
 

ECG Morphological Variability in Beat Space for Risk Stratification
After Acute Coronary Syndrome

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Liu, Yun, Zeeshan Syed, Benjamin M. Scirica, David A. Morrow,
John V. Guttag, and Collin M. Stultz. 2014. “ECG Morphological
Variability in Beat Space for Risk Stratification After Acute
Coronary Syndrome.” Journal of the American Heart Association:
Cardiovascular and Cerebrovascular Disease 3 (3): e000981.
doi:10.1161/JAHA.114.000981.
http://dx.doi.org/10.1161/JAHA.114.000981.

Published Version doi:10.1161/JAHA.114.000981

Accessed February 17, 2015 12:02:54 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13890749

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28952926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/13890749&title=ECG+Morphological+Variability+in+Beat+Space+for+Risk+Stratification+After+Acute+Coronary+Syndrome
http://dx.doi.org/10.1161/JAHA.114.000981
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13890749
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


ECG Morphological Variability in Beat Space for Risk Stratification
After Acute Coronary Syndrome
Yun Liu, BS; Zeeshan Syed, PhD; Benjamin M. Scirica, MD, MPH; David A. Morrow, MD, MPH; John V. Guttag, PhD;
Collin M. Stultz, MD, PhD

Background-—Identification of patients who are at high risk of adverse cardiovascular events after an acute coronary syndrome
(ACS) remains a major challenge in clinical cardiology. We hypothesized that quantifying variability in electrocardiogram (ECG)
morphology may improve risk stratification post-ACS.

Methods and Results-—We developed a new metric to quantify beat-to-beat morphologic changes in the ECG: morphologic
variability in beat space (MVB), and compared our metric to published ECG metrics (heart rate variability [HRV], deceleration
capacity [DC], T-wave alternans, heart rate turbulence, and severe autonomic failure). We tested the ability of these metrics to
identify patients at high risk of cardiovascular death (CVD) using 1082 patients (1-year CVD rate, 4.5%) from the MERLIN-TIMI 36
(Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome—Thrombolysis in
Myocardial Infarction 36) clinical trial. DC, HRV/low frequency–high frequency, and MVB were all associated with CVD (hazard
ratios [HRs] from 2.1 to 2.3 [P<0.05 for all] after adjusting for the TIMI risk score [TRS], left ventricular ejection fraction [LVEF], and
B-type natriuretic peptide [BNP]). In a cohort with low-to-moderate TRS (N=864; 1-year CVD rate, 2.7%), only MVB was significantly
associated with CVD (HR, 3.0; P=0.01, after adjusting for LVEF and BNP).

Conclusions-—ECG morphological variability in beat space contains prognostic information complementary to the clinical variables,
LVEF and BNP, in patients with low-to-moderate TRS. ECG metrics could help to risk stratify patients who might not otherwise be
considered at high risk of CVD post-ACS. ( J Am Heart Assoc. 2014;3:e000981 doi: 10.1161/JAHA.114.000981)
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R isk stratification after acute coronary syndrome (ACS)
involves integrating a diverse array of clinical informa-

tion. Risk scores, such as Global Registry of Acute Coronary
Events (GRACE) and Thrombolysis In Myocardial Infarction
(TIMI), aid in this process by incorporating clinical information,
such as cardiac risk factors and biomarker data.1,2 Unfortu-
nately, existing metrics such as these only identify a subset

of high-risk patients. For example, the top 2 deciles of the
GRACE score and a high TIMI risk score captured 67% and
40% of the deaths, respectively.1,2 That a significant number
of deaths will occur in populations that are not traditionally
considered to be high risk highlights a need for tools to
discriminate risk further.3 In this regard, the use of compu-
tational biomarkers may provide additional information that
could improve our ability to identify high-risk patient sub-
groups.4 Indeed, several studies showed that electrocardio-
gram (ECG)-derived computational metrics significantly
improve the ability to risk stratify in subgroups with relatively
preserved left ventricular ejection fraction (LVEF).4–7

ECG-based metrics can be broadly divided into ones that
analyze heart rate changes and ones that analyze changes in
morphology. There are data to suggest that heart-rate–based
metrics, such as heart rate variability (HRV),8,9 deceleration
capacity (DC),5 heart rate turbulence (HRT),6,10 severe auto-
nomic failure (SAF),7 and heart rate motifs,11 measure
autonomic modulation of heart rate. Morphology-based
metrics include T-wave alternans (TWA),12 which is designed
to measure specific alternating changes in cardiac repolari-
zation, morphologic variability (MV),13 which is designed to
quantify the beat-to-beat morphologic variability in ECG
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signals, and symbolic mismatch,14 which is designed to
uncover anomalous patterns of beats.

In this study, we present a new method of quantifying ECG
morphologic variability for risk stratification after non-ST-
segment elevation (NSTE)-ACS and compare our metric with
published metrics. This is the first study to explore the utility of
ECGmetrics for further risk stratification amongpatients that are
not currently considered to be high risk, as assessed by the TIMI
risk score (TRS), LVEF, and B-type natriuretic peptide (BNP).15

Methods

Population
Two patient populations were used in this work, a derivation16

and a validation cohort,17 from 2 clinical trials of patients with
NSTE-ACS. The derivation cohort consisted of 765 patients,
with 14 deaths within 90 days. The derivation cohort was
used to derive parameters for a new MV risk metric
(morphologic variability in beat-space [MVB], described below)
and was the same population that the original MV metric was
derived from.13

We then tested the ability of each ECG-based metric to
identify high-risk patients on the validation cohort, consisting
of the placebo arm of the MERLIN-TIMI 36 (Metabolic
Efficiency with Ranolazine for Less Ischemia in Non-ST-
Elevation Acute Coronary Syndrome—Thrombolysis in Myo-
cardial Infarction 3618) clinical trial, which had a median
follow-up of 1 year. The treatment arm was not included
because previous studies suggested that ranolazine could
have antiarrhythmic properties,19 thus potentially affecting
the ECG. In order to compare our proposed metric with
established clinical measures, we only included patients that
had measured values for both the LVEF and BNP (N=1082; 1-
year cardiovascular death [CVD] rate, 4.5%). In addition, we
evaluated the performance of these metrics on “low-risk”
patients identified based on information that is available
shortly after presentation, the TRS, and BNP. The first
subpopulation had low-to-moderate TRS (TRS ≤4; N=864; 1-
year CVD death rate, 2.7%), whereas the second subpopula-
tion had an even lower CVD rate (TRS ≤4 and BNP ≤80 pg/
mL; N=538; 1-year CVD rate, 1.6%). We also explored the
utility of the risk metrics in other low-risk subpopulations
based on combinations of TRS, BNP, and LVEF. CVD was
adjudicated by a clinical events committee blinded to the ECG
results.18 The protocol was approved by the local or central
institutional review board at all participating centers.

MVB
The risk metric, MVB, quantifies beat-to-beat variability in ECG
signals and is an evolution of a previously described metric,

MV.13 Unlike TWA, which only considers alternating morpho-
logic changes in the ST segment or T wave, MV quantifies
morphologic changes in the entire beat, including the TP
segment. A key parameter in MV is the diagnostic frequency
of 0.30 to 0.55 Hz,13 which states that beat-to-beat variability
in ECG morphology in this frequency band is prognostic.
Taking the inverse of these 2 frequency values gives the
temporal periods 3.3 and 1.8 seconds, respectively, implying
that high variability roughly every 2 to 3 seconds is prognos-
tic. However, as a result of beat-to-beat variation in heart rate,
cardiac activity is periodic with respect to heart beats instead
of with respect to time (Figure 1). Accordingly, we speculated
that it might be useful to analyze frequency relative to
heartbeats, rather than relative to time. This changed the
analysis space from time to beats and, consequently, changed
the frequency domain (units of Hz) to a “beat frequency”
domain (units of cycles/beats). This is equivalent to the
interval spectrum20 and beatquency21,22 reported in earlier
studies. For ease of interpretation, we report the beat-
frequency bands as “every x beats.”

The MVB was calculated within both the derivation and
validation cohorts using Holter ECG recorded at 128 Hz for
each patient. Up to 7 days of ECG records were available in
both cohorts (mean, 4.2 days in derivation, 6.2 days in
validation), and the first 24 hours were used. Many steps are
similar to morphologic variability computation,23 and the
important steps are briefly described here. The ECG was first
preprocessed using the Signal Quality Index package as
implemented in Physionet24,25 to help ensure that only normal

Figure 1. Comparison of periodic events with respect to time
(top) and heartbeats (bottom). ECG signals are identical and have
average heart rates of 60 bpm. Red lines represent a hypothetical
morphological change at a rate of every 2 seconds (0.5 Hz, top) or
every 2 beats (0.5 cycles/beat, bottom). If events are periodic in
time, each event may be associated with a different part of a beat.
However, events that are periodic in beat space are associated with
specific cardiac events, the R-wave in this hypothetical example. By
performing beat-frequency analysis in MVB (Figure 2), we propose
to examine ECG variability of the latter type. MVB indicates
morphologic variability in beat space.
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beats are studied. Next, baseline wander was removed by
subtracting the median filtered signal.26 The ECG signal
amplitude was then normalized by dividing each ECG signal by
the mean R-wave amplitude for that patient. For example, if
the mean R-wave amplitude of the patient is 1.5, the entire
ECG signal is divided by 1.5; isoelectric segments are
unaffected, and the rest of the signal is scaled appropriately.
This step corrects for calibration errors and interpatient
differences and enables more-meaningful comparison of
morphological differences. Next, the ECG signal was con-
verted into a beat-to-beat variability time series termed the
morphologic distance (MD) time series. The MD time series
quantified beat-to-beat morphologic changes in the ECG
signal; each MD point was defined by the sum of the squared
differences between the aligned beats (Figure 2, step 1).
Notably, the MD time series in MVB had the heartbeat index
(1, 2, 3, and so on) as the x-axis instead of time. Next, the MD
time series (in beat space) was segmented into 5-minute
intervals, and each 5-minute segment was transformed to the
frequency domain, in a manner similar to what is done for
HRV.8 For each 5-minute interval, the energy in a diagnostic
beat frequency was computed (Figure 2, step 2). This
diagnostic beat frequency was optimized in the derivation
cohort of patients with ACS (described below). The 90th
percentile of these energies from all of the 5-minute windows
was termed the MVB for that patient (Figure 2, step 3).
Figure 2 summarizes the steps in MVB computation, including
the optimal diagnostic beat frequency.

The optimal diagnostic beat frequency was searched in the
derivation cohort over the range of every 2 beats to every 100
beats (Figure S1). For every possible start and end beat
frequency, we computed the 90th percentile of the energy in
that beat frequency band over all 5-minute windows in the
day. The AUC (area under the receiver operating characteristic
curve)27 was then computed for that diagnostic beat
frequency across all patients in the derivation cohort with
the outcome of death within 90 days of follow-up. Finally, the
beat-frequency range with the highest AUC is chosen to be
the optimal diagnostic beat frequency. The AUCs are
presented as a heat map, where each point in the heat map
corresponds to the AUC for MVB computed using a specific
beat-frequency range as indicated by the respective axes
(Figure S1). We obtained an optimal diagnostic beat frequency
of every 2 to 7 beats, with an AUC of 0.725. A similar
procedure was previously applied to optimize a diagnostic
frequency.13

Analysis of MVB in Specific ECG Segments
To analyze the physiology underlying the variability measured
by MVB, we quantified MVB resulting from partial segments of
the ECG. First, the ECG signal is preprocessed as per the

steps in MVB. Next, the beat-to-beat morphologic distance
time series is computed for each quarter of the ECG segment,
resulting in 4 values for each original MD value: MD1, MD2,
MD3, and MD4; MD=MD1+MD2+MD3+MD4. This results in 4
new time series, which summarize the variability in partial
segments of the ECG. The remaining steps of conversion to
the frequency domain, summing the energy in the range of
every 2 to 7 heartbeats, and taking the 90th percentile, are
identical.

Comparison With Published Risk Metrics
MVB was compared with other published risk metrics: HRV,8

HRT,6 DC,5 SAF,7 TWA (computed using a fully automated
version of the modified moving average28), TRS,2 LVEF, and
BNP.15 Several HRV metrics were computed: low frequency/

Figure 2. Overview of morphologic variability in beat space (MVB)
computation. Step 1: The input ECG signal is first converted into a
beat-to-beat distance time series termed the morphologic distance
(MD) time series. This conversion is performed by dynamic time
warping (DTW), an algorithm that ensures beats are aligned before
comparison. DTW compares the blue T wave with the extended red
T wave above; a direct subtraction would compare the late blue T
wave with the mid red T wave in the above DTW schematic. Each
pair of adjacent beats generates a single MD value; N beats
generates (N-1) MD values. In MVB computation, the MD time
series has the “beat index” instead of “time” for the x-axis. Step 2:
The MD time series is segmented into 5-minute windows. Next, for
each 5-minute window, the MD time series is converted to the beat-
frequency domain and the energy in the diagnostic beat-frequency
is summed. Step 3: The 90th percentile of these energies over all
5-minute windows in 24 hours is termed the MVB for that patient.
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high frequency (LF/HF); standard deviation of average NN
intervals (SDANN); heart rate variability triangular index
(HRVI); average standard deviation of NN intervals (ASDNN);
standard deviation of NN intervals (SDNN); proportion of
consecutive NN intervals that differ by more than 50 ms
(PNN50); and root mean square of successive differences
(RMSSD).8 All ECG metrics were computed using previously
described methods,4 and all metrics were dichotomized for
statistical analysis (below).

Statistical Analysis
We evaluated these metrics based on uni- and multivariable 1-
year hazard ratios (HRs). HRs were computed using Cox’s
proportional hazards regression model.29 Continuous risk
metrics were dichotomized at the highest (or lowest) quartile,
as appropriate, for all continuous metrics (MVB, HRV, DC, and
TWA). This enabled meaningful comparisons of HRs for 2
reasons: (1) none of the established cutoffs were derived for
the specific populations analyzed here, and (2) this ensured
equal proportions of patients in each metric’s high-risk
category. LVEF and BNP were dichotomized at ≤40% and
>80 pg/mL,15 respectively. For categorical metrics with more
than 2 categories (TRS and HRT), the highest-risk categories
were used: TRS≥5 and HRT=2. The HRs relative to other
published thresholds (DC ≤2.5, DC ≤4.5, HRT ≥1, DC ≤2.5
versus >4.5, HRT=2 versus 0) are reported in the Supporting
Information. After dichotomization, each metric was replaced
by a binary value; for example, TRS is “1” if TRS≥5, and “0”
otherwise. Each multivariable HR was computed by including
TRS, LVEF, BNP, and a single ECG metric.

We also constructed multivariable models, including TRS,
LVEF, and BNP, and assessed the AUC of these models
relative to models that also included MVB. Because mean-
ingful improvements in discrimination can be masked by small
changes in AUC,30 the statistical difference in the model was
quantified by the category-free net reclassification index
(cfNRI).31 Models were adjusted, as appropriate, in lower-risk
subpopulations (Table S10).

Results

Association Between Risk Metrics and CVD in the
Validation Cohort
Baseline characteristics of the validation cohort and low-risk
subpopulations are shown in Table 1. In a univariable analysis,
TRS, HRV, BNP, DC, LVEF, MVB, and HRT were all associated
with the risk of CVD (Table 2). After adjusting for TRS, BNP,
and LVEF, only DC, HRV-LF/HF, and MVB remained signifi-
cantly associated with CVD (HRs from 2.1 to 2.3; P<0.05 for
all [Table 2]).

The cfNRI of the addition of MVB to models including TRS,
LVEF, and BNP are presented in Table S10. The nonevent
cfNRI was 52% (95% confidence interval [CI], 45 to 57). The
cfNRI was 45% (95% CI, 13 to 76). The AUC of the model
improved from 0.735 to 0.761 after inclusion of MVB (Table
S10), and the model was well calibrated (Table S11).

Association Between Risk Metrics and CVD in
Lower-Risk Subpopulations
A total of 22 (49%) of 45 CVD occurred in the subgroup with
TRS ≤4 (N=864), and this subgroup had a 1-year CVD rate of
2.7%. In this population, MVB, HRV-LF/HF, BNP, and DC were
significantly associated with CVD (Table 3). After adjusting for
LVEF and BNP, only MVB remained significantly associated
with CVD (HR, 3.0; P=0.014 [Table 3]). Figure 3A shows the
Kaplan-Meier curves for MVB in this population.

In a subgroup of patients with even lower CVD rate (TRS
≤4 and BNP ≤80 pg/mL; N=538; 1.6% 1-year CVD, rate),
MVB was significantly associated with CVD (HR, 8.9;
P=0.007 [Table 4]). After adjusting for LVEF, MVB remained
significantly associated with CVD (adjusted HR, 7.8, respec-
tively; P=0.014 [Table 4]). Figure 3B shows the Kaplan-Meier
curves for MVB in this population. Similar results were found
in other low-risk subpopulations based on a combination of
TRS and LVEF and/or BNP: MVB, but not the other ECG
metrics, was significantly associated with CVD (Tables 5 and
S3 through S6).

The cfNRI of MVB in the lower-risk subpopulations are
presented in Table S10. Reference models included LVEF
and/or BNP, as appropriate. The nonevent cfNRI were nearly
identical in all subpopulations (�52%; 95% CI, 44 to 58),
whereas the cfNRI ranged from 60% to 100%, with a larger
(but still significant) CI resulting from the small numbers of
CVD. The AUC of the models improved from 0.661 or less to
at least 0.725 after inclusion of MVB (Table S10), and the
models were well calibrated (Table S11).

Choosing an Optimal Threshold for MVB
The results presented above use the upper quartile value as
the high-risk threshold. This facilitates comparison of the
various ECG metrics. However, such a choice is not useful
clinically because it is difficult to know a priori what the upper
quartile would be for any given set of patients. In this regard, a
set cut-off value would be the most useful. We therefore used
a set cut-off value (2.9), corresponding to the upper-quartile
value in our derivation cohort, to calculate HRs in our
validation cohorts. The results argue that a fixed cutoff of 2.9
yields HRs that are similar to what was achieved with using
cohort-specific upper quartiles (Tables S2 through S6, see row
MVB>2.9). We have also presented the rates of CVDs as a
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function of MVB quartiles in the validation cohort and low-risk
subpopulations (Figure S2).

Correlation of MVB With Other Variables
We also measured the correlation of MVB with the other ECG
metrics (Table S8). The correlation coefficients were below
0.5 for all metrics. In particular, MVB was uncorrelated with
TWA, the other morphology-based ECG metric analyzed in this
study (r=0.044). The correlation of MVB with other baseline
characteristics are presented in Table S9. The correlation
coefficient was 0.361 for heart rate and below 0.15 for all
other baseline characteristics.

Analysis of MVB in Specific ECG Segments
To investigate the physiology underlying the variability
measured by MVB, we computed MVB using partial segments
of the ECG (see Methods). In the derivation cohort, the 4
quarters result in AUCs of 0.608, 0.629, 0.644, and 0.687,

respectively, lower than that for MVB computed using the
entire ECG (0.725) (Table S12).

Discussion
In the present study, we evaluated the ability of several ECG-
based risk metrics to risk stratify patients in conjunction
with well-established clinical risk tools, such as the TRS,
LVEF, and BNP. Existing risk metrics typically only identify a
subset of the high-risk patients. For example, patients with a
high TRS were at the highest relative risk of CVD (HR, 4.42),
but only accounted for half of all CVD. Therefore, a low-to-
moderate risk population still contains a significant number
of adverse events, and the lack of appropriate risk
stratification in such populations remains a clinical defi-
ciency. We find that in a population with a low-to-moderate
TRS, MVB was the only ECG metric that was significantly
associated with CVD after adjusting for LVEF and BNP
(Table 3). This relationship was similar in other low-risk
subpopulations (Tables 4 and 5).

Table 1. Baseline Patient Characteristics for Validation Cohort and Lower-Risk Subpopulations

Validation Cohort (EF and BNP) TRS ≤4 TRS ≤4 and BNP ≤80

N 1082 864 538

Cardiovascular deaths (CVD) 45 (4.5%) 22 (2.7%)* 8 (1.6%)*

Age, years, median (IQR) 63 (55 to 71) 61 (54 to 69)* 58 (53 to 66)*

Female, % 37 37 36

BMI, median (IQR) 28 (25 to 32) 29 (26 to 32) 29 (26 to 33)

Diabetes mellitus, % 35 32 34

Hypertension, % 78 75 76

Current smoker, % 24 26 26

Previous MI, % 36 28* 27*

Index event, %

Unstable angina 52 52 64*

MI 48 48 36*

ST depression ≥1 mV, % 39 35* 27*

TIMI risk score, %

Low (1 to 2) 25 31* 35*

Moderate (3 to 4) 55 69* 65*

High (5 to 7) 20 0* 0*

LVEF measured, % 100 100 100

LVEF ≤40% (%) 12 10 7*

BNP measured, % 100 100 100

BNP >80 pg/mL (%) 42 38 0*

*Statistical significant difference (at the 5% level), compared to the validation cohort. BMI indicates body mass index; BNP, B-type natriuretic peptide; EF, ejection fraction; LVEF, left
ventricular ejection fraction; TIMI, Thrombolysis In Myocardial Infarction; TRS, TIMI risk score.
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Table 2. Association of ECG-Based Risk Metrics With CVD After Adjusting for LVEF, BNP, and TRS on the Validation Cohort (1-year
CVD rate, 4.5%)

Risk Metric
Univariable 1-Year Hazard Ratio
(95% Confidence Intervals [CI]) P Value

Multivariable 1-Year Hazard Ratio
(Adjusted for LVEF, BNP, and TRS) (95% CI) P Value

TRS 4.42 (2.46, 7.92) 0.000 — —

BNP 3.20 (1.70, 6.02) 0.000 — —

LVEF 2.76 (1.43, 5.34) 0.003 — —

DC* 3.01 (1.68, 5.41) 0.000 2.26 (1.22, 4.17) 0.009

HRV-LF/HF* 3.25 (1.81, 5.83) 0.000 2.21 (1.20, 4.09) 0.011

MVB* 2.70 (1.50, 4.85) 0.001 2.11 (1.15, 3.89) 0.016

HRV-SDANN 1.84 (1.01, 3.36) 0.048 1.53 (0.83, 2.81) 0.171

HRV-HRVI 1.37 (0.73, 2.57) 0.334 1.12 (0.59, 2.13) 0.728

HRV-ASDNN 1.36 (0.72, 2.55) 0.344 1.09 (0.58, 2.07) 0.790

HRV-SDNN 1.21 (0.64, 2.31) 0.558 1.03 (0.54, 1.98) 0.925

TWA 1.11 (0.57, 2.15) 0.758 0.82 (0.39, 1.71) 0.597

HRT2 1.37 (0.58, 3.25) 0.474 0.77 (0.32, 1.89) 0.574

HRV-PNN50 0.75 (0.36, 1.55) 0.432 0.76 (0.37, 1.58) 0.459

HRV-RMSSD 0.64 (0.30, 1.38) 0.255 0.75 (0.35, 1.61) 0.452

SAF 1.18 (0.42, 3.31) 0.750 0.68 (0.24, 1.97) 0.481

Hazard ratios are computed relative to the upper quartile value in this population, unless otherwise indicated; hazard ratios computed relative to other thresholds are shown in Table S2.
ASDNN indicates average standard deviation of NN intervals; BNP, B-type natriuretic peptide; DC, deceleration capacity; HRT, heart rate turbulence; HRV, heart rate variability; HRVI, heart
rate variability triangular index; LF/HF, low frequency/high frequency; LVEF, left ventricular ejection fraction; PNN50, proportion of consecutive NN intervals that differ by more than
50 ms; RMSSD, root mean square of successive differences; SAF, severe autonomic failure; SDANN, standard deviation of average NN intervals; SDNN, standard deviation of NN intervals;
TRS, TIMI risk score; TWA, T-wave alternans.
*Metrics with significant multivariable hazard ratios.

Table 3. Association of ECG-Based Metrics With CVD After Adjusting for LVEF and BNP on a Low-to-Moderate Cohort Consisting
of all Patients With TRS ≤4 (1-Year CVD Rate, 2.7%)

Risk Metric
Univariable 1-Year Hazard Ratio
(95% CI) P Value

Multivariable 1-Year Hazard Ratio
(Adjusted for LVEF and BNP) (95% CI) P Value

BNP 2.93 (1.23, 6.98) 0.015 — —

LVEF 2.66 (0.98, 7.22) 0.054 — —

MVB* 3.66 (1.58, 8.48) 0.002 2.99 (1.25, 7.15) 0.014

HRV-LF/HF 3.01 (1.31, 6.95) 0.010 2.32 (0.98, 5.53) 0.057

DC 2.55 (1.10, 5.91) 0.029 1.97 (0.82, 4.73) 0.132

HRT2 2.56 (0.86, 7.67) 0.092 1.85 (0.60, 5.74) 0.284

SAF 2.34 (0.69, 7.99) 0.174 1.59 (0.45, 5.65) 0.474

HRV-SDANN 1.69 (0.71, 4.03) 0.235 1.43 (0.59, 3.45) 0.423

HRV-SDNN 1.69 (0.71, 4.02) 0.239 1.41 (0.59, 3.40) 0.442

HRV-ASDNN 1.38 (0.56, 3.39) 0.478 1.18 (0.48, 2.91) 0.726

HRV-PNN50 0.88 (0.32, 2.38) 0.798 0.93 (0.34, 2.53) 0.890

HRV-HRVI 0.87 (0.32, 2.35) 0.779 0.72 (0.26, 1.98) 0.526

HRV-RMSSD 0.66 (0.22, 1.95) 0.451 0.68 (0.23, 2.00) 0.480

TWA 1.16 (0.45, 2.95) 0.763 0.63 (0.21, 1.88) 0.411

Hazard ratios are computed relative to the upper quartile value in this population, unless otherwise indicated; hazard ratios computed relative to other thresholds are shown in Table S3.
ASDNN indicates average standard deviation of NN intervals; BNP, B-type natriuretic peptide; DC, deceleration capacity; HRT, heart rate turbulence; HRV, heart rate variability; HRVI, heart
rate variability triangular index; LF/HF, low frequency/high frequency; LVEF, left ventricular ejection fraction; PNN50, proportion of consecutive NN intervals that differ by more than
50 ms; RMSSD, root mean square of successive differences; SAF, severe autonomic failure; SDANN, standard deviation of average NN intervals; SDNN, standard deviation of NN intervals;
TRS, TIMI risk score; TWA, T-wave alternans.
*Metrics with significant multivariable hazard ratios.
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Our data highlight the utility of using a morphology-based
ECG metric for risk stratification in populations that are not
normally considered to be high risk. It is important to keep
in mind, however, that ECG metrics that analyze changes in
the heart rate alone have been shown to have utility in other
patient populations. Patients with low HRV are associated
with increased mortality after myocardial infarction (MI) in
multiple studies; for example, in the largest study (N=1284), a
low HRV-SDNN increased mortality 3-fold during 21 months
of follow-up.32 A meta-analysis found that patients with a low
HRV-SDNN have a mortality rate that is almost 4 times within

3 years after an MI.33 In addition, HRT has been shown to
identify patients at increased risk of death post-MI6,10 and in
elderly adults.34 In the prospective study of post-MI patients
(N=1455), HRT categories 1 and 2 had significant HRs in both
the post-MI population and a subgroup with LVEF >30%.6 SAF
predicted all-cause mortality, CVD, and sudden cardiac death
in post-MI patients and a subgroup with LVEF>30%,7 and DC
was shown to accurately predict death post-MI, especially in
patients with LVEF >30%.5

The other morphology-based metric evaluated in this study,
TWA, can be measured in 2 ways35: (1) using specialized

A B

Figure 3. Kaplan-Meier curves demonstrating risk stratification of 2 relatively lower-risk subpopulations
using the upper-quartile value in each population (A: TRS ≤4; B: TRS ≤4 and BNP ≤80 pg/mL). Numbers of
patients remaining in the study at each labeled time point are indicated below the respective labels. BNP
indicates B-type natriuretic peptide; MVB, morphologic variability in beat space; TRS, TIMI risk score.

Table 4. Association of ECG-Based Metrics With CVD After Adjusting for LVEF on a Lower-Risk Subpopulation (TRS ≤4 and BNP
≤80; CVD Rate, 1.6%)

Risk Metric
Univariable 1-Year Hazard Ratio
(95% CI) P Value

Multivariable 1-Year Hazard Ratio
(Adjusted for LVEF) (95% CI) P Value

LVEF ≤40 4.70 (0.95, 23.29) 0.058 — —

MVB* 8.91 (1.80, 44.15) 0.007 7.81 (1.52, 40.09) 0.014

HRT2 2.59 (0.31, 21.49) 0.379 2.94 (0.35, 24.72) 0.320

DC 2.99 (0.75, 11.97) 0.121 2.39 (0.55, 10.30) 0.243

HRV-LF/HF 1.76 (0.42, 7.35) 0.441 1.67 (0.40, 7.01) 0.484

HRV-PNN50 0.99 (0.20, 4.90) 0.989 1.02 (0.20, 5.03) 0.985

TWA 1.84 (0.44, 7.70) 0.404 0.98 (0.20, 4.88) 0.984

HRV-ASDNN 0.98 (0.20, 4.86) 0.981 0.90 (0.18, 4.47) 0.893

HRV-RMSSD 0.42 (0.05, 3.41) 0.416 0.39 (0.05, 3.21) 0.383

HRV-SDANN 0.42 (0.05, 3.41) 0.416 0.38 (0.05, 3.09) 0.364

HRV-SDNN 0.42 (0.05, 3.43) 0.420 0.37 (0.04, 3.03) 0.354

SAF 0.00 (0.00, Inf) 0.996 0.00 (0.00, Inf) 0.995

HRV-HRVI 0.00 (0.00, Inf) 0.994 0.00 (0.00, Inf) 0.994

Hazard ratios are computed relative to the upper quartile value in this population, unless otherwise indicated; hazard ratios computed relative to other thresholds are shown in Table S5. ASDNN
indicates average standard deviation of NN intervals; DC, deceleration capacity; HRT, heart rate turbulence; HRV, heart rate variability; HRVI, heart rate variability triangular index; LF/HF, low
frequency/high frequency; LVEF, left ventricular ejection fraction; PNN50, proportion of consecutive NN intervals that differ by more than 50 ms; RMSSD, root mean square of successive
differences; SAF, severe autonomic failure; SDANN, standard deviation of average NN intervals; SDNN, standard deviation of NN intervals; TRS, TIMI risk score; TWA, T-wave alternans.
*Metrics with a significant multivariable hazard ratio.
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equipment to assess microvolt changes in T-wave morphology
and (2) using standard Holter monitor data with a modified
moving average method (MMA; assessed in this study). Both
methods have been evaluated with respect to their ability to
predict ventricular arrhythmia, mortality, and sudden cardiac
death (SCD) in various patient populations, such as patients
with dilated cardiomyopathy, congestive heart failure, and
patients who are post-MI.35 In 1 study (N=219), where 91% of
the patients had LVEF≥40%, a high TWA (MMA) had a hazard
ratio of 17.78 for SCD.36 Thus, all of the existing ECG metrics
provide additional information that can be clinically useful in
the right patient populations. However, to our knowledge, this
is the first study to systematically evaluate the performance
of these ECG metrics on patients who would not be identified
as high risk on presentation, as defined by their TIMI risk
score and their blood BNP concentration.

MVB differs from the aforementioned ECG-based metrics
in that it quantifies morphologic differences between
“entire” beats, rather than focusing on portions of the
ECG signal (such as the ST segment and T wave in TWA).
The motivation for deriving a beat-space–based metric
(MVB) is the intuition that morphologic changes could be
associated with cardiac cycles instead of time (Figure 1).
Because high frequencies of abnormal events are cause for
greater concern in general, it is not surprising that the
repeating frequency of MVB (diagnostic beat frequency)
corresponds to high beat frequencies, or equivalently, low
values of “every x beats.”

Beat-to-beat morphologic changes in an ECG can arise
when unstable islands of ischemia throughout the myocar-
dium present in a probabilistic or random manner.37 There-
fore, we postulated that metrics which quantify beat-to-beat
morphologic variations may have prognostic power in patients
with known CVD; for example, significant beat-to-beat
variability may be associated with more ischemic events
and poor outcomes, relative to those with less beat-to-beat
variability. Moreover, whereas ischemia often manifests
during myocardial repolarization, it can also result in
morphologic changes elsewhere in the cardiac cycle (eg, in
the PR segment and QRS complex).38,39 Therefore, we strove

to develop a metric that would quantify the morphologic
variability using the entire cardiac cycle. Consistent with this
goal, MVB variants that quantify morphologic differences in
partial segments of the ECG segment result in poorer
discriminative performance.

Among the beat-frequency bands measured by MVB is
“every 2 beats.” Although the number 2 is reminiscent of
TWA,12 we find that MVB and TWA are not correlated,
suggesting that MVB and TWA measure different aspects of
the ECG signal. TWA measures the presence of an ABAB
pattern where A and B denote 2 beats having different
morphologies—in this case, the morphology difference is
isolated to the ST segment and T wave. This ABAB pattern
would produce a consistently high MD time series, or “every 1
beat.” As such, this phenomenon would not be measured by
our beat-frequency analysis, but would instead correspond
mathematically to the mean value of the MD time series.

Limitations
Our study has limitations. First, LVEF and BNP measurements
were not available for all patients, reducing the population
size relative to the entire placebo arm of the MERLIN-TIMI36
trial. Second, because of the lack of ventricular premature
beats for some records, we were unable to compute HRT (and
thus SAF) for all patients in the validation cohort. For a data
set of this magnitude, it was impractical to perform manual
visual inspection of all ECG segments, and therefore we
computed TWA in a fully automated implementation of the
modified moving average approach. For a similar reason, QT
Variability Index (QTVI), which requires manual definition of a
template QT interval for each patient,40 was not measured.
Microvolt ECG records were not recorded for patients in our
cohorts, and therefore microvolt TWA was not measured.
Thus, the utility of microvolt TWA and QTVI in a population
with low-to-moderate TRS remains undetermined. In addition,
our ECG signals were recorded at the standard Holter rate of
128 Hz; higher resolutions have been recommended for the
evaluation of the HRV metrics,8 and the availability of higher-
resolution ECG records may improve their performance in

Table 5. Association of MVB With Cardiovascular Death (CVD) in the Entire Placebo Group and Low-Risk Subpopulations

Population No. of Patients (CVD Rate) Hazard Ratio (HR) Adjusted for HR for MVB (CI), P Value

Entire placebo 1082 (4.5%) TRS, LVEF, BNP 2.1 (1.2, 3.9), 0.016

TRS ≤4* 864 (2.7%) LVEF, BNP 3.0 (1.3, 7.2), 0.014

TRS ≤4, LVEF >40* 776 (2.3%) BNP 3.8 (1.5, 10.2), 0.007

TRS ≤4, BNP ≤80* 538 (1.6%) LVEF 7.8 (1.5, 40.1), 0.014

TRS ≤4, LVEF >40, BNP ≤80* 503 (1.3%) — 14.9 (1.7, 127.7), 0.014

Baseline patient characteristics are presented in Table S1. BNP, B-type natriuretic peptide; LVEF, left ventricular ejection fraction; TRS, TIMI risk score.
*Populations and hazard ratios in which the other ECG metrics were not significantly associated with CVD at the 5% level (details in Tables S2 through S6).
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low-risk populations. Because <2% of the patients had
documented atrial fibrillation, we were unable to perform a
comprehensive analysis of the association of MVB with CVD
in this subpopulation. Finally, we did not have all variables
required to compute the GRACE1 risk score. The hypothesis
that ECG metrics would be useful in patients with a low-to-
moderate GRACE risk score needs to be evaluated in future
work.

Conclusions
We have shown that an ECG morphology-based metric may
provide incremental risk stratification in patients who would
normally be considered to be low-to-moderate risk on
presentation as determined by clinical risk scores, levels of
BNP, and LVEF. To our knowledge, this is the first study to
evaluate the performance of multiple ECG metrics in low-to-
moderate risk patients with comprehensive comparison to
both BNP and LVEF, and therefore may further improve
development of risk-stratification methods (both morphology
based and otherwise) specifically for low-risk populations,
where a significant number of cardiovascular complications
continue to occur.
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