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ABSTRACT
Objectives: To systematically review the evidence for
the impact of study design and setting on the
interpretation of tuberculosis (TB) transmission using
clustering derived from Mycobacterial Interspersed
Repetitive Units-Variable Number Tandem Repeats
(MIRU-VNTR) strain typing.
Data sources: MEDLINE, EMBASE, CINHAL, Web of
Science and Scopus were searched for articles
published before 21st October 2014.
Review methods: Studies in humans that reported the
proportion of clustering of TB isolates by MIRU-VNTR
were included in the analysis. Univariable meta-regression
analyses were conducted to assess the influence of study
design and setting on the proportion of clustering.
Results: The search identified 27 eligible articles
reporting clustering between 0% and 63%. The number of
MIRU-VNTR loci typed, requiring consent to type patient
isolates (as a proxy for sampling fraction), the TB
incidence and the maximum cluster size explained 14%,
14%, 27% and 48% of between-study variation,
respectively, and had a significant association with the
proportion of clustering.
Conclusions: Although MIRU-VNTR typing is being
adopted worldwide there is a paucity of data on how study
design and setting may influence estimates of clustering.
We have highlighted study design variables for
consideration in the design and interpretation of future
studies.

INTRODUCTION
The introduction of molecular typing
methods has improved our understanding of
Mycobacterium tuberculosis (TB) transmission
and has changed local and national control
policies.1–5 The proportion of cases that are
clustered is often used to estimate the
amount of ongoing transmission within the
population, based on the assumption that

cases with indistinguishable strain types are
part of a chain of transmission. TB molecular
typing methodology is changing rapidly and
it is important that we better understand
how to interpret the outputs and thus act.
TB molecular typing methods include

Spoligotyping,6 insertion sequence 6110
(IS6110) restriction fragment length poly-
morphism (RFLP) analysis (the recent gold
standard),7 Mycobacterial Interspersed
Repetitive Units-Variable Number Tandem
Repeats (MIRU-VNTR) typing,8 and whole
genome sequencing.9–11 Published reviews
have identified factors that might influence
or bias clustering by IS6110 RFLP.12 13 No
study has repeated this analysis using more
up-to-date typing methods, which is import-
ant for understanding of the epidemiology
of TB and to shape the application of
molecular typing to improve TB control.

Strengths and limitations of this study

▪ This is a timely evaluation of the impact of study
design on estimates of tuberculosis clustering
using Mycobacterial Interspersed Repetitive
Units-Variable Number Tandem Repeats strain
typing because it has been incorporated into
national typing services globally.

▪ The strength of this meta-analysis was limited by
the lack of detail reported by the included studies,
highlighting the need for better quality reporting in
primary studies.

▪ We have shown that the proportion of clustering
derived from MIRU-VTNR typing is influenced by
the number of loci typed, whether consent is
required to type isolates, TB incidence in the
study setting, and the maximum cluster size,
highlighting these as important considerations in
the design and interpretation of future studies.
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Published meta-analyses and modelling studies using
IS6110 RFLP data show that the proportion of clustering
observed can be affected by (1) study design (affecting the
proportion of eligible cases that are included in the study);
(2) features of the typing method (such as the ability to
type isolates with low copy numbers); and (3) study setting
(such as characteristics of the study population). For
example, the proportion of clustering increases when the
fraction of the total data sampled increases13–15 and when
study duration increases.16

MIRU-VNTR is currently the preferred method of
molecular typing,17–21 and can be used together with
Spoligotyping.8 Relative to IS6110 RFLP, MIRU-VNTR
does not have to exclude isolates with a low IS6110 copy
number, has a faster turnaround time, is high throughput
and the numeric strain types are more easily compared.
MIRU-VNTR strain typing is increasingly being adopted
worldwide,1 22–27 yet unlike IS6110 RFLP, the evidence for
the interpretation of the findings such as the impact of
study design and setting on clustering have not been
reviewed. Although the two typing methods have been
shown to have a similar discriminatory value, the markers
evolve independently and at different rates, resulting in a
difference in clustering between the two methods.28 This
suggests that there could be differences in the way study
design, typing method and setting affects clustering by
the two methods. We conducted a systematic review to
assess the evidence for the impact of study design and
setting on the interpretation of TB transmission using
clustering derived from MIRU-VNTR strain typing—as
has been shown using IS6110 RFLP typing.

METHODS
Five electronic databases were searched (EMBASE, ISI
Web of Science, CINHAL, Scopus and Medline (Ovid))
up to 20 October 2014. The search strategy combined the
following terms with Boolean operators: Tuberculosis,
strain typing, and transmission (see online supplementary
appendix 1). The search was limited to studies using the
standard MIRU-VNTR method,8 in humans only, and in
English.
All titles and abstracts from each of the searches were

examined. The full text of each paper was obtained and
reviewed if the study reported MIRU-VNTR strain typing
of M. tuberculosis complex isolates with at least 15 of the
standardised 24 loci (Exact Tandem Repeat A, B, C, D,
E; MIRU 2, 10, 16, 20, 23, 24, 26, 27, 39, 40; VNTR 424,
1955, 2163b, 2347, 2401, 3171, 3690, 4052, 4156).8 29 30

Studies using fewer than 15 loci were not included
because the level of discrimination is inadequate for epi-
demiological use (n=121).8 Studies that used loci different
to the standardised 15 and 24 set were not included in the
analysis in order to reduce the heterogeneity between
studies (n=19). All publication types were included in this
first screen to ensure that no relevant data were missed.
Reviews, letters, editorials, outbreaks or case reports

(n=103) were excluded in the second screen. Studies that

used incomplete sampling (eg, random samples, studies
using subsets of populations such as multidrug-resistant
patients; n=47) and studies that had a sample size of less
than 50 (n=4) were also excluded.
A reviewer ( JM) extracted the following data items

from all included studies using a form developed in Excel
(Microsoft 2010): publication details (year, authors, study
country), study details (study duration, loci typed, second-
ary typing method, study population, whether participant
consent was required (a characteristic of the study design
that was used as proxy for sampling fraction, assuming
that where consent was required the sampling fraction
was low)), the number of clustered and unique isolates
and the covariates of interest: the maximum size of clus-
ters; the proportion of clusters containing two cases; the
proportion of the population that was culture positive;
the proportion of culture positive isolates typed; risk
factors for clustering; and the Hunter Gaston
Discriminatory Index (HGDI)31). IA extracted data from
10% of the papers for external validity, disagreements
were discussed and a consensus agreed on.
The main outcome measure—the proportion of TB

isolates clustered by MIRU-VNTR strain typing—was cal-
culated as the number of clustered isolates/number of
clustered+unique isolates. Where there were uncertain-
ties JM consulted with IA.
Authors were contacted if TB incidence rate was not

reported. Where no response was received WHO
country estimates of TB incidence for the study year
were used.32 As so few studies reported the proportion
coinfected with TB/HIV, these estimates for the study
country were taken from an European Union-wide
survey and WHO country profiles.33 34 Owing to poor
recording of the sampling fraction (the number of iso-
lates typed/the total number of culture positive TB cases
diagnosed during the study period (n=19)), whether the

Figure 1 Results of systematic search, screening and data

extraction.
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Table 1 The study setting and design characteristics of the included articles

Reference

Study setting Study design

Risk

of bias*

Clustering

(%)†

Study area

and country

TB incidence

(per 100 000)

TB/HIV

(per 100 000)‡

Previous TB

treatment (%)

Pulmonary

TB (%)

Maximum

cluster size

Clusters of

size 2 (%)

Study

duration

(months)

Study size

(clustered

+unique

isolates)

Culture

positive

in study

population

(%)

Culture

positive

isolates

typed

(%)

Typing

method§

Loci

typed¶

Consent

required

51 New South Wales,

Australia

6.7 0.2 0.0 63.7 36 1128 m24 N no low 20.1

40 Tabriz and Orumieh,

Azarbaijan

26.0 5.2 87.0 5 81.8 12 156 94.5 m15 O no low 32.7

52 Brussels-Capital

Region, Belgium

35.2 5.1 10.8 23 64.2 24 530 86.1 87.9 m24 N no low 29.6

53 Brussels-Capital

Region, Belgium

35.2 5.1 100 39 802 81.8 84.7 m24s N no low 28.8

54 Ontario, Canada 4.8 0.4 18 58.8 65 2016 m24s N no low 23.1
37 Changping District,

Beijing, China

0.3 100 0 30 318 31.5 94.6 m24 N no high 0.0

38 Croatia 19.0 0.1 45 48.3 36 1587 m15 N no high 62.8
55 Amhara region,

Northwest Ethiopia

24.0 17.6 100 13 5 244 m24 N yes low 45.1

56 Finland 5.0 0.0 20 48 1048 75.4 99.4 m15s no low 33.9
57 Hamburg, Germany 12.7 45.5 12 154 78.2 91.1 m24s N no low 22.1
45 Schleswig-Holstein,

Germany

3.2 0.1 22 44.4 48 277 m24s N no high 27.1

58 South West Ireland 15.3 3.3 82.7 12 36 171 79.5 96.1 m24s N no low 27.5
59 South Tawara,

Kiribati

370.0 4.1 100 25 55.6 24 73 45.4 98.6 m24s N yes low 75.3

60 Netherlands 6.5 0.2 57.2 60 3978 100.1 m24 N no low 46.7
41 Kharkiv, Russia 94.0 3.8 63.3 100 10 50.0 3 98 100 m15 O yes high 31.6
61 Eastern province,

Saudi Arabia

4.0 73.1 24 19.0 24 522 m24s N no low 40.2

62 Singapore 40.5 1.2 21 48.0 24 1128 82.0 34.5 m24s N no low 30.8
63 Slovenia 10.6 0.0 6 12 196 94.4 97.5 m24s N no low 36.2
47 Almeria, Spain 26.0 6.0 8 27 281 81.9 m15 N no high 43.1
64 Sweden 4.8 0.1 10 36 406 m24s N no low 21.2
65 Mubende, Uganda 86.0 31.1 87.8 11 70.0 6 67 21.5 90.5 m15s N yes low 35.8
42 East Lancashire, UK 18.3 8.2 13 58.3 102 332 48.5 69.9 m15 O no low 42.8
39 UK 8.2 42.3 12 50.0 48 102 90.7 87.2 m15 O no low 30.4
66 London, UK 44.9 8.2 9 964 36.0 100 m24 N no 37.0
43 Midlands, UK 15.0 8.2 48 4207 58.3 100 m15 O no 61.2
44 Odessa and

Nikolaev, Ukraine

80.4 3.9 34.2 100 4 225 m15 O yes** low 60.4

67 Hanoi, Vietnam 146.0 10.0 0.0 100 20 465 92.7 91.9 m15s N yes low 55.3

*Risk of bias was assessed using the STROME-ID checklist. Studies scoring <20 were categorised as have a high risk of bias. See online supplementary appendix 2 for STROME-ID scores.

†The proportion of clustering was calculated as the number of clustered isolates/number of clustered+unique isolates.

‡Estimates from of the prevalence of TB/HIV coinfection in the study country.33 34

§15=15 MIRU-VNTR loci (made up of the ‘old 12’ or ‘new 12’ defined in the footnote below), 24=24 MIRU-VNTR loci (ETR A, B, C, D, E; MIRU 2, 10, 16, 20, 23, 24, 26, 27, 39, 40; VNTR 424, 1955, 2163b, 2347, 2401,

3171, 3690, 4052, 4156), S=with Spoligotyping.

¶O=old 12 MIRU loci (MIRU 2, 4, 10, 16, 20, 23, 24, 26, 27,30, 31, 39, 40), N=new 12 MIRU loci (MIRU 10, 16, 26, 31, 40 +Mtub 04, 21, 39+ETR A C+QUB 11b, 26).

**11.3% did not consent to being part of the study. The other studies that required consent for isolates to be typed did not report the refusal rate.

ETR, Exact Tandem Repeat; TB, tuberculosis.
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study required the consent of participants (yes/no) was
included as a proxy for (low/high) sampling fraction.
The risk of bias within each study was assessed using the
STROME-ID checklist.35

Data were analysed in Stata V.12. Where studies
reported data from more than one set of loci, the
method with the highest discriminatory value was
included (ie, MIRU-VNTR 24 would be chosen over
MIRU-VNTR 15, and MIRU-VNTR 15 plus Spoligotyping
would be chosen over MIRU-VNTR 15 alone; n=8). This
review was not concerned with summary measures of clus-
tering, but factors that influenced clustering; therefore
articles must have included at least one of the covariates.
Continuous variables were transformed where the distri-
bution was skewed. The proportion clustered was trans-
formed using the Freeman Tukey transformation.36 Study
heterogeneity was assessed using a forest plot and the χ2

test of heterogeneity. Univariable meta-regression ana-
lyses were carried out to determine the effect of the study
design covariates on the proportion of clustered isolates.
All covariates in the analysis were hypothesised to influ-
ence the proportion clustered a priori.
Sensitivity analyses were conducted to see the effect of

removing studies reporting 0% clustering, with only
extrapulmonary TB cases, only Mycobacterium bovis cases,
studies using the ‘old 12’ MIRU loci as part of their 15
loci, and studies assessed as having a high likelihood of
bias (STROME-ID score less than 20).

RESULTS
The search identified 7274 references resulting in 27
studies (25 journal articles and 2 conference abstracts)
included after deduplication and title/abstract/full text
screening (figure 1). The main characteristics of the

included studies are shown in table 1. Studies were pub-
lished between 2007 and 2014 and the clustering
reported varied from 0%37 to 62.8%.38 In all studies,
clustered isolates were defined as having identical strain
types based on the MIRU-VNTR loci typed, with or
without Spoligotyping. Seventeen studies included iso-
lates from newly diagnosed TB cases, three studies
reported including isolates from new and chronic cases
of TB, and seven did not report this information. In add-
ition, 10 studies did not include repeat isolates from the
same patient, one study included a repeat isolate from
one patient and the remaining 17 did not report
whether repeat isolates were included or not.
Furthermore, four studies included isolates with missing
loci in the cluster analysis, whereas four excluded iso-
lates with missing loci and the remaining 20 did not
report how they dealt with missing loci. The number of
studies reporting each variable of interest is shown in
table 2. STROME-ID scores can be found in online sup-
plementary appendix 2.
A forest plot shows the spread of clustering reported

by number of loci and additional typing method
(figure 2). Significant heterogeneity was identified
between the studies (p<0.001), suggesting that a metare-
gression would be an appropriate analysis.
The univariable metaregression shows evidence for the

proportion of clustering to decrease as the number of
MIRU-VNTR loci typed increased from 15 to 24 (p=0.04;
table 3), accounting for 14% of the between study vari-
ation, and to increase when the study participants con-
sented to being included in the study (p=0.03),
accounting for 14% of the between study variation. The
proportion of clustering increased as the TB incidence in
the population increased (p=0.007, adjusted R2=26.7).
There was also evidence for the proportion of clustering

Table 2 The number of studies that reported the variables of interest

Reported Missing

Study setting

TB incidence 8 15

TB/HIV coinfection 5 22

Previous TB treatment 9 18

Proportion pulmonary TB 14 13

Maximum cluster size 19 8

Percentage of clusters with 2 cases 14 13

Study design

Study duration 27 0

Study size 27 0

Percentage of population that is culture positive 15 12

Percentage of culture positive typed 19 8

24 loci (compared to 15) 27 0

Repeat isolates 12 15

Missing loci 8 19

Double alleles 1 26

Consent required 6* 21

Epidemiological information 6 21

*Only one study reported the consent rate.
TB, tuberculosis.
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to increase as the maximum cluster size increased
(p=0.001), accounting for 48% of between study vari-
ation. There was no evidence of the other study design or
study setting variables significantly influencing the pro-
portion clustered. Though non-significant (p>0.05), the
TB/HIV coinfection rate in the population explained 2%
of the between study variation. Too few studies included
information on the proportion of clusters containing two
cases, proportion of the study sample with previous TB or
with pulmonary TB, so these could not be included in
the analysis (table 2).
Sensitivity analyses to examine the effect of excluding

studies reporting 0% clustering,37 only M. bovis cases,39

studies using the ‘old 12’ MIRU loci,39–44 and studies
assessed as having a high risk of bias,37 38 45–47 did not
generally change the results. The proportion of culture-
positive TB in the population remained insignificant but

explained 2.6% of the between study variation when
excluding 0% clustering (p=0.278 and adjusted
R2=2.62). Similarly, the proportion of culture-positive TB
in the population remained insignificant but explained
2.6% of the between study variation when excluding
studies with the highest risk of bias (p=0.278 and
adjusted R2=2.62). The number of loci typed became
non-significant, but explained 9.6% and 10.5% of the
between study variation when excluding studies using
the ‘old 12’ loci and the highest risk of bias, respectively
(p=0.106, adjusted R2=9.63; p=0.111, adjusted R2=10.51,
respectively).

DISCUSSION
This review identified 27 studies that met the inclusion
criteria. We illustrate that the interpretation of studies

Figure 2 Forest plot showing the proportion of clustering reported in each study by the number of MIRU-VNTR loci typed.

The number of loci typed is categorised into 15 loci (m15), 15 loci with Spoligotyping (m15 s), 24 loci (m24) and 24 loci with

Spoligotyping (m24 s). The study reference is shown in the right hand column.
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using MIRU-VNTR to estimate clustering is subject to
bias relating to study design and setting; however, there
were insufficient data available to fully explore this
impact.
As expected, we found that the proportion of cluster-

ing decreased with a greater number of MIRU-VNTR
loci typed, with increasing TB incidence and with
increasing maximum cluster size. We found that requir-
ing consent to type patient isolates increased the propor-
tion of clustering, which is not expected, given that the
sampling fraction would be lower in these studies.
The other study design variables included in this ana-

lysis, such as study duration, did not significantly influ-
ence the proportion of isolates that were clustered,
contrary to previous findings.12 This is likely to be
because of a lack of good quality evidence: of the 27
studies that met the inclusion criteria for the review,
none reported all the variables of interest, reducing the
power of the analysis and precluding multivariable
metaregression (table 2). Importantly, key details of
cluster analyses were not reported consistently across the
studies, such as whether repeat isolates from the same
patients were included, or typing profiles with missing
loci were included, introducing new, unmeasured biases.
In addition, the range of the variables may have been
too limited to show any impact on clustering estimates.
For example, the proportion of culture-positive isolates
typed ranged from 34.5% to 100%, with 17 of the 19
studies reporting this variable from 81.9% to 100%.
Furthermore, most of the studies (17/27=63%) were
from low TB burden settings and therefore may be
reflecting the rate at which imported cases have match-
ing strain types by chance, rather than rates of recent
transmission.
The sensitivity analysis suggested that, when excluding

the studies with the greatest risk of bias, the culture-
positivity in the population might explain a small
amount of the between-study variation. This is consistent
with estimates of the influence of sampling on the

proportion of clustering using IS6110 RFLP typing.48 In
the sensitivity analysis excluding studies that used the
‘old 12’ loci, the effect of the number of loci typed
becomes non-significant. This is likely because studies
using the ‘old 12’ accounted for six out of 10 studies
reporting 15 loci, reducing the number of studies and
the power of the model.
This study is a timely evaluation of the impact of study

design on estimates of TB clustering using MIRU-VNTR
strain typing because it has been incorporated into
national typing services globally.23 49 The findings are rele-
vant where strain typing is used to evaluate TB control
systems across different settings because the proportion of
clustering is influenced by the number of loci typed, the
TB incidence and the maximum cluster size. Given that
strain typing methods are advancing beyond MIRU-VNTR
typing and that the application of whole genome sequen-
cing to TB control and public health strategies has been
demonstrated,9–11 50 it is important that the biases in the
analysis of such methods are explored and compared.
Understanding how to design and compare research
studies for public health will greatly improve the benefit
gained from newer technologies.
The strength of this meta-analysis was limited by the

(lack of) detail reported by the included studies. This
review has highlighted the need for better quality
reporting in primary studies to enable future reviews to
be more robust. Recently published standards for report-
ing of molecular epidemiology for infectious diseases
should improve the quality of reporting.35 This review is
further limited by our inability to access 58 of the title/
abstract screened articles for full text screening.
The use of TB strain typing as a public health tool in

TB control programmes is increasing globally. We have
identified a lack of good quality studies that can contrib-
ute to our understanding in interpreting the molecular
typing of TB. We have also shown that the proportion of
clustering derived from MIRU-VTNR typing is influ-
enced by the number of loci typed, whether consent is

Table 3 Univariable metaregression showing the coefficients for change in the proportion of clustering and the percentage of

between-study variation explained by variables describing the study design and setting

n Coefficient* CI p Value Adjusted R2†

Study setting

TB incidence 23 0.14 0.04 to 0.24 0.007 26.74

TB/HIV coinfection 23 0.04 −0.03 to 0.11 0.246 2.00

Maximum cluster size 19 0.20 0.09 to 0.30 0.001 48.20

Study design

Study duration 27 −0.02 −0.09 to 0.06 0.677 −3.37
Percentage of population that is culture positive 15 0.34 −1.23 to 1.96 0.661 −5.92
Percentage of culture positive typed 19 0.22 −1.08 to 1.52 0.725 −5.41
Study size 27 0.03 −0.11 to 0.16 0.702 −3.31
24 loci (compared to 15) 27 −0.30 −0.59 to −0.01 0.04 13.58

Consent required 27 0.38 0.04 to 0.72 0.029 14.41

*Coefficients for the change in the proportion of clustering for each covariate. For example, for a one unit increase in maximum cluster size,
the proportion of clustering increases by 0.2.
†The proportion of between-study variation explained by the univariate metaregression.
TB, tuberculosis.
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required to type isolates, TB incidence in the study
setting and the maximum cluster size, highlighting these
as important considerations in the design and interpret-
ation of future studies.
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