -z+1. 

U1–O1 1.787 (3) U1–O1 1.7956 (16) U1–O2 1.788 (6) 

U1–O2 1.770 (3) U1–O2 1.8027 (16) U1–O1 1.821 (6) 

U1–O3 2.457 (3) U1–O3 2.1863 (18) U1–O3 2.186 (8) 

U1–N1 2.557 (4) U1–N1 2.531 (2) U1–N1 2.598 (8) 

U1–N2 2.473 (4) U1–N2 2.476 (2) U1–N2 2.499 (8) 

U1–N3 2.443 (4) U1–N3 2.504 (2) U1–N3 2.519 (9) 

U1–N4 2.583 (4) U1–N4 2.603 (2) U1–N4 2.550 (8) 

    U1–K1 3.7853 (11) U1–K1 3.966 (2) 

    U1–K1
i
 4.1083 (11) K1–O3 2.574 (7) 

    K1–O3 2.6610 (19) K1–O4 2.688 (15) 

    K1–O2 2.8127 (19) K1–O5 2.758 (14) 

    K1–O2
i
 2.8382 (18) K1–N8 2.900 (9) 

    K1–N3
i
 3.133 (2) K1–N5 3.027 (9) 

    O2–K1
i
 2.8382 (18) K1–O1 3.194 (7) 

        K1–N6 3.254 (10) 

        K1–N7 3.265 (9) 

O1–U1–O2 176.97 (16) O1–U1–O2 179.16 (7) O1–U1–O2 178.5 (3) 

O1–U1–O3 92.82 (13) O1–U1–O3 94.51 (7) O1–U1–O3 89.0 (3) 

N1–U1–N2 66.25 (14) N1–U1–N2 67.92 (7) N2–U1–N1 65.5 (3) 

N1–U1–N4 152.42 (14) N1–U1–N4 153.28 (7) N1–U1–N4 154.5 (2) 

N2–U1–N3 70.86 (13) N2–U1–N3 70.29 (7) N2–U1–N3 70.0 (3) 

N3–U1–N4 66.46 (13) N3–U1–N4 65.71 (7) N3–U1–N4 65.6 (3) 

N1–U1–O3 79.72(13) N1–U1–O3 79.14 (7) N1–U1–O3 78.6 (3) 

N4–U1–O3 75.64(13) N4–U1–O3 76.04 (6) N4–U1–O3 80.0 (3) 

    O1–U1–K1 135.93 (6) O2–U1–K1 126.3 (2) 
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Table 2. Crystal data for [UO2(THF)(H2L
Me

)], [{UO2(OH)K(C6H6)(H2L
Me

)}2], and 

[UO2(OH)K(THF)2(H2L
Me

)]. 

Experiments were carried out with Mo-Kα radiation 

  [UO2(THF)(H2L
Me

)] [{UO2(OH)K(C6H6)(H2L
Me

)}2] [UO2(OH)K(THF)2(H2L
Me

)] 

Chemical 

formula 

C46H50N8O3U·C4H8O C72H73KN8O3U C55H66KN8O5.50U 

Mr 1073.07 1375.51 1204.29 

Crystal system, 

space group 

Orthorhombic, P212121 Triclinic, P  Orthorhombic, P21212 

a, b, c/Å 13.3919 (7), 14.7012 (8), 

26.5250 (14) 

13.864 (5), 15.187 (5), 18.151 

(5) 

22.7824 (11), 23.0693 (10), 

10.9145 (5) 

α,β,γ (°) 90, 90, 90 92.186 (5), 105.716 (5), 

116.998 (5) 

90, 90, 90 

V/Å
3
 5222.2 (8) 3219.7 (18) 5736.4 (5) 

Z 4 2 4 

μ/mm
−1

 3.16 2.64 2.95 

Crystal size/mm 0.28 × 0.13 × 0.13 0.35 × 0.33 × 0.32 0.26 × 0.13 × 0.13 

Diffractometer Bruker SMART APEX 

CCD area detector 

Bruker SMART APEX CCD 

area detector 

Bruker SMART APEX CCD 

area detector 

Absorption 

correction 

Multi-scan SADABS Multi-scan SADABS Multi-scan SADABS 

Tmin, Tmax 0.712, 1.000 0.459, 0.486 0.514, 0.700 

No. of 

measured, 

independent 

and observed [I 

> 2σ(I)] 

reflections 

33639, 11976, 11239 73027, 17777, 15880 60407, 11782, 11517 

Rint 0.040 0.032 0.074 

R[F
2
 > 2σ(F

2
)], 

wR(F
2
), S 

0.037, 0.087, 1.05 0.029, 0.071, 1.07 0.053, 0.138, 1.09 

No. of 

reflections 

11976 17777 11782 

No. of 

parameters 

576 731 563 

No. of restraints 51 0 10 

H-atom 

treatment 

Riding model Riding Riding 

  w = 1/[σ
2
(Fo

2
) + 

(0.044P)
2
 + 4.411P] 

where P = (Fo
2
 + 2Fc

2
)/3 

w = 1/[σ
2
(Fo

2
) + (0.0393P)

2
 + 

1.2907P] where P = (Fo
2
 + 

2Fc
2
)/3 

w = 1/[σ
2
(Fo

2
) + (0.0726P)

2
 + 

28.6785P] where P= (Fo
2
 + 

2Fc
2
)/3 

Dρmax, Dρmin/e 

Å
−3

 

1.14, -0.67 2.22, -0.72 2.22, -3.38 

Flack parameter 0.084 (6) – 0.052 (11) 

 

Computer programs: Bruker SMART version 5.625 (Bruker, 2001), SMART (Siemans, 1993), Bruker SAINT 

version 6.36a (Bruker, 2000), SAINT(Siemans, 1995), Bruker SAINT; Bruker SHELXTL (Bruker, 2001), 

SAINT (Sienmansm 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for 

Windows (Farrugia, 1997), enCIFer (Allen et al., 2004); PLATON (Spek, 2003), WinGX publication routines 

(Farrugia, 1999).  
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