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Brief Communications

Partial Deficiency or Short-Term Inhibition of
113-Hydroxysteroid Dehydrogenase Type 1 Improves
Cognitive Function in Aging Mice

Karen Sooy,? Scott P. Webster,” June Noble,> Margaret Binnie,> Brian R. Walker,? Jonathan R. Seckl,'?

and Joyce L. W. Yau'?2

!Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, and 2Endocrinology Unit, Centre for Cardiovascular Science, University
of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4T], United Kingdom

113-Hydroxysteroid dehydrogenase type 1 (113-HSD1) regenerates active glucocorticoids (GCs) from intrinsically inert 11-keto sub-
strates inside cells, including neurons, thus amplifying steroid action. Excess GC action exerts deleterious effects on the hippocampus and
causes impaired spatial memory, a key feature of age-related cognitive dysfunction. Mice with complete deficiency of 113-HSD1 are
protected from spatial memory impairments with aging. Here, we tested whether lifelong or short-term decreases in 113-HSD1 activity
are sufficient to alter cognitive function in aged mice. Aged (24 months old) heterozygous male 11 3-HSD1 knock-out mice, with ~60%
reduction in hippocampal 113-reductase activity throughout life, were protected against spatial memory impairments in the Y-maze
compared to age-matched congenic C57BL/6] controls. Pharmacological treatment of aged C57BL/6] mice with a selective 113-HSD1
inhibitor (UE1961) for 10 d improved spatial memory performance in the Y-maze (59% greater time in novel arm than vehicle control).

These data support the use of selective 113-HSD1 inhibitors in the treatment of age-related cognitive impairments.

Introduction

Age-related cognitive deficits in humans and rodents are often
associated with chronically elevated levels of the stress glucocor-
ticoid (GC) hormones (Issa et al., 1990; Lupien et al., 1998). GCs
appear causal since their prolonged elevation exerts deleterious
effects on the hippocampus, a brain region particularly vulnera-
ble to aging (McEwen et al., 1993), while manipulations that keep
GC levels low throughout life prevent the emergence of cognitive
deficits with aging (Landfield et al., 1981; Meaney et al., 1988).
The exposure of specific tissues to GCs is normally tightly controlled
by hypothalamic—pituitary—adrenal (HPA) axis negative feedback
regulation of circulating hormone levels, the density of intracel-
lular corticosteroid receptors, and cellular metabolism by 118-
hydroxysteroid dehydrogenases (11B-HSDs). There are two
isozymes that control the intracellular concentration of active GCs
(Seckl et al., 2002). In the adult forebrain, 113-HSD type 1 (1183-
HSD1) is the predominant or sole isoform (Holmes et al., 2003) and
acts predominately as a ketoreductase in vivo, catalyzing conversion
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of inert cortisone (humans) or 11-dehydrocorticosterone (rodents)
into active cortisol or corticosterone, thus amplifying intracellular
GCaction.

11B-HSD1 amplification of intracellular GCs shows partic-
ular impact with aging. Thus, aged 11B3-HSD1 knock-out
(118-HSD1 ') mice have better spatial memory, lower in-
trahippocampal levels of corticosterone, and better maintenance
of hippocampal long-term potentiation than age-matched con-
trols (Yau et al., 2001, 2007). While 113-HSD1 ~/~ mice are com-
pletely deficient in the enzyme for their lifespan, some evidence
suggests that the cognitive protection is not a developmental phe-
notype. Thus, 113-HSD1 is little expressed in the rodent brain
until birth (Diaz et al., 1998). Moreover, short-term administra-
tion of nonselective (licorice-based) 11B-HSD inhibitors im-
proves memory in young mice with scopolamine-induced
amnesia (Dhingra et al., 2004) and key aspects of cognitive func-
tion in healthy elderly humans and patients with type 2 diabetes
mellitus (Sandeep et al., 2004). However, licorice derivatives in-
hibit both isozymes of 11B8-HSD, other short-chain dehydroge-
nases, and even gap junctions (Sagar and Larson, 2006).

We have recently developed potent selective 113-HSD1 in-
hibitors that cross the blood—brain barrier and that do not inhibit
11B-HSD2 (Webster et al., 2007). Since drug-mediated inhibi-
tion of 113-HSD1 in the brain is unlikely to be complete, we first
examined 118-HSD1 ™/~ “heterozygous” mice to determine
whether partial loss of the enzyme can exert cognitive effects with
aging. In parallel, we tested whether short-term administration of
our selective 113-HSD1 inhibitor (UE1961) affects spatial mem-
ory in already aged C57BL/6] mice.
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Materials and Methods

Animals

11B3-HSD1 knock-out mice congenic on a C57BL/6] background (Carter
et al., 2009) were bred after a minimum of 10 generations backcrossing
from the original MF1/129 background (Kotelevtsev et al., 1997). Male
11B-HSD1 == 11B-HSD1 /= and C57BL/6] littermates were gener-
ated from 118-HSD1 ¥/~ crosses. For pharmacology studies, C57BL/6]
mice were purchased from Harlan. Mice were genotyped by RT-PCR and
housed 4 to 5 per cage under standard conditions on a 12 h light/dark
cycle (lights on at 7:00 A.M.) with ad libitum access to food (standard
chow) and water. All procedures were performed to the highest standards
under the aegis of the UK Animals (Scientific Procedures) Act, 1986, and
with local ethical committee approval.

11B-HSD1 inhibitor

The novel compound UE1961 (N-[3-[4-[4-[(4aR,82aR)-3,4,4a,5,6,7,8,8a-
octahydro-2 H-quinoline-1-carbonyl]-2-thienyl]-1-piperidyl]-3-oxo-
propyl]methanesulfonamide) was synthesized by Argenta according to the
published synthetic method (Webster et al., 2009). In vitro screening of
UE1961 potency for the median inhibitory concentration (IC,,) was deter-
mined in HEK293 cells as previously described (Webster et al., 2007).

Spatial memory testing of 11B3-HSDI-deficient mice in Y-maze
Young (6 months old) and aged (24 months old) C57BL/6]J, 113-
HSD1 %/, and 1 1B8-HSD1 ~/~ mice were tested in the Y-maze. At least 1
week before testing, basal morning blood samples were taken by tail
venesection for corticosterone levels. The Y-maze apparatus, made up of
three enclosed black Plexiglas arms (50 cm long, 11 cm wide, and 10 cm
high) with extramaze visual cues around the maze, was used to assess
hippocampal-dependent spatial recognition memory (Yau et al., 2007).
The test consisted of two trials separated by an intertrial interval (ITT). All
mice were transported to the behavioral testing room in their home cages
at least 1 h before testing. In the first training (acquisition) trial, mice
were placed at the end of a pseudorandomly chosen start arm and al-
lowed to explore the maze for 5 min with one of the arms closed (novel
arm). Mice were returned to their home cage until the second (retrieval)
trial, during which they could explore freely all three arms of the maze.
The time spent in each arm was measured and analyzed from video
recordings using a computer tracking system (Limelight, ActiMetrics).
The time spent in the novel arm was calculated as a percentage of the total
time in all three arms during the 2 min retrieval trial (Dellu et al., 1992;
Conradetal., 1999). A 1 min ITI was first used to control for spontaneous
novelty exploration and also to test that the mice were able to see the
spatial cues. Mice were retested 7 d later to measure spatial memory
performance with a 2 h ITL. Following Y-maze testing, the mice were
culled by cervical dislocation, brains dissected and stored frozen for later
11B-HSD1 (11B-reductase) activity assays.

Treatment of aged mice with UE1961

UE1961 was first tested in vivo in 12-month-old C57BL/6]J mice (n =
9/group) to access the effectiveness of inhibition of 113-HSD1 in brain
following intraperitoneal administration (10 mg/kg, 12 hourly for 3 d);
control mice received vehicle injections [38% PEG 400, 2% DMSO
(Sigma) in 0.9% NaCl]. The mice were culled 1 h after the final dose, and
brain tissue was dissected and processed for 113-reductase activity. Fol-
lowing confirmation that peripheral administration of UE1961 effec-
tively inhibited hippocampal 113-HSD1 activity, aged (24 months old)
C57BL/6] mice were treated with UE1961 (10 mg/kg, i.p.) or vehicle
twice daily for 10 d. The mice were tested on the Y-maze witha 2 hITT on
day 10 of UE1961 treatment 1 h after the morning injection (7:00 A.M.).
Tail venesection blood samples were taken in the morning 12 h after the
last injection of UE1961.

11B-HSD enzyme activity assays

11B-HSDI activity ex vivo. Brain samples were homogenized and assayed
for 11B-ketosteroid reductase activity essentially as described previously
(Kotelevtsev et al., 1997), but instead of adding NADPH cosubstrate
directly, glucose-6-phosphate, a substrate for hexose-6-phosphate dehy-
drogenase (H6PDH), which is colocalized in the lumen of the endoplas-
mic reticulum with 113-HSD1 and acts to generate the cosubstrate, was
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added (Clarke and Mason, 2003). Briefly, the tissues were homogenized
(0.5 mg/ml for hippocampus, 0.2 mg/ml for cerebellum and cortex) and
incubated in C buffer (10% glycerol, 50 mum sodium acetate, 1 mm EDTA;
pH 6.0) containing 10 mum D-glucose-6-phosphate dipotassium salt hy-
drate and 10 nm [ *H]-1 1-dehydrocorticosterone ([ 3H]-11DHC) at 37°C
for 60 min. The [*H]-11DHC was prepared as described previously
(Brown et al., 1993), and the incubation time and protein concentration
were predetermined from initial time course incubations with varying
concentrations of protein. The steroids were extracted with ethyl acetate
and analyzed by thin-layer chromatography.

11B-HSDI activity in vitro. Full-length 118-HSD1 cDNAs were am-
plified by PCR and ligated into the vector pPCDNAS5/FRT/V5-His TOPO
TA (Invitrogen). Flp-In HEK293 cells (Invitrogen) were cotransfected
with vector and plasmid pOG44 to generate stably expressing cells. HEK-
293 cells stably transfected with human, mouse, or rat 113-HSD1 were
seeded in 96-well plates at a density of 20,000 cells per well. Sixteen hours
after seeding, the cells were incubated with 20 nm 3H-cortisone (GE
Healthcare) in serum-free media (DMEM, Invitrogen) and compound
in DMSO at a final concentration of 1%. Following incubation for 1-2 h,
50 ul of media was removed, and liberated 3H-cortisol was captured on
anti-cortisol (HyTest Ltd)-coated scintillation proximity assay beads
(protein A-coated YSi, GE Healthcare). Data were fitted to the four-
parameter logistic equation using GraphPad Prism software.

11B-HSD2 activity in vitro. CHO cells stably transfected with 113-
HSD2 (Brown et al., 1996) were seeded in 96-well plates at a density of
20,000 cells per well. Sixteen hours after seeding, the cells were incubated
with 20 nm *H-cortisol (GE Healthcare) in serum-free media (DMEM,
Invitrogen) and compound in DMSO at a final concentration of 1%.
Following incubation for 16 h, 50 ul of media was removed and steroids
were extracted in 2 volumes of ethyl acetate. The organic phase was then
evaporated under nitrogen and the extracts resuspended in 20 ul of
ethanol. Samples were analyzed by TLC in a mobile phase of 92:8 chlo-
roform/ethanol, using a Fujifilm FLA-2000 phosphoimager to quantify
tritium-labeled steroids following exposure to a tritium screen.

Measurement of GR binding in vitro

GR binding was measured using the Polar Screen Glucocorticoid Recep-
tor competitor assay kit (Green) (Invitrogen), according to the manufac-
turer’s instructions.

Corticosterone radioimmunoassay

Plasma corticosterone levels were measured using an in-house RIA
(Al-Dujaili et al., 1981) modified for microtiter plate scintillation prox-
imity assay (GE Healthcare UK). Corticosterone antiserum was kindly
donated by Dr. C. Kenyon (University of Edinburgh, Edinburgh, UK).
For brain hippocampal corticosterone levels, steroids were extracted by
solvolysis from the dissected tissues as described previously (Ebner et al.,
2006) with modifications. Tissue homogenates in phosphate buffer
were added slowly to 95% ethanol at —30°C to avoid protein dena-
turation and steroid trapping. After incubation for 16 h at —30°C,
extracts were centrifuged, dried down, reconstituted in 40% metha-
nol, and further extracted using C18 Sep-Pak cartridges to remove
conjugated and sulfated metabolites before RIA.

Statistical analysis

Data are expressed as mean = SEM and were analyzed using a one-way
ANOVA followed by Fischer PLSD and Scheffé F tests post hoc as appro-
priate for individual between-group comparisons. The percentage time
in the novel arm comparison with the other arms of the Y-maze within a
group was performed by Student’s paired ¢ test. Significance was set at
p < 0.05.

Results

Both 11B8-HSD1 */~ and 113-HSD1 ~/~ mice are protected
from spatial memory impairments with aging

All groups of mice [young (6 months old) and old (24 months
old), C57BL/6J, 113-HSD1 /7, and 118-HSD1 '] spent sig-
nificantly ( p < 0.05) more time in the novel arm than the previ-
ously visited arms (other and start) following a short 1 min ITI
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Figure 1. Maintained spatial memory in the Y-maze for aged 113-HSD1 ™/~ and 113-
HSD1 /™ mice but not aged (57BL/6) controls. A, Both young (6 months young; n = 68/
genotype) and aged (24 months aged; n = 7—8/genotype) mice of (57BL/6J (CON) controls,
11B8-HSD1 ™/~ (KO+/—), and 118-HSD1 '~ (KO—/—) mice were able to perform the
immediate version of the Y-maze with the 1 min [TI. B, Young mice of all three genotypes show
intact spatial memory (with 2 h ITl) spending more time in the novel arm than the other two
arms. Aged C57BL/6) (but not aged 113-HSD1 ™/~ and aged 118-HSD1 /™) mice show
impaired spatial memory with 2 h [TI. Values are means = SEM. *p << 0.05 compared to novel
arm. 5p << 0.01 compared to novel arm of aged C57BL/6) mice.

(Fig. 1). This immediate version of the Y-maze showed all mice
groups were equally motivated to explore the novel environment.
There was no significant effect of age or genotype on the time
spent in the novel arm following the 1 min ITI (Fig. 1). For the
hippocampus-dependent spatial memory test provided by the 2 h
ITI, two-factor ANOVA revealed a significant genotype (F; 59, =
3.7, p < 0.05) effect and interaction between age and genotype
(F2,39) = 3.4, p < 0.05). While young C57BL/6] mice spent more
time in the novel arm of the Y-maze after a 2 h ITI (p < 0.05
compared to other arm or start arm), aged C57BL/6] mice could
not distinguish the novel arm, thus showing impaired spatial
recognition memory (Fig. 1). In contrast, both aged 113-
HSD1 "/~ and 118-HSD1 ~/~ mice spent more time in the novel
arm than the other two arms ( p < 0.05) and significantly more
time in the novel arm than aged C57BL/6] controls (F(, ,,, = 7.4,
p < 0.01) (Fig. 1).

11-reductase activity and hippocampal corticosterone levels
are decreased in the brains of aged 118-HSD1*/~ mice

No detectable 11B-reductase activity (conversion of [*H]-
11DHC to [ *H]-corticosterone) was observed in tissue homoge-
nates from the hippocampus, cortex, and cerebellum of aged
118-HSD1 '~ mice (Fig. 2). Aged 118-HSD1 "/~ mice showed
intermediate 11B3-reductase activity (hippocampus, 62 = 6% de-
crease; cerebellum, 68 = 6% decrease; cortex, 64 *= 8% decrease;
compared to aged C57BL/6] controls) (Fig. 2). Hippocampal tis-
sue corticosterone levels were decreased in aged 118-HSD1 "/~
mice (16.1 * 1.4 ng/g) and aged 118-HSD1 '~ mice (12.0 * 1.6
ng/g) compared to aged C57BL/6] controls (28.2 = 5.5 ng/g)
[Fi2.22) = 5.6, p < 0.05]; levels between aged 118-HSD1 ™/~ mice
and aged 118-HSD1 ™'~ mice were not significantly different.
These changes in tissue corticosterone concentrations were not
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Figure 2.  11B-Reductase activity is reduced in brain of aged 113-HSD1 ™/~ mice. The 113-
reductase activity was measured in tissue homogenates of the aged mice [(57BL/6J (CON) controls,
118-HSD1 ™/~ (KO+/—),and 11B8-HSDT /™ (KO—/—), n = 7—8/genotype] incubated with
[*H]-11-dehydrocorticosterone (11-DHC), and the percentage conversion to active [>H]-
corticosterone (CORT) was measured. Enzyme activity levels in the tissues of aged 113-HSD1 ~/~
mice were not detectable. Values are means = SEM. *p << 0.001 compared to (57BL/6) controls.
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Figure3. Plasma corticosterone levels areincreased with age but are not affected by lifelong
11B-HSD1 deficiency. Basal corticosterone (CORT) levels were measured from tail venesection
blood samples taken in the morning 1 h after lights on from young (6 months old; n = 6 -8/
genotype) and aged (24 months old; n = 7—8/genotype) (57BL/6J (CON) controls, 113-
HSDT */~ (KO+/—),and 11B-HSD1 '~ (KO—/—) mice. Values are means = SEM. *p <
0.05 compared to corresponding young mice of same genotype.

associated with alterations in plasma corticosterone levels, which
although significantly increased with age (F(, 39, = 15.7, p <
0.001), did not vary with genotype nor show genotype X age
interactions (Fig. 3).

Compound UE1961 is a selective inhibitor of 113-HSD1 and
improves spatial memory in aged C57BL/6] mice

Compound UE1961 (Fig. 4A) is a 113-HSD1 inhibitor display-
ing nanomolar potency against both human and rodent enzymes
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Figure 4.  Treatment of aged (57BL/6J mice with a selective 113-HSD1 inhibitor UE1961

decreases 11 3-reductase activity in the hippocampus and improves spatial memory retention
in the Y-maze. A, Chemical structure of UE1961. B, 11[3-Reductase activity was measured in
tissue homogenates of the aged mice following administration of 10 mg/kg UE1961 (inhibitor)
incubated with [ *H]-11-dehydrocorticosterone (11-DHC) and the percentage conversion to
active [ *H]-corticosterone (CORT) was measured. €, Spatial memory retention as measured in
the Y-maze with a 2 h ITl was significantly better in the UE1961-treated mice than vehicle-
treated controls (n = 9-10/group). Values are means = SEM. *p << 0.05 compared to corre-
sponding novel arm. 5p << 0.001 compared to novel arm of vehicle-treated controls.

in intact cellular assays (ICs, values: 479 nm, 528 nM, and 287 nm
for human, mouse, and rat 113-HSDI, respectively). In such
assays the nonselective licorice-derived 113-HSD inhibitor car-
benoxolone has an ICs, for human 1138-HSD1 of 2 um. UE1961 is
selective for 11B3-HSD1 (ICs, for human 113-HSD2 >10,000 nm;
for human GR 7% binding at 10 um). When dosed twice daily
intraperitoneally for 3 d in 12-month-old C57BL/6] mice,
UE1961 produced 27.1 * 4.6% and 20.4 * 3.2% reduction in
11B-HSD1 activity in the hippocampus and cortex ex vivo, re-
spectively (F(, ;5 = 6.1, p < 0.05 and F; ;5 = 15.9, p < 0.01)
(Fig. 4B).

Treatment of the aged (24 months old) mice with either vehi-
cle or UE1961 by intraperitoneal injections twice daily for 10 d
had no effect on body weight, and the injections were tolerated
well. Consistent with untreated aged mice, aged C57BL/6] mice
given intraperitoneal vehicle could not distinguish the novel arm
of the Y-maze after a 2 h ITI (Fig. 4C). In contrast, after 10 d of
UE1961 treatment, aged mice spent more time in the novel arm
compared to the other two arms ( p < 0.05) and also compared to
vehicle-treated controls (F(, ;5 = 19.1, p < 0.001) (Fig. 4C).

This improvement in glucocorticoid-associated spatial mem-
ory performance with UE1961 was not due to lowered circulating
corticosterone, indeed basal plasma corticosterone levels were
higher in UE1961-treated aged C57BL/6] mice (8.58 * 1.44 ug/
dl) than in vehicle-treated controls (3.39 * 0.53 pg/dL; F(, ;) =
12.5, p < 0.005). Adrenal weights of the aged mice were unaltered
by UE1961 treatment [vehicle: 0.129 = 0.018 mg/g body weight
(bw); UE1961: 0.114 * 0.013 mg/g bw].

Discussion

Mice heterozygous for a 113-HSD1 null allele, with ~60%
enzyme deficiency, resisted spatial memory deficits with aging.
Importantly, even short-term administration of a selective 113-
HSD1 inhibitor to achieve ~27% reduction in hippocampal en-
zyme activity improved spatial memory in already aged mice. The
data indicate that short-term reductions in intracellular glu-

Sooy et al. @ Reducing 113-HSD1 Improves Memory in Aged Mice

cocorticoid levels have cognitive benefits with aging and support
the utility of CNS-active selective inhibitors of 113-HSD1.

Recent data show that hippocampal 113-HSD1 expression
increases (~30%) with aging in C57BL/6] mice and correlates
with spatial memory deficits (Holmes et al., 2010). Modeling this
by transgenic forebrain-specific overexpression (50% in hip-
pocampus) of 113-HSD1 accelerates cognitive decline with aging
(Holmes etal., 2010). Clearly modest changes in brain 113-HSD1
may impact on cognition with aging. 113-HSD1 heterozygous
knock-out mice showed ~60% decrease in 118-reductase activ-
ity in the brain. This was greater than the anticipated 50% change
but may reflect reduced expression of 113-HSD1 from the unaf-
fected 11B-HSD1 allele since GCs themselves induce 1138-HSD1
gene expression (Sai et al., 2008). Decreased 113-reductase activ-
ity was reflected in lower hippocampal tissue corticosterone lev-
els in aged 118-HSD1 ™/~ mice. This was not a consequence of
genotype-specific alterations in circulating corticosterone levels,
emphasizing the importance of intracellular metabolism in de-
termining GC signaling, especially as plasma corticosterone levels
rise with age. Thus modest decreases in 113-HSD1 across the
lifespan exert cognitive protection with aging. Since no apparent
cognitive benefits are seen in young animals even with complete
11B-HSD1 deficiency, the implication is that the cognitive effects
of deficiency of the enzyme only becomes manifest with age,
plausibly in association with chronic elevation of GC levels and
perhaps also reduced hippocampal glucocorticoid receptors
(Murphy et al., 2002) and/or the accumulation of allostatic load
(McEwen, 2002).

To address any short-term effects of reduced 1138-HSD1 ac-
tivity on cognitive function, we developed UE1961, a highly se-
lective 113-HSD1 inhibitor that penetrates the CNS. Peripheral
administration of UE1961 caused ~27% reduction in 113-HSD1
activity in hippocampal homogenates. This is likely an underes-
timate of inhibition in vivo since the effectiveness of inhibitors
declines rapidly ex vivo (Hermanowski-Vosatka et al., 2005).
Nonetheless, UE1961 improved spatial memory performance of
aged mice in the Y-maze after only 10 d treatment. This occurred
despite increased plasma corticosterone levels, an effect unex-
pected from 11B-HSDI inhibition in C57BL/6] mice (Carter et
al., 2009). The implication is that intracellular corticosterone lev-
els in brain (part of which comes from free corticosterone from
the periphery) is still sufficiently lower than in aged wild-type
mice, because of the reduced 1138-HSD1 activity, to improve spa-
tial memory performance.

Inhibition of 113-HSD1 activity may lead to beneficial meta-
bolic effects such as decreased fasting glucose and improved
insulin sensitivity (Hermanowski-Vosatka et al., 2005), and 1183-
HSD1-deficient mice show improved glucose tolerance on a
high-fat diet (Morton etal., 2001). Hyperglycemia associates with
cognitive decline with aging in humans and some animal models
(Convit et al., 2003; McCall, 2005) and hippocampal memory
processes in rats are modulated by insulin and high-fat-induced
insulin resistance (McNay et al., 2010). Whether the UE1961
effects on cognition in aged mice is mediated centrally or via such
peripheral effects is unclear. However, our recent unpublished
findings in aged 113-HSD1 ~/~ mice with transgenic “rescue” of
the enzyme in the forebrain show spatial memory impairments
compared to 113-HSD1 ~/~ mice (J. L. W. Yau and J. R. Seckl,
unpublished results). This suggests that inhibition of 113-HSD1
activity in brain by UE1961 is pivotal in the improved cognitive
function.

Ten days of treatment with UE1961 in already aged (24
months old) mice had similar effects on spatial memory perfor-
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mance to lifelong partial deficiency of 113-HSD1. This suggests
that the memory deficit in the aged mice was not linked to an
irreversible molecular or structural impairment. Moreover, the
inhibitor effects are unlikely a consequence of hippocampal
structural changes but more likely due to the shorter-term effects
of reduced intracellular corticosterone exposure at the time of
memory testing. In support, spatial memory impairments as a
consequence of hippocampal lesions or chronic restraint stress-
induced hippocampal dendritic atrophy are prevented by a single
pretesting injection of the corticosterone synthesis blocker me-
tyrapone (Roozendaal et al., 2001; Wright et al., 2006). Thus,
spatial memory deficits may arise from hippocampal damage-
induced corticosterone hypersecretion rather than as a direct ef-
fect of hippocampal structural changes per se. The data presented
here suggest that short-term 113-HSD1 inhibition or lifelong
partial 11B8-HSD1 deficiency decrease intracellular corticoste-
rone levels sufficiently to ameliorate GC impairing effects on
memory in the aged mice. This parallels two randomized,
double-blind, placebo-controlled, cross-over studies in which
short-term treatment with carbenoxolone, a nonselective 113-
HSD inhibitor, improved verbal fluency in healthy elderly men
and improved verbal memory in patients with type 2 diabetes
(Sandeep et al., 2004). While one potential side effect of 1183-
HSD1 inhibition is the possibility of HPA axis stimulation to
compensate for the reduced tissue regeneration of active GCs, the
limited data in humans treated with 113-HSD1 inhibitors report
no change in cortisol (Sandeep et al., 2004; Rosenstock et al.,
2009).

The findings raise the issue of the normal role of 113-HSD1 in
the forebrain and whether there are negative consequences of
enzyme deficiency. While chronically elevated GCs have adverse
impacts on cognition, dynamic increases in GCs facilitate the
consolidation of emotionally arousing experiences (Abrari et al.,
2009; Burman et al., 2010). Any role of 113-HSD1 on such effects
is unknown but is currently under investigation. Whatever the
outcome, our data suggest that brain-active selective 113-HSD1
inhibitors may have cognitive benefits in the already aged.
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