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Introduction

Epidemiology of melanoma

Skin cancer is among the most common cancer types globally1. 
Melanoma is the deadliest skin cancer2. Its burden on public 
health continues to rise, with its incidence increasing faster 
than any other cancer in recent years1,2. Early stage melanoma is 
treatable with surgery, but the late stage of this disease is often 
fatal3. This review discusses the treatment options for patients 
with advanced melanoma and the rationale for combining 
targeted therapy and immune checkpoint inhibitors to treat 
these patients.

Treatments for advanced melanoma

Chemotherapy
Treatment options for advanced melanoma were limited in the 
past decade, and prognosis was universally poor. Cytotoxic 
chemotherapy was the main treatment strategy but was 
marginally effective only in the treatment of locally advanced or 
metastatic disease. Dacarbazine [5(3,3-dimethyl-1-triazeno)-
imidazole-4-carboxamide] was the primary agent used, and 
this drug remains the only FDA-approved chemotherapy for 
metastatic melanoma. However, therapy is characterized with 
low overall response rates (approximately 10%-15%), and the 
drug offers no survival benefit4,5. 

In addition to dacarbazine treatment, biochemotherapy 
regimens and combined chemotherapeutic agents (e.g., 
dacarbazine or temozolomide with vinblastine and cisplatin) 
with cytokine-based therapy [e.g., interleukin-2 (IL-2) and 
interferon-alpha] had been administered to improve response 
rates by inducing immunogenic cell death. Two large meta-
analyses that evaluated the standard chemotherapy versus 
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ABSTRACT	 Melanoma is the deadliest form of skin cancer and has an incidence that is rising faster than any other solid tumor. 
Metastatic melanoma treatment has considerably progressed in the past five years with the introduction of targeted therapy 
(BRAF and MEK inhibitors) and immune checkpoint blockade (anti-CTLA4, anti-PD-1, and anti-PD-L1). However, each 
treatment modality has limitations. Treatment with targeted therapy has been associated with a high response rate, but with 
short-term responses. Conversely, treatment with immune checkpoint blockade has a lower response rate, but with long-
term responses. Targeted therapy affects antitumor immunity, and synergy may exist when targeted therapy is combined 
with immunotherapy. This article presents a brief review of the rationale and evidence for the potential synergy between 
targeted therapy and immune checkpoint blockade. Challenges and directions for future studies are also proposed.
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biochemotherapy in 18 randomized controlled trials (RCTs) 
involving more than 2,600 patients with metastatic melanoma 
show that biochemotherapy regimens can improve overall 
response rates, but with greater systemic toxicity and without a 
statistically significant survival benefit6,7.

Immunotherapy
Another modality in melanoma treatment involves the use 
of immunotherapy. The first immune-based therapy with 
demonstrated clinical benefit in melanoma patients was IL-2, 
an immune stimulating cytokine integral to T cell activation and 
proliferation. Atkins et al.8 examined 270 patients with metastatic 
melanoma treated with high dose IL-2, and 16% of patients who 
achieved complete response (CR) or partial response (PR) showed 
long-term responses, with a median progression free survival (PFS) 
of 13.1 months. Longer follow-up time of the patients demonstrated 
an approximately 6% CR rate9. A follow-up phase III RCT by 
Schwartzentruber et al.10 demonstrated a small but statistically 
significant improvement in objective response rate (ORR) 
associated with the addition of the gp100 peptide vaccine to high 
dose IL-2, although, again, in only a small percentage of patients 
(16% vs. 6%) treated with vaccine plus IL-2 versus IL-2 alone.

Immune checkpoint inhibitors have also been successfully 
used to treat melanoma. This therapy is based on the fact 
that T lymphocytes are critical to antitumor immunity, and 
activation by an antigen-specific T cell receptor in the context 
of costimulatory activation is required. However, a naturally 
occurring feedback mechanism that prevents excess immune 
activation through the expression of negative costimulatory 
molecules exists11. These negative costimulatory molecules, 
also known as “checkpoints”, such as cytotoxic T-lymphocyte 
antigen 4 (CTLA-4), programmed death 1 (PD-1), T cell 
immunoglobulin 3, and lymphocyte-activation gene 3, act as 
“brakes” on T cell activation and serve as negative feedback 
mechanism11. Interestingly, tumor-infiltrating T lymphocytes 
(TIL) in many tumor types express high levels of negative 
costimulatory markers, suggesting a tumor-derived mechanism 
of suppressing antitumor immunity and providing rationale for 
T cell checkpoint blockade12.

In a  mi lestone phase III  RCT of  676 patients  w ith 
unresectable stage III or IV melanoma treated with either anti-
CTLA-4 antibody ipilimumab, gp100 peptide vaccine, or 
combined ipilimumab plus vaccine, patients treated with either 
ipilimumab arm had improved overall survival (OS) compared 
with those treated with vaccine alone (10.0 vs. 6.4 months)13. 
Ipilimumab alone achieved the best overall response rate in 
10.9% of patients, and 60% of these patients benefitted from 
long-term responses lasting greater than 2 years. However, 

ipilimumab therapy was also associated with higher toxicity 
rate, with 10%-15% of patients suffering from grade 3 or 4 
immune-related adverse events (AEs) such as diarrhea or colitis, 
dermatitis, and pruritis13. Similar results were reported in a 
second RCT, which compared ipilimumab plus dacarbazine 
versus dacarbazine alone in 502 patients with advanced 
melanoma, but this study utilized a higher dose (10 mg/kg) of 
ipilimumab14. Response rates were 15% in the ipilimumab with 
dacarbazine-treated group but with higher toxicities. Grade 3 or 
4 AEs occurred in 56% of patients14.

Topalian et al.15 recently reported the results of the phase I 
trial of 296 patients with either advanced melanoma or other 
solid tumors, which included non-small cell lung cancer, 
prostate cancer, renal cell carcinoma, and colorectal cancer, 
in which the checkpoint blocking antibody anti-PD-1 (BMS-
936558, nivolumab) achieved a 28% response rate in melanoma 
patients, with long-term responses longer than 1 year in 50% 
of responding patients. Anti-PD-1 therapy was associated with 
a lower rate of grade 3 or 4 AEs compared with ipilimumab. 
Interestingly, Topalian et al.15 suggested a possible association 
between tumor expression of the PD-1 ligand PD-L1 and 
response to anti-PD-1 therapy. However, further studies are 
necessary to confirm this finding. In a pooled analysis of 411 
melanoma patients treated with the anti-PD-1 antibody MK-
3475 (pembrolizumab, Merck Sharpe & Dohme) with over  
6 months of follow-up data, the ORR was 40% in ipilimumab 
naïve patients and 28% in ipilimumab refractory patients16. 
Median PFS was 24 weeks, but median OS had not been reached 
at the time of analysis. Pembrolizumab was well-tolerated with 
12% of patients experiencing a grade 3 or 4 AE attributed to the 
drug, but only 4% of patients discontinued treatment because of 
AE16. This agent was FDA-approved for metastatic melanoma in 
early September 2014. The antibody blockade of PD-L1 in the 
phase I trial of 207 patients using BMS-936559, including 55 
with advanced melanoma, achieved an objective response in 17% 
of melanoma patients, with more than half of patients achieving 
long-term responses lasting longer than 1 year and a comparable 
rate of grade 3 or 4 AEs17. Although this agent is currently not 
being tested, two anti-PD-L1 antibodies, namely, MPDL3280A 
(Genentech) and MEDI4736 (MedImmune), are being tested in 
solid tumors under early phase clinical trials.

In addition to their use for monotherapy, different immune 
checkpoint inhibitors are now being combined in clinical 
trials, which showed impressive response rates. In the phase I 
trial of 86 patients with unresectable stage III or IV melanoma 
treated with either concurrent or sequential ipilimumab and 
nivolumab, concurrent CTLA-4 and PD-1 blockade achieved 
a higher ORR of 40%, with 53% of patients achieving CR or 



239Cancer Biol Med Vol 11, No 4 December 2014

PR at the maximum doses tested, whereas 31% of responders 
demonstrated tumor regression of 80% or more even with bulky 
disease18. In 53% of patients, grade 3 or 4 AEs occurred at a 
higher frequency in combined therapy than in monotherapy, the 
majority of which were reversible with appropriate supportive 
management18. In a recent update, the 1-year OS rate for patients 
treated with combined immune checkpoint inhibitors was 85%, 
and their 2-year survival rate was 79%19.

Additional strategies targeting checkpoint inhibitors and 
other immunomodulatory molecules are currently being 
studied. However, a thorough discussion of these strategies (as 
well as other strategies such as treatment with tumor-infiltrating 
lymphocytes) is beyond the scope of this review.

Targeted therapy
Concurrent advances in targeted molecular therapy have also 
improved the treatment and prognosis of a subset of advanced 
melanoma patients. Approximately 50% of cutaneous melanomas 
harbor an activating mutation in the BRAF oncogene, leading to 
constitutive activation of the mitogen-activated protein kinase 
(MAPK) signaling pathway involved in cellular proliferation 
and survival20. Preclinical studies of vemurafenib (PLX4032), 
a potent oral small molecule inhibitor of mutated BRAF, 
have culminated in a phase III RCT of vemurafenib versus 
dacarbazine in 675 patients with BRAF-mutated metastatic 
melanoma21. The vemurafenib arm resulted in improved OS 
(84% vs. 64% at 6 months) and higher response rate (48% vs. 5%) 
than standard chemotherapy, representing the only treatment 
other than anti-CTLA-4 to improve survival in metastatic 
melanoma21. Similar results were demonstrated in a phase III 
RCT, in which another potent BRAFV600E inhibitor, dabrafenib, 
was compared with dacarbazine22. Despite improvements in 
response rate and survival, BRAF inhibition achieved only a 
median PFS of 6 months, implying rapid development of tumor 
resistance21,22. Further investigation of resistance mechanisms 
has suggested that BRAF-mutated melanoma cells can maintain 
MAPK signaling through RAF-independent activation of MEK, 
a kinase downstream of RAF in the MAPK cascade23. Translating 
these findings to clinical studies, Flaherty et al.24 demonstrated 
that combined BRAF and MEK inhibition (dabrafenib plus 
trametinib vs. dabrafenib alone)achieved a higher overall 
response rate of 76% versus 54%, as well as a longer median PFS 
of 9.4 vs. 5.8 months. Similar to immunotherapy, combination 
molecular therapy, which targets multiple levels of an oncogenic 
signaling cascade or multiple different cell survival pathways, 
will likely enhance tumor response. In fact, dual immune and 
molecular therapy together may offer the best possibility of both 
long-term and frequent response25. 

Rationale for combination therapy 
Newly approved targeted and immune-modulating agents have 
provided numerous treatment options. However, the optimal 
sequencing of these agents remains controversial. Even though 
BRAF inhibition through selective BRAF inhibitors produces 
excellent early disease control for patients with V600E/K 
mutations, the response duration of this approach is limited 
to less than a year because of the development of multiple 
molecular mechanisms of resistance23,26-32. Checkpoint blockade 
with the CTLA4 inhibitor, ipilimumab, and anti-PD-1 antibodies 
produces responses in a minority of patients, but with long-
term responses13,15. Thus, the combination of targeted therapy 
and immunotherapy may lead to early and robust antitumor 
responses from targeted therapy with long-term benefit from the 
influence of immunotherapy. 

Preclinical data

In vitro studies

To date, numerous studies have investigated combined targeted 
therapy and immunotherapy in melanoma. The first report 
suggesting that oncogenic BRAFV600E can lead to tumoral 
immune escape was published in 200633. Further in vitro studies 
have been performed after the development of specific BRAF 
inhibitors, and BRAF inhibition in BRAF mutant melanoma cell 
lines and fresh tumor digests has been demonstrated to result 
in up regulation (up to 100-fold) of melanoma differentiation 
antigens34. Additionally, inhibition with BRAF and MEK 
inhibitors increased the recognition of these melanoma 
antigens by antigen-specific T lymphocytes. However, MEK 
inhibitors adversely affect the T cell function whereas those 
treated with BRAF inhibitors maintained functionality34. 
Further independent studies on the effects of dabrafenib (BRAF 
inhibitor), trametinib (MEK inhibitor), or their combination 
on T lymphocytes have also shown that trametinib alone or in 
combination suppressed T-lymphocyte proliferation, cytokine 
production, and antigen-specific expansion, whereas treatment 
with dabrafenib had no effect35. Callahan et al.36 suggested that 
BRAF inhibitors can modulate T cell function by potentiating T 
cell activation through ERK signaling in vitro and in vivo.

In vivo studies

Importantly, the effect of BRAF inhibition has also been studied 
in patients with metastatic melanoma. Results showed a similar 
increase in melanoma differentiation antigens and a significant 
increase in intratumoral CD8+ T cells, which were more clonal 
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10-14 days after initiation of BRAF inhibition37-39. These findings 
were also associated with down regulated IL-6, IL-8, IL-1α and 
vascular endothelial growth factor (VEGF)38,40,41. The increased 
immunomodulatory molecules, PD-1 and PD-L1, 10-14 days 
after BRAF inhibition initiation are also important, and this 
condition suggests a potential immune-based mechanism of 
resistance38. The up regulated PD-L1 expression may have been 
caused by infiltrating IFN-γ-secreting T cells42, although stromal 
components may also be involved43. Jiang et al.44 also suggested 
PD-L1 expression as a mechanism of resistance to BRAF 
inhibitors because BRAF-resistant cell lines expressed high 
PD-L1, and the addition of MEK inhibitors has a suppressive 
effect on PD-L1 expression. These data indicate that addition of 
immunotherapy and specifically immune checkpoint blockade 
may enhance antitumoral response when combined with a BRAF 
inhibitor.

Mouse models have provided important insights into cancer 
development, treatment, and therapeutic resistance. Several 
preclinical mouse models have been used to examine in detail 
the potential of combining immunotherapy with BRAF-targeted 
therapy, and most studies have indicated an additive or synergistic 
effect. In the syngeneic SM1 mouse model of BRAF V600E 
melanoma, an improved antitumor activity was observed after 
combining BRAF inhibition with adoptively transferred T cells, 
leading to increased in vivo cytotoxic activity and intratumoral 
cytokine secretion by the transferred T cells. Interestingly, BRAF 
inhibition did not alter adoptively transferred T cell expansion, 
distribution, or intratumoral density45. Liu et al.41 also studied 
the effects of BRAF inhibition on adoptively transferred cells by 
using pmel-1 TCR transgenic mice on a C57BL/6 background 
and xenografts of melanoma cells transduced with gp100 and 
H-2Db. They found an increase in T cell infiltration, which was 
associated with VEGF. Additionally, they showed that melanoma 
cell VEGF over expression abrogated T cell infiltration, and 
these findings were validated in patients treated with BRAF-
directed therapy considering that down regulated intratumoral 
VEGF is correlated with a denser intratumoral T cell infiltrate 
after melanoma patients were treated with BRAF inhibitors41. 
Knight et al.46 utilized several mouse models, which included 
SM1, SM1WT, and a transgenic mouse model of melanoma, to 
support the therapeutic potential of combining BRAF inhibitors 
and immunotherapy. They observed an increase in CD8:Treg 
ratio after BRAF inhibition and that depleting CD8+ T cells, not 
NK cells, was required for antitumor activity of BRAF inhibitors. 
They also showed that CCR2 demonstrates an antitumoral role 
after BRAF inhibition and that combination of BRAF-targeted 
therapy and anti-CCL2 or anti-CD137 led to a significant 
increase in antitumoral activity in these mouse models46.

The authors recently demonstrated a potential synergy when 
immune checkpoint blockade was added to BRAF inhibition47. 
This process was performed using a BRAFV600E/PTEN–/–

syngeneic subcutaneous mouse model, which showed an increase 
in intratumoral CD8 T cells after BRAF inhibitor initiation, 
similar to melanoma patients. Either PD-1 or PD-L1 blockade 
addition to BRAF inhibition resulted in enhanced response, 
which slowed tumor growth and enhanced survival. Additionally, 
increased number and activity of infiltrating TIL was observed47.

However, a previous study has shown the absence of synergy 
in combined BRAF-targeted and immunotherapy48. This 
study conducted experiments using a conditional melanocyte-
specific expressed BRAFV600E and PTEN gene that led to 100% 
penetrance, short latency, and lymph node and lung metastases. 
These induced tumors were similar to human melanoma tumors 
from a histologic standpoint, but the immune response to BRAF 
inhibition was distinct from that observed in BRAF-inhibitor-
treated patients with metastatic melanoma38,39,48. In this model, 
treatment with anti-CTLA4 blockade and BRAF inhibition 
was not associated with improved survival or decreased tumor 
outgrowth48. These results are contrary to those observed in 
several other models. Thus, understanding the translational 
relevance of individual models and their utility in guiding the 
development of human clinical trials is important.

Therefore,  combined BR AF-targeted therapy w ith 
immunotherapy based on preclinical in vitro and in vivo work 
is advantageous. Aggregate data suggest that BRAF inhibitor 
treatment is associated with increased melanoma antigens, 
increased CD8 T cell infiltrate, and decreased immunosuppressive 
cytokines and VEGF early in the course of therapy (within 
2 weeks of initiating treatment in patients)38,40,41. However, a 
simultaneous increase in immunomodulatory molecules was also 
found, which may contribute to therapy resistance. Adding BRAF-
targeted therapy to a number of different treatment modalities 
could improve responses (Figure 1), and these combinations are 
currently being tested in murine models and clinical trials.

Current and ongoing clinical trials of 
combined targeted and immunotherapy

Translating the concepts derived from previous studies has 
attracted much attention for application in patient care setting. 
However, data on how to treat patients with combined targeted 
and immunotherapy approaches are insufficient. A phase I study 
tested the combination of the BRAF inhibitor vemurafenib with 
the CTLA4 inhibitor ipilimumab. The first cohort of 6 patients 
received full dose vemurafenib at 960 mg orally twice daily for 
1 month as a single agent prior to intravenous administration 
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of ipilimumab at the FDA-approved dose of 3 mg/kg. Dose 
limiting toxicity (DLT) of grade 3 transaminase elevations were 
noted in four patients within 2-5 weeks after the first dose of 
ipilimumab49. A second cohort of patients was then started, in 
which patients were started on lower dose vemurafenib (720 mg  
orally twice daily) with full dose ipilimumab. Hepatotoxicity 
was again observed with grade 3 transaminase elevations in two 
patients and grade 2 elevation in one patient49. Additionally, one 
patient in each cohort experienced grade 2 or 3 total bilirubin 
elevation. All hepatic AEs were asymptomatic and reversible 
either with temporary discontinuation of both study drugs 
or with administration of glucocorticoids. Additional AEs of 
interest included grade 2 temporal arteritis in one patient in 
cohort 1 and grade 3 rash in two patients in cohort 1. The study 
was discontinued because of hepatotoxicity issues49.

An ongoing targeted and immunotherapy trial utilizes 
dabrafenib with or without trametinib combined with ipilimumab 
in patients with BRAF V600E/K-mutated metastatic melanoma 
(NCT01767454). At the time of data presentation at the 
American Society of Clinical Oncology (ASCO) meeting in June 
2014, 12 patients had been enrolled on the doublet of ipilimumab 
with dabrafenib, and 7 patients were enrolled on triplet therapy50. 
No DLTs were found in the doublet arm of dabrafenib (150 mg)  
administered orally twice daily and in ipilimumab (3 mg/kg). 
Thus, a dose expansion of 30 additional patients is ongoing. 
Although hepatotoxicity was observed in the doublet arm, grade 
3 or 4 toxicities were not noted, which is likely due to the lower 
propensity of hepatotoxicity seen with dabrafenib compared 
with vemurafenib50. Data are currently insufficient to estimate the 
duration of benefit from doublet therapy.

In the triplet cohort, two cases of colitis associated with colon 
perforation were noted in the first seven treated patients. Both 
patients required extensive courses of steroids, and one patient 
required surgery for management of the colon perforation. 
Toxicities were observed despite the use of low-dose dabrafenib 
100 mg twice daily and trametinib 1 mg daily50. Accrual of 
patients in this cohort was suspended because of toxicity. 
Sequential administration of ipilimumab and trametinib in 
combination with dabrafenib is under consideration. 

Several other studies that combine targeted therapy and 
immunotherapy have been planned or are underway, each 
with varying dose levels and schedules of combination therapy 
administration (Table 1). These important trials will aid in 
understanding toxicity profile and provide preliminary efficacy 
data of various combinations, including targeted treatment 
with checkpoint blockade, cytokine therapy, T cell therapy, 
or radiation. Many of these trials were based on the backbone 
of dabrafenib- and trametinib-targeted therapy with some 

variations on the use of BRAFi or MEKi alone. This condition is 
expected to establish whether MEKi is truly detrimental when 
combined with immunotherapy.

The encouraging data regarding checkpoint blockade make 
these agents ideal for combination with targeted therapy. Given 
that the side effect profiles, response rates, and durations of 
response differ among CTLA4, PD-1, and PD-L1 blockers, 
these trials will be instrumental in providing toxicity and efficacy 
data. Most of these trials have been designed to involve different 
cohorts to determine whether the combination drugs should be 
started simultaneously or whether targeted therapy should be 
administered first. 

Given that cytokine therapy has long been the primary 
treatment for advanced stage melanoma, combined targeted 
treatment and cytokines are currently under clinical investigation. 
Combination therapy is expected to increase immune recognition 
of melanoma cells by CD8 T cells through up regulation of  
IFN-αR1 and class I HLA expression. Skin and hepatotoxicity 
could be overlapping for the vemurafenib and cytokine trials. 
Thus, efficacy and toxicity data should be ascertained.

Infusion of TIL for therapeutic benefit in patients is an 
active area of research interest and is among the most effective 
immunotherapies in melanoma with approximately 45% ORR51. 
A murine adoptive cell therapy model was utilized to illustrate 
that selective BRAF inhibitor PLX4720 could increase tumor 
infiltration of adoptively transferred T cells and enhance the 
antitumor activity of the T cells41. This process was mediated 
by inhibiting the production of VEGF by melanoma cells. This 
finding was also verified in human melanoma patient tumor 
samples before and during BRAF inhibition41. Multiple TIL with 
targeted therapy trials are ongoing (Table 1).

Selective BRAF inhibitors produce objective responses in 
patients with CNS disease52. However, data on the combined 
use of targeted therapy with radiation are insufficient. Although 
abscopal effect has been reported with use of ipilimumab and 
concurrent radiation53, this phenomenon has been less well 
studied with targeted therapy agents. A recent publication 
has reported a patient with BRAF-mutated melanoma who 
developed progressive disease in the brain and pelvic lymph 
nodes after single-agent vemurafenib treatment. Vemurafenib 
was discontinued, and the patient was treated with stereotactic 
radiosurgery (SRS) to three CNS metastases, in which imaging 
showed complete resolution of pelvic nodes 1 month after 
SRS and no evidence of CNS disease for at least 18 months. 
The recent use of BRAF inhibitor in this patient was assumed 
to have facilitated a more favorable tumor microenvironment 
with enhanced antigen presentation to tumor cells that was 
augmented with the use of SRS54. Together with planned 
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Table 1 Phase I/II studies of combining targeted and immunotherapy in melanoma

Targeted + checkpoint blockade Targeted + cytokine Targeted + T cells Targeted + radiation

Dabrafenib ± trametinib + ipilimumab 
(NCT01767454)

Vemurafenib + high dose IL-2 
(NCT01754376 and NCT 01683188)

Vemurafenib + tumor 
infiltrating lymphocytes 
(NCT00338377; 
NCT01585415; 
NCT01659151)

Dabrafenib + stereotactic 
radiosurgery to the brain 
(NCT01721603)

Vemurafenib + Anti PDL1 (MPDL3280) 
(NCT01656642)

Vemurafenib + IL-2 (infusional 96 hour) 
+ INFα (NCT01603212)

Vemurafenib + whole brain 
radiation or radiosurgery to the 
brain (NCT02145910)

Dabrafenib + trametinib + anti PD1  
(MK-3475) (NCT02130466)

Vemurafenib + pegylated IFN 
(NCT01959633)

Trametinib ± dabrafenib + anti PDL1 
(MEDI4736) (NCT02027961)

Vemurafenib + high dose IFNα-2b 
(NCT01943422)

immune correlative studies, these ongoing studies were designed 
to assess whether the addition of the BRAF-targeted agent 
improves disease-free survival rate compared with radiation 
alone to help better study the hypothesized abscopal effect. 

Future directions

Metastatic melanoma treatment has been revolutionized over the 
past few years with the development of immunotherapeutic and 
targeted agents that improve the OS of patients. Although both 
immunotherapy and targeted therapies have distinct advantages 
and disadvantages, preclinical data suggest that combinations of 
these treatments could further improve patient outcomes. Data 
of patients who were treated with combined therapy are limited. 
Response data are therefore insufficient to make conclusions. 
However, the development of toxicities has been an issue, and 
controversial questions remain unclear. 

The optimal timing and sequence of combination therapy 
is currently unknown. Trials are being conducted to ascertain 
whether the agents should be administered simultaneously or 
targeted agents should be used first to prime the T cell response. 
Serial biopsies in a single patient on combined vemurafenib and 
ipilimumab showed increased T cell infiltrate and increase in 
CD8:Treg ratio, which was transient but increased again after 
the addition of checkpoint blockade. The presence of CD8 T 
cell infiltrate on day 8 and its marked reduction on day 35 show 
that initiation of immunotherapy should be applied early in 
the course of targeted therapy to take advantage of the dense T 
cell infiltrate early after targeted therapy initiation. This result 
is limited to a single patient, but has been replicated in the 
subcutaneous implantable tumor model generated from a well-

established murine model of BRAF mutant melanoma47. 
Whether the addition of MEK inhibition combined with 

immune checkpoint blockade (MEK inhibitors) suppresses T 
cell function in vitro remains debatable34. Studies are currently 
being conducted to clarify whether this condition will affect 
potential synergy in vivo. However, existing data suggest that 
the addition of MEK inhibitors to targeted and immunotherapy 
combinations may be associated with increased toxicity, 
given that in a recent study, several patients who underwent 
dabrafenib, trametinib, and ipilimumab treatment developed 
AEs related to colonic perforation50. This result, which was 
unexpected and found in a limited number of patients, highlights 
the need to further understand the immunomodulatory effects 
of trametinib. 

In summary, metastatic melanoma treatment may have 
undergone much development, but this progress has resulted in 
the complexity of managing melanoma patients. The appropriate 
timing and sequence with molecularly targeted therapy and 
immunotherapy remains controversial, and synergy is suggested 
to exist between the two approaches. However, this synergy 
is tempered by a potential increase in toxicity. Further studies 
should be performed to increase the understanding of the 
responses to these types of therapy, and insights gained will help 
guide optimal management of melanoma patients. 
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