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A Methodology for Operationalizing Enterprise 

Architecture and Evaluating Enterprise IT Flexibility 

Abstract 

We propose a network-based methodology for operationalizing enterprise architecture.  Our 

methodology is based upon using a “Design Structure Matrix” (DSM) to capture the coupling 

between different components in a firm’s architecture, including business and technology-related 

aspects.  We apply our methodology to data gathered in a large pharmaceutical firm.  We show 

that this methodology helps to identify layers in the firm’s architecture associated with different 

technologies (e.g., applications, servers and databases).  We also show that it reveals the main 

“flow of control” within the architecture, as denoted by the classification of components into 

Core, Peripheral, Shared and Control elements.  We analyze the cost of change for a subset of 

software applications within this architecture. We find that the cost of change is associated with 

the degree to which applications are highly coupled.  We show the best measure of coupling that 

predicts the cost of change is one that captures all the direct and indirect connections between 

components.  We believe our work constitutes an important step in making the concept of 

enterprise architecture more operational, improving a firm’s ability to analyze its architecture, 

understand its performance implications, and adapt and improve it in the future. 
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1. Introduction 

As information becomes more pervasive in the economy, information systems in firms 

are becoming increasingly more complex. Initially, information systems were designed to 

automate back-office accounting functions and provide data to support managerial decision-

making. The role of these systems was then expanded to coordinate the flow of production in 

factories and supply chains.  The invention of the personal computer led to the creation of client-

server systems, which enhanced the productivity of office workers and middle managers. Finally, 

the arrival of the Internet and the World Wide Web brought a need to support web-based 

communication, e-commerce, and online communities. Today, even a moderate-size business 

maintains information systems comprising hundreds of applications and many databases, running 

on geographically distributed hardware platforms, serving multiple clients. These systems must 

be secure, reliable, flexible, and capable of evolving when new opportunities arise. 

“Enterprise architecture” (EA) is the name given to a set of frameworks, processes and 

concepts that are used to manage an enterprise’s information system infrastructure.  For example, 

TOGAF®, the most-cited architectural framework in this field, was developed by a consortium of 

firms to provide a standardized approach to the design and management of information systems 

within and across organizations.1 It provides a way of visualizing, understanding, predicting, and 

planning for the needs of diverse stakeholders in a seamless and cost-effective way.  

Unfortunately, reality often falls short of this ideal.  Despite the increasing adoption of 

EA frameworks such as TOGAF by firms, making changes to a system, adding new system 

functionality, and integrating different systems (as in a merger) are not straightforward tasks. 

Changes made to one service or application can create unexpected disruptions in seemingly 

distant parts of the enterprise architecture (Vakkuri, 2013).  In essence, when dealing with 
                                                
1 http://pubs.opengroup.org/architecture/togaf9-doc/arch/ (viewed 11/3/14). 
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complex information system architectures, changes propagate in unexpected ways, increasing 

the costs of adapting the system to future needs.  This suggests the need for a more robust 

methodology to operationalize enterprise architecture in a way that generates a more granular 

understanding of system design and greater insight into how such systems can be improved.    

Several EA frameworks propose using matrices to display the relationships among the 

various components of an information system, in an attempt to make EA more operational.  For 

example, TOGAF recommends preparing nine separate matrices at different points in the 

development cycle.2 These matrices are used to track linkages and dependencies between various 

parts of a large and complex system. However, the details of how to construct such matrices and, 

more importantly, how they can be used to improve decision-making are not well specified. 

This paper seeks to address this gap, applying a network-based methodology developed 

to assist in the design of complex products to the design of enterprise architecture.  Specifically, 

previous research has demonstrated the efficacy of using a Design Structure Matrix or DSM—a 

square matrix that captures the interactions among components—as a tool for visualizing, 

measuring and characterizing the architecture of a complex system.  We apply this DSM 

methodology to analyze a firm’s information systems architecture, which comprises many 

interdependent elements, including business groups, applications, databases and hardware. Our 

data is drawn from work with a pharmaceutical company (Dreyfus, 2009). Using this data, we i) 

describe how an enterprise architecture DSM is constructed, ii) show that this DSM reveals the 

layered structure of a firm’s architecture, and iii) highlight how the elements of this architecture 

can be divided into a) “Core” components that tightly-interconnected, b) “Shared” and “Control” 

components, which have many incoming or outgoing dependencies and, (c) “Peripheral” 

                                                
2 http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap35.html (viewed 11/3/14) 
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components that are only loosely-coupled to other elements.  The Core, Shared and Control 

components comprise the main “Flow of Operations” in the enterprise architecture. 

For a subset of the components in the firm’s enterprise architecture, we analyze data on 

the cost of change.  Specifically, we conduct an analysis that predicts the cost of change for each 

component, using measures of coupling derived from the DSM.  We show that the cost to change 

highly-coupled components in this architecture is significantly higher than the cost to change 

components that are only loosely connected to others.  Finally, we show that the “best” (i.e., 

most parsimonious and powerful) measure of coupling that predicts the cost of change is one that 

captures all of the direct and indirect connections between components in the architecture. 

The main contribution of our paper lies in developing a robust methodology for 

understanding enterprise architecture.  We show how dependency-matrices, which have 

previously been applied to the study of product architecture, can be used to gain insight into 

enterprise architecture. We use data on the information systems of a real firm to highlight the 

application of our methods. We conclude by relating our findings to the theoretical principles 

underlying enterprise architecture and discuss the implications for practicing managers. 

The paper is organized as follows. Section 2 reviews the literature and positions our work 

within it. Section 3 describes our data and how it can be used to construct an enterprise 

architecture DSM. Section 4 shows how a DSM can be used to divide components into “Core” 

and “Peripheral” elements. Section 5 explores which measures of coupling best predict change 

cost for a subset of components.  Finally, section 6 discusses our results and conclusions. 
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2. Literature Review and Motivation 

 In this section, we review the enterprise architecture literature and position our work 

within it. We follow this by describing recent work on the visualization and measurement of 

complex software systems, using network-based DSM approaches. 

2.1 Enterprise architecture 

In many prior studies, EA is defined as a tool for achieving alignment between the 

perspectives of business and IT. MIT’s Center for Information Systems Research defines 

enterprise architecture as “the organizing logic for business processes and IT infrastructure 

reflecting the integration and standardization requirements of the company's operating model” 

(Weill, 2007). Hence prior work on enterprise architecture often emphasizes conceptual models, 

tools and frameworks that aim to align a firm’s business processes with its IT infrastructure (e.g., 

Aier and Winter, 2009).  In sum, most research has focused on the “strategic” level of EA 

(Tamm, 2011; Aier, 2014, Boh & Yellin, 2007; Ross & Weill, 2006).   

This overarching perspective is present in the ISO/IEC/IEEE 42010:2010 standard, which 

defines architecture as “the fundamental organization of a system, embodied in its components, 

their relationships to each other and the environment, and the principles governing its design and 

evolution” (ISO/IEC, 2007). As a consequence of this broad scope, EA analysis is typically not 

limited to IT systems, but encompasses the relationship with and support of business entities.  

Ultimately, EA targets a holistic and unified scope of organization (Rohloff, 2008; Tyler, 2006). 

If the integration of IT and business concerns is one defining aspect of EA, a model-

based methodology is another. As the name hints, architectural descriptions are central in EA. 

These descriptions include entities that cover a broad range of phenomena, such as 

organizational structure, business processes, software and data, and IT infrastructure (Lankhorst, 
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2009; Winter & Fischer, 2007; Jonkers, 2006). A large number of EA frameworks have been 

proposed, which detail the kind of entities that should be part of this effort (e.g., TOGAF, 2009; 

Lankhorst, 2009; DoDAF, 2007; MODAF 2008).  Multiple approaches have been proposed that 

identify i) Stakeholders and Aspects to be considered (Zachman, 1987); ii) Viewpoints and 

Concerns to be analyzed (TOGAF, 2009); and iii) Objects and Attributes to be modeled 

(Lagerström et al., 2009).  However, these approaches rarely measure the structure or 

performance of the resulting architecture in a quantitative fashion. Furthermore, the 

visualizations that result from these models often contain limited information (i.e., are too 

simple) or too much information (i.e., are too complex) to be a source of insight for managers. 

EA has been shown to be a powerful decision-support tool when focused on the needs of 

specific decision-makers (Johnson and Ekstedt, 2007).  For example, researchers at the KTH 

Royal Institute of Technology have applied a uniform methodology to model how EA affects the 

dimensions of security, interoperability, availability, modifiability and data accuracy 

(Sommestad et al., 2013; Ullberg et al., 2011; Franke et al., 2014; Lagerström et al., 2010; 

Närman et al., 2011). Narrow models can help stakeholders to document and understand how EA 

affects specific attributes, generating insight into current and future states. They also help to 

communicate these states to stakeholders in a concrete fashion (i.e., with a focus on specific 

performance outcomes). Despite this success however, few studies have adopted this narrower, 

more practical, approach to EA modeling.  

In sum, operationalizing enterprise architecture in a robust and reliable way that allows 

firms to analyze and improve their architectures has proven an elusive goal, due to the wealth of 

available models and frameworks, and their conceptual nature.  Recent work has attempted to 

bring the topic of enterprise architecture to a more concrete and granular level, applying metrics 
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developed in social network theory to the analysis of a firm’s information systems (Dreyfus and 

Wyner, 2011).  However there is as yet, no consensus on which metrics are most relevant to the 

analysis of enterprise architecture, or how these metrics can be used to visualize and understand 

a firm’s architecture, thereby revealing its structure and properties (Baldwin et al, 2014). 

2.1.1 Enterprise Architecture and Layering 

While there exist a wide variety of different enterprise architecture frameworks, one of 

the themes they have in common is the concept of “layers” (Adomavicius, 2008; Yoo et al, 2010; 

Simon et al, 2013).  Simon et al. (2013) describe enterprise architecture management as dealing 

with different layers, including business, information, application, and technology layers. Yoo et 

al. (2010) argue that pervasive digitization has given birth to a “layered-modular” architecture, 

comprising devices, network technologies, services and content. Finally, Adomavicius et al. 

(2008) introduce the concept of an IT “ecosystem,” highlighting the different roles played by 

products and applications, component technologies and infrastructure technologies. 

While these and other studies differ in the ways that they classify layers in an enterprise 

architecture, they do share important underlying assumptions.  First, layering reflects a division 

of the functions provided by a system into different units, such that these units can be designed, 

developed, used and updated in an independent fashion.  Second, layering establishes a design 

“hierarchy” (Clark, 1985) such that each layer tends to interact only with layers immediately 

above or below it in the hierarchy, reducing complexity.  Finally, the direction of the 

interdependencies between layers is defined such that higher layers “use” lower layers, but not 

the reverse.  This limits the potential for changes to propagate through a system (Gao and Iyer, 

2006).  For example, consider a software application on a desktop computer.  It “uses” functions 

provided by the operating system, hence the application “depends upon” this lower layer in the 
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system architecture.  However, the reverse is not true. The operating system is not (in general) 

affected by the presence, or absence, of specific applications. This has important implications for 

the propagation of changes.  Changes to the operating system may impact applications.  But 

changes to applications will not, in general, impact the operating system layer. 

The prevalence of the concept of layering in the enterprise architecture literature suggests 

an important criterion for any methodology that aims to operationalize this concept.  

Specifically, the methodology should reveal the layered structure of an enterprise architecture, 

given a set of directed dependency relationships between elements in this architecture.  

2.1.2 Enterprise Architecture and Performance 

Much of the literature on EA has been dedicated to conceptual frameworks that help align 

business needs with IT capabilities (Zachman, 1987; TOGAF, 2009), and managerial processes 

by which EA planning is accomplished.  Surprisingly however, there has been little work to 

explore the performance benefits of different architectures, especially using empirical data on the 

actual outcomes achieved by firms.  Indeed, Tamm et al. (2011) found that of the top 50 articles 

on enterprise architecture (as ranked by citation count) only 5 provided any empirical data that 

sought to explain the link between EA activities and improved performance outcomes. 

Studies that do make claims about the performance benefits of effective enterprise 

architecture often identify a range of “enablers” that drive important firm outcomes.  For 

example, Tamm et al. (2011) identify four themes discussed in the prior literature as potential 

mediators of firm outcomes, including better organizational alignment, improved information 

quality and availability, optimized resource allocation across the business portfolio, and 

increased complementarities between resources.  However, many authors note it is difficult to 

directly assess the quality of a specific enterprise architecture.  Hence empirical studies linking 
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enterprise architecture to performance have tended to focus either on assessing the quality of 

outputs from EA planning (e.g., the quality of documentation) or the quality of the EA planning 

process itself (e.g., goal setting, task definition, and governance).  Unfortunately, such an 

approach means it is impossible to differentiate between firms that possess similar EA planning 

processes and documentation, but have different structures in terms of the architecture in use. 

While many diverse benefits are claimed from effective enterprise architecture, a 

consistent theme that emerges is the role of EA in facilitating flexibility.  A well-designed 

enterprise architecture supports a firm’s business strategy and achieves an efficient allocation of 

resources at a point in time.  However, the nature of competition means that the context for these 

decisions shifts over time. Designing enterprise architecture is therefore not a static optimization 

problem.  Rather, the aim is to ensure a continuous fit between business and IT needs over time. 

Much prior work highlights the role that enterprise architecture plays in facilitating 

flexibility.  For example, in a highly influential article, Samburmathy at al (2003) argue that the 

strategic value of information technology investments in firms is defined by their impact on 

agility, creating “digital options” and “entrepreneurial alertness” (i.e., understanding and 

exploiting new opportunities).  In essence, EA provides a platform for agility.  Duncan (1995) 

explores the elements that contribute to such flexibility, finding that managers associate this 

feature with the constructs of compatibility, connectivity, and modularity.  Schmidt and 

Buxmann (2011) measure these attributes, and show that a rigorous and comprehensive 

enterprise architecture planning process is associated with self-reported improvements on each 

dimension.  Finally, Sambamurthy and Zmud (2000) state that the new organizing logic for 

enterprise IT is the “platform,” which constitutes a “flexible combination of resources, routines 

and structures” which meets the needs of both current and future IT-enabled functionalities. 
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The above discussion reveals additional criteria for a methodology that aims to 

operationalize enterprise architecture. Specifically, the methodology should capture data about 

the actual enterprise architecture in use, not merely the processes by which the architecture was 

developed, or the documentation produced. Furthermore, the visualizations and measurements 

output from this methodology should facilitate the analysis of important performance outcomes, 

and in particular, the extent to which the architecture facilitates flexibility.   

2.2 Design Structure Matrices (DSMs) 

Many prior studies have characterized the architecture of complex systems using network 

representations and metrics (Holland, 1992; Kauffman, 1993; Barabasi, 2009).  In particular, 

they focus on identifying the linkages that exist between different elements (nodes) in a system 

(Simon, 1962; Alexander, 1964). A key concept that emerges in this literature is that of 

modularity, which refers to the way that a system’s architecture can be decomposed into 

different parts. Although there are many definitions of modularity, authors agree on its 

fundamental features: the interdependence of decisions within modules, the independence of 

decisions between modules, and the hierarchical dependence of modules on components that 

embody standards and design rules (Mead and Conway, 1980; Baldwin and Clark, 2000). 

Studies that use network methods to measure modularity typically focus on analyzing the 

level of coupling between different elements in a system.3  However, while the use of graph 

theory and network measures to analyze coupling in software systems has a long history (Hall 

and Preiser, 1984), no clear consensus has emerged on the best coupling metrics to use when 

predicting system performance.  In recent years, a number of studies have adopted measures 

from social network theory to analyze coupling in software systems (Dreyfus and Wyner, 2011; 

                                                
3 For software systems, this notion is linked with that of cohesion (Dhama, 1995). Well-designed software 

applications require high levels of cohesion (i.e., within modules) and low levels of coupling (i.e., across modules). 
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Wilkie and Kitchenham, 2000; Myers, 2003; Jenkins and Kirk, 2007).  However, such measures 

suffer from well-known limitations that make their application to technical systems difficult to 

apply and interpret consistently (see Baldwin et al, 2014 for a discussion).4 

An increasingly popular network-based method for analyzing technical systems is the 

“Design Structure Matrix” or DSM (Steward, 1981; Eppinger et al., 1994; MacCormack et al., 

2006; Sosa et al., 2012).  A DSM displays the structure of a complex system using a square 

matrix, in which the rows and columns represent system elements, and the dependencies between 

elements are captured in off-diagonal cells. Baldwin et al. (2014) have shown that DSMs can be 

used to visualize the “hidden structure” of software systems, by capturing the level of coupling 

between components. This method has been used to measure the structure, evolution and 

performance of individual applications, such as Linux and Mozilla (e.g., MacCormack et al., 

2006; 2012).  In recent work, Lagerström et al. (2013) have shown that this method can be 

applied to a firm’s enterprise architecture – in which a large number of interdependent software 

applications have relationships with other types of components, such as business groups, 

schemas, servers, databases and other infrastructure elements. 

Metrics that capture the level of coupling for each component can be calculated from a 

DSM and used to visualize, analyze and understand system structure. For example, MacCormack 

et al. (2006) and LaMantia et al. (2008) use DSMs and the metric “propagation cost” to compare 

software system architectures, and to track the evolution of software systems over time.  

MacCormack et al. (2012) show that the architecture of technical systems tends to “mirror” that 

of the organizations from which they have evolved. And Sturtevant (2013) has shown that 

software components with high levels of coupling tend to experience more defects, take more 

                                                
4 For example, social network measures tend to assume that dependencies are symmetric, and focus mostly 

on the direct dependencies between elements.  In technical systems, many important dependencies are asymmetric, 
and both direct and indirect dependencies are important to analyze. 
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time to adapt and are associated with high employee turnover.  Network metrics derived from 

DSMs (e.g., “propagation cost”) have also been used to explore the value that might be derived 

from “re-factoring” designs with poor architectural properties (Ozkaya, 2012).  

2.2.1 Design Structure Matrices, Coupling and Change Propagation 

A DSM captures all of the dependencies that exist between components in a system. If 

component A depends upon component B, then any change made to B may affect A.  These two 

components are “coupled.”  Using a DSM, we can analyze the direct dependencies between 

components.  But we can also analyze the “indirect” dependencies between components, which 

reflect the possibility that a change may propagate through a system, via a “chain” of direct 

dependencies.  For the example above, if component B, in turn, depends upon component C, then 

a change to C may affect B, which in turn, might affect A.  Therefore, A and C are also 

“coupled,” but indirectly.  The level of direct and indirect coupling in a system provides an 

indication of the degree to which changes can propagate in a system.  Prior work has shown that 

measures of direct and indirect coupling predict the likelihood of defects and the ease (or 

difficulty) of adapting a system, among other outcomes (MacCormack, 2010; Sturtevant, 2013). 

A DSM is not the only network analysis technique to reveal direct and indirect linkages 

between components.  However, in contrast to techniques such as social network analysis, a 

DSM also captures information on the direction of dependencies.   This distinction is important, 

given dependencies in technical systems are often not symmetric.  In the example above, A 

depends upon B, but that does not imply that B depends upon A.  Hence a change to B may 

propagate to A, whereas A may be changed with no impact on B. A DSM allows the analyst to 

identify the direction of dependencies, and therefore to assess the “flow of control” in a system 

(i.e., in which direction chains of dependencies propagate).  This, in turn, allows the analyst to 
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discern between systems that are hierarchical in nature (i.e., there exists a strict hierarchical 

ordering of components) versus structures that are cyclical in nature (i.e., there are groups of 

components that are mutually interdependent).  Hierarchy and cyclicality are important 

constructs for understanding how changes propagate in complex systems. 

3. Using a DSM to Display a Firm’s Enterprise Architecture 

3.1 The Empirical Context 

We illustrate our methodology using a real-world example of a firm’s enterprise 

architecture. The aim is to make our methods concrete and demonstrate that they provide insight 

into how real world systems are designed.  Using real-world data also provides a validation that 

our methods of data collection and analysis are able to scale for use in the field.  

Our study site is the research division of a US biopharmaceutical company “BioPharma” 

investigated by (Dreyfus, 2009). At this company, “IT Service Owners” are responsible for the 

divisional information systems, and provide project management, systems analysis, and limited 

programming services to the organization. Data were collected by examining strategy 

documents, having IT service owners enter architectural information into a repository, using 

automated system scanning techniques, and conducting a survey. Details of the data collection 

protocols are reported in Dreyfus (2009). For a subset of software applications in the firm, data 

was collected on the cost of change (i.e., the inverse of “flexibility”). Prior work used these data 

to explore the impact of social network metrics on flexibility (Dreyfus and Wyner, 2011).  We 

extend this work by i) introducing a formal methodology by which to visualize and measure the 

firm’s enterprise architecture, and ii) comparing the impact of different measures of coupling 

derived from this architecture, on the cost of making changes to the firm’s software applications.  
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Our BioPharma dataset includes information on 407 architectural components and 1,157 

dependencies. The architectural components are divided into: eight “business groups;” 191 

“software applications;” 92 “schemas;” 49 “application servers;” 47 “database instances;” and 20 

“database hosts”. “Business groups” are organizational units not technical objects. As noted 

earlier, the dependence of particular business groups on specific software applications and 

infrastructure is relevant to studies of enterprise architecture. We consider business groups to be 

part of the overall enterprise architecture, and include them in our analysis. 

The components in the dataset form a layered architecture typical of modern information 

systems, as we will show later.  Furthermore, there are important dependencies between these 

layers. In this case, we capture data on four types of dependency between components – uses, 

communicates with, runs on, and instantiates. Business units use applications; Applications 

communicate with each other, use schemas, and run on application servers. Schemas in turn 

instantiate database instances that run on database hosts. Importantly, of these four dependency 

types, “uses”, “instantiates” and “runs on” imply a directional (i.e., asymmetric) dependency.  In 

contrast, “communicates with” is a bi-directional (i.e., symmetric) dependency.  

3.2 Construction of the DSM matrix 

A DSM is a way of representing a network. Rows and columns of the matrix denote 

nodes in the network; off-diagonal entries indicate linkages between the nodes. In the analysis of 

complex systems, the rows, columns, and main diagonal elements of a DSM correspond to the 

components of the system—in this case, business groups and technical resources (e.g., software 

applications, databases, hosts etc.).  But what kinds of linkages between the components should 

be captured, and how should these be displayed and counted? 
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In understanding change propagation, the influential computer scientist David Parnas 

argued that the most important form of linkage is a directed relationship that he calls “depends 

on” or “uses” (Parnas, 1972). If B uses A, then A fulfills a need of B. If the design of A changes, 

then B’s need may go unfulfilled. B’s own behavior may then need to change to accommodate 

the change in A. Thus change propagates in the opposite direction to use.  Importantly, Parnas 

stresses that use is not a symmetric relationship. If B uses A, but A does not use B, then B’s 

behavior can change without affecting A. (We ignore indirect usage in this example.)  A DSM 

reveals this asymmetry – the marks in rows denote one direction of the use relationship and the 

marks in columns denote the other. When usage is symmetric (i.e., B uses A and A uses B), the 

marks are symmetric around the main diagonal of the DSM.  

Whether use proceeds from row to column or column to row is a choice to be made by 

the analyst.  There is no standard practice or convention among DSM scholars. However, just as 

cars should drive on the left or the right to avoid collision, enterprises should adopt one or the 

other convention to avoid confusion. In our methodology, we define use as proceeding from row 

to column.  That is, our DSMs show how the components in a given row use (i.e., depend on) the 

components in a given column. Specifically, to find the ith component of the system, one looks 

to the ith element on the main diagonal. To identify the components it depends on, one looks 

along its row. To identify the components that depend on it, one looks up and down its column. 

Consequently, change vulnerability (i.e., “influence”) proceeds from column to row. 

In a layered architecture, a second convention determines the ordering of layers from top 

to bottom. One can place the “users” in higher layers and the objects of use in lower layers or 

vice versa. Most Enterprise Architecture layer diagrams place users on the top. In constructing 
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DSMs, however, we depart from this practice, and place users below the objects they use. Our 

reasons for doing so are based upon the concept of design sequence, described below. 

When used as a planning tool in design processes, a DSM can indicate a possible 

sequence of design tasks, i.e., which components should be designed before which others. In 

general, it is intuitive and desirable to place the first design tasks at the top of a DSM, with later 

tasks below. Further, the first components to be designed should be those that other components 

depend on. For example, suppose that B uses A. A’s design should be complete before B’s 

design is begun. Reversing this ordering runs the risk that B will have to be redesigned to comply 

with changes in A. Reflecting this sequence in a DSM, we place the “most used” layers on the 

top and the “users” of these layers at the bottom. This convention ensures that design rules and 

requirements, which affect subsequent design choices, appear at the top of the DSM.  

The next question to answer when constructing a DSM is how should the dependencies 

between elements be counted?  Should the DSM be binary, comprised only of ones and zeros, or 

should the links have ordinal values?  When the components of a system are complex entities in 

their own right (e.g., like applications, schemas and servers), there can be multiple ways that one 

component uses or depends upon another.  For example, Application B may make different types 

of requests of Application A on different occasions.  It is possible to count those different 

requests and assume a linkage is “stronger” when the number of requests (or request types) is 

higher. Similarly, following Sharman and Yassine (2007, 2004), one might interpret off-diagonal 

entries in the DSM as probabilities. In this case, a “1” would indicate certainty of change, while 

lesser values would indicate merely the possibility of change.  

While these are plausible arguments, they are difficult to apply in practice. Establishing 

the strength of a linkage, or the probability that a change in one component requires a change in 
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the other, requires a deep level of knowledge, which rarely exists in an enterprise setting. 

Further, allocating different strengths or weights to dependencies may give a false sense of 

precision in a DSM analysis. The existence of a dependency between two elements, no matter 

how many ways this dependency is expressed, or how frequently it is observed in operation, 

merely signifies the potential for changes to propagate between these elements.  Hence we use a 

binary DSM as the baseline for analyzing enterprise architecture.5 

Data on the dependencies in a system can be obtained via automatic or manual methods. 

As Eppinger and Browning (2012) state: “for most product DSM models, the data collection 

requires at least some amount of direct discussion with subject matter experts in order to draw 

out the tacit and system-level knowledge that may not be captured in the documentation.” 

However, manual methods of dependency extraction are labor-intensive, and limit the scale, 

precision and accuracy of the analysis. Software provides an exception, in that past studies rely 

upon automatic dependency extractors supplied by commercial vendors to help developers 

understand code (e.g., Cataldo et al., 2006; MacCormack et al., 2006, 2012; Sosa et al., 2013.) 

Dependency data for the BioPharma enterprise architecture was obtained using a 

combination of manual and automated methods. In particular, interviews were conducted with 

the IT director and surveys were conducted with IT Service Owners. This information was then 

supplemented with the use of open-source and custom tools to monitor the server and network 

traffic in the system. Data on processes and communication links was then manually aggregated 

to the level of the individual component (for details, see Dreyfus, 2009). Importantly, many of 

the links discovered using automatic tools had been overlooked by or were unknown to the IT 

Service Owners.  This indicates that the theoretical (i.e., documented) system architecture 

deviated substantially from the actual architecture “in use”. 
                                                
5 Further research may allow the strength of ties or change probabilities to be used to refine this baseline. 
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A layered DSM showing the BioPharma enterprise architecture is presented in Figure 1. 

The matrix is binary with marks in the off-diagonal cells indicating a direct dependency from 

row to column and hence a change vulnerability from column to row.  White space indicates 

there is no direct dependency between elements. To set the order of layers we use knowledge of 

the logical relationships between components.  Usage flows from business groups (at the bottom) 

to applications, from applications to schemas and application servers, from schemas to database 

instances and from database instances to database hosts (at the top). Within layers, we order 

components using the component ID, an arbitrary numbering scheme. Note that “communicates 

with,” the relationship captured for software applications in our data, is bi-directional, hence the 

marks in the rows and columns of this layer are symmetric around the main diagonal. 

Figure 1 A DSM displaying BioPharma’s layered Enterprise Architecture 
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Summing the row entries for a given component in the DSM measures the direct 

outgoing coupling of that component—the number of other components that it uses. We call this 

measure the direct “fan-out” dependency of the component. Summing the column entries 

measures the direct incoming coupling of that component – the number of other components that 

use it. We call this measure the direct “fan-in” dependency of the component. White space to the 

right of a given layer indicates that components in the layer do not depend on layers below. 

White space to the left indicates that components in the layer do not depend on layers above.  

On the whole, this DSM confirms that the enterprise architecture displays a good 

separation of concerns: for the most part, schemas act as an interface between applications and 

the database instances and hosts. Schemas are also efficiently managed: one schema may serve 

several applications and one application may make use of several schemas. There are two 

exceptions, however, as indicated by the two circles, where specific applications appear to 

directly use a database instance or a database host. These exceptions may indicate poor 

encapsulation or non-standard practices, and hence would be worth investigating further. 

It is important to note that this DSM combines several diagrams and matrices as 

recommended in the TOGAF approach to enterprise architecture (TOGAF, 2009). The mapping 

from business groups to applications (at the bottom of the DSM) corresponds to the 

“Application/Organization Matrix.” The square submatrix of applications corresponds to the 

“Application Interaction Matrix” (AIM). The mapping from applications to schemas and servers 

(to the left of the AIM) corresponds to the “Application Technology Matrix.” Finally, the 

mapping from schemas to database instances and database instances to database hosts contains 

the information needed to construct the “Application/Data Matrix,” while also showing how the 

use of data by applications operates through particular schemas and database instances.  
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The Application Interaction Matrix (AIM) is the largest submatrix in the DSM. It shows 

dependencies caused by interactions between applications in the enterprise’s software portfolio. 

In our dataset, dependencies between software applications are captured by the term 

“communicates with,” which does not possess directionality (i.e., we do not know which 

application is requesting a computation and which is performing it). Hence the AIM is 

symmetric.  In general however, capturing information on directionality is desirable.  In some 

cases, one application may always ask for a computation, and the other may always supply the 

result. This hierarchical distinction would be obscured if all dependencies are assumed 

symmetric. However, if applications switch roles, sometimes requesting and sometimes 

supplying computational services, a symmetric dependency would be warranted.  

4. Analyzing an Enterprise Architecture DSM 

Figure 1 displays the layered structure of the enterprise architecture, but does not reveal 

other architectural characteristics such as indirect coupling, cyclic coupling, hierarchy within 

groups, modules, or the presence of “core” and “peripheral” components.   Matrix operations 

with a DSM can be used to analyze these additional features.  Specifically, the transitive closure 

of the matrix reveals the indirect dependencies among components in addition to the direct 

dependencies (Sharman et al., 2002; Sharman and Yassine, 2004; MacCormack et al., 2006). 

That is, if C depends on B and B depends on A, transitive closure reveals that C depends on A.  

Applying the mathematical procedure of transitive closure to a matrix results in what is 

called the “Visibility” matrix (MacCormack et al., 2006; Baldwin et al., 2014).  The visibility 

matrix captures all of the direct and indirect dependencies between elements.  In similar fashion 

to a DSM, row sums of the Visibility matrix, called “visibility fan-out” (VFO) measure the direct 

and indirect outgoing dependencies for a component. Column sums, called “visibility fan-in” 
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(VFI) measure the direct and indirect incoming dependencies for a component. In a layered 

enterprise architecture, like the one observed in BioPharma, components at the top of the DSM 

will have high VFI and components at the bottom of the DSM will have high VFO.  In cases 

where layers are not known a priori, the Visibility DSM can be sorted by VFI and VFO to reveal 

the hierarchical relationships among components/layers.6  

VFI and VFO measures can be used to identify cyclic groups of components, each of 

which is directly or indirectly connected to all the others in the group.  Mathematically, members 

of the same cyclic group all have the same VFI and VFO measures, given they are all connected 

directly or indirectly to each other.  Thus it is easy to identify cyclic groups in a system by 

sorting on these measures after performing a transitive closure on the direct dependency matrix 

(Baldwin et al., 2014). Large cyclic groups are problematic for system designers, given a series 

of changes may propagate via a chain of dependencies to many other components.  In such a 

structure, there is no guarantee that the design process or a change to the design will converge on 

a globally acceptable solution that satisfies all components (Alexander, 1964; Steward, 1981).  

The density of the Visibility matrix – called Propagation Cost – provides a system-level 

measure of the level of coupling in a design. Intuitively, the greater the density of the Visibility 

matrix, the more ways there are for changes to propagate, and thus the higher the cost of change. 

Dramatic differences in propagation cost have been observed across systems of similar size and 

function (MacCormack et al., 2012).  Yet empirical evidence also suggests that refactoring 

efforts aimed at increasing modularity can have a major impact on lowering cost (MacCormack 

et al., 2006; Akaikine, 2009). These findings suggest that at least in software, architecture is not 

dictated solely by system function, but is under the control of a system’s designers. 

                                                
6 Note that matrix methods can reveal hierarchical relationships, but will not tease apart discrete groups of 

components that have equivalent positions in the hierarchy.  
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In a recent empirical study Baldwin et al. (2014) used this DSM methodology to analyze 

1286 software releases from 17 distinct applications. They find the majority of systems exhibit a 

“core-periphery” structure, characterized by a single dominant cyclic group of components (the 

“Core”) that is large relative to the system as a whole as well as to other cyclic groups.  They 

show how the components in such systems can be divided into groups – Core, Peripheral, Shared 

and Control – that share similar properties in terms of coupling.  In such systems, dependencies 

flow from Control components through Core components, to Shared components.  Peripheral 

components lie outside the “Main Flow” of operations in the system. 

We constructed the Visibility Matrix for BioPharma, and applied the classification 

methodology described in Baldwin et al. (2014) to the data.  We find that the firm’s enterprise 

architecture has a core-periphery structure.  Specifically, each layer in Figure 1 has some 

components that are part of the “Main Flow” and other components that lie in the “Periphery.”  

The distribution of components organized by layer and category is shown in Table 1.  It shows 

that 2/3 of the technical resources in the enterprise architecture are part of the main flow of 

operations, with 1/3 in the periphery. We believe managers can use this type of classification 

scheme to set priorities, allocate resources, analyze costs, and understand productivity. 

Table 1: Distribution of BioPharma Components by Layer and Category. 
 

 Shared Core Control Periphery 
Database hosts 8 0 0 12 

Database instances 15 0 0 32 
Application servers 27 0 0 22 

Schemas 83 0 0 9 
Software application 0 132 0 59 

Business groups 0 0 7 1 
TOTAL 272 135 

Percent of Total 66% 34% 
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Figure 2 shows a reorganized DSM in which each layer of the enterprise architecture is 

divided into components that are part of the main flow versus those that are peripheral. Main-

flow components are directly or indirectly connected to all Core components as well as other 

components.  Thus each main-flow component is connected to at least 132 other components. In 

contrast, the highest level of coupling for any peripheral component is 7. Hence the indirect 

coupling levels of components in the main flow and the periphery are dramatically different. If 

coupling is related to the cost of change, then the main-flow components will have higher change 

costs than the peripheral components. We investigate this empirically in the next section. 

Figure 2:  Reorganized DSM showing Main Flow and Peripheral Components. 
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5. Enterprise Architecture, Component Coupling and IT Flexibility 

In this section we show how a DSM generates data that allows us to analyze the 

flexibility of an enterprise to change its IT systems over time.  We focus on flexibility as a 

performance measure, given the importance of this theme in prior literature.  We use a subset of 

the data from BioPharma, analyzing components for which information on the cost of change is 

available. Our purpose is to highlight how our methodology provides a generalizable approach to 

analyzing the relationship between enterprise architecture and measures of performance.  But 

first, we introduce a number of hypotheses about the relationship between different measures of 

coupling derived from an enterprise architecture DSM and enterprise IT flexibility.  

5.1 Hypothesis Formulation 

In the previous section, we found that BioPharma’s enterprise architecture is comprised 

of architecturally heterogeneous components. In complex systems, heterogeneous levels of 

component coupling are the rule, not the exception (e.g., Lagerström, et al. 2014; Baldwin et al., 

2014; Akaikine, 2010; Sturtevant, 2013). However, little is known about how different types of 

component coupling affect the costs of changing a system’s components. These costs determine 

the flexibility of the firm to evolve and adapt its IT systems in future. 

Coupling theory and design theory both predict that the more coupled or connected a 

component is, the more difficult, expensive, or risky it will be to change. However, the 

components of a system can be connected in different ways.  Specifically, they can be connected 

directly or indirectly; and they can be connected hierarchically or cyclically. Furthermore, 

components that are hierarchically connected may be at the top or the bottom of the hierarchy. 

And components that are cyclically connected may be members of a large or a small cyclic 

group.  Finally, components may be classified as Core, Peripheral, Shared or Control elements.  
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Measures of these (and other) types of coupling can be calculated directly from an 

enterprise architecture DSM, and used to evaluate their impact on the cost of change for each 

component.  In this study, we focus in particular on three related coupling measures: 

(1) The level of Direct Coupling of each component, which is calculated directly from 

the rows and columns of the Direct Dependency Matrix. 

(2) The level of Indirect Coupling of each component, which is captured by its category 

as derived from the Visibility Matrix (i.e., Core, Peripheral, Shared and Control). 

(3) The Closeness Centrality of each component, which can be calculated for 

components in the Core (i.e., for components that are in the same network). 

In our dataset, data on the cost of change was available only for software applications, 

whose dependency relationships are symmetric. Hence in this case, it was not possible to explore 

the impact of differences between the number of incoming and outgoing dependencies for 

components (i.e., given that these numbers are identical).  Furthermore, it was not possible to 

explore differences in the hierarchical classification of components (i.e., given that a symmetric 

DSM contains only Core and Peripheral elements, with no Shared or Control elements).  In 

general however, our methodology allows the analyst to examine all of these issues.    

Our measures of coupling are likely to be highly correlated.  Specifically, components 

with high levels of direct coupling are more likely to be in the Core.  Furthermore, as noted 

above, closeness “centrality” is only defined for components in the Core (i.e., components in the 

same network). Finally, Core components with high levels of direct coupling are more likely to 

have higher “centrality”. These relationships mean we must be sensitive to issues of multi-

collinearity.  To address this issue, we conduct our tests in two stages. First, we explore the 

impact of Direct and Indirect coupling on flexibility across all the components for which we 
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have data on change cost.  Then, for the “Core” components in the system, we test whether the 

closeness centrality measure provides additional power to explain differences in flexibility. 

Stage 1: Direct coupling vs. Core membership. Following Chidamber and Kemerer 

(1994), we define direct coupling (DC) as the number of direct linkages between a given 

software application and all others. (Because software linkages are symmetric in the dataset, the 

number of incoming and outgoing dependencies is the same.) We define Core membership 

(CORE) as being part of the largest cyclic group, revealed by the transitive closure of the DSM. 

(We note there was only one cyclic group in this dataset, thus components not in the Core were 

not part of any cyclic group.  In general however, there might be other, smaller, cyclic groups in 

an enterprise architecture.)  As discussed earlier, all members of the Core have the same number 

of direct and indirect dependencies, given they are all directly or indirectly, inter-dependent.  

Coupling theory predicts that higher levels of direct coupling will lead to higher change 

cost. The theory of change propagation predicts higher levels of indirect and cyclic coupling, 

such as arise in Core components, will also lead to higher change cost.  These variables might 

have additive effects, or they might be substitutes. We thus form the following hypotheses: 

H1: Direct Coupling (DC) is positively associated with change cost (CC). 
 
H2: Core membership (CORE) is positively associated with change cost (CC). 
 
H3: Core membership (CORE) adds explanatory power to Direct Coupling (DC) in 
estimating change cost (CC). 
 
H4: Direct Coupling (DC) adds explanatory power to Core membership (CORE) in 
estimating change cost. 

 
We test these hypotheses by performing OLS regressions for the impact of Direct 

Coupling and Core membership on the cost of change, both individually and together. 
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Stage 2: Closeness Centrality within the Core.  For components in the Core, the 

variable “closeness centrality” (CENT) is calculated for a given component by calculating the 

minimum path length from that component to all other components, summing those path lengths 

and taking the inverse of this sum (Bounova and de Weck, 2012).7  The higher this number, the 

more “central” is the component.  Our final hypothesis explores the theory that closeness 

centrality may explain variations in change cost for all the components that are inter-connected 

(i.e., that are members of the Core, and hence are part of the same network): 

H5: Within the Core, closeness centrality (CENT) is positively associated with change 
cost (CC). 

  
We test this hypothesis by performing an OLS regression for the impact of closeness 

centrality on flexibility only for the subset of components that are classified as being in the Core.  

5.2 Dependent Variable: The Cost to Change a Component 

Ironically, in this era of “big data,” the lack of appropriately granular data is a large 

barrier to the systematic investigation of the architecture of information systems. Very few 

enterprises systematically collect data on change costs, defect rates, or productivity by 

component. To demonstrate the application of our methodology, we use data on the cost to 

change the software applications at the center of BioPharma’s enterprise architecture.  Focusing 

on one layer of the firm’s architecture (i.e., as compared to capturing data on all layers) allowed 

us to i) focus on one type of respondent for data collection, ii) request specific data from 

respondents, and iii) ensure the data was directly comparable across observations. 

                                                
7 In prior work, the closeness centrality for nodes that are not part of a network is sometimes assumed to be 

zero (i.e., denoting an infinite path between these and other nodes). A separate issue is that closeness centrality can 
only be calculated for symmetric networks.  If A depends upon B, but B does not depend upon A, then the path 
length from A to B, and from B to A will differ.  Social network measures cannot handle such complexity easily.  
Instead, they tend to assume all dependencies are bi-directional – which is not the norm in technical systems. 
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The cost to change each application was assessed by administering a survey to IT Service 

Owners.  Specifically, respondents were asked to estimate the time, in person-years, to perform 

five operations:  deploy, upgrade, replace, decommission, and integrate.  These were defined as 

follows: “A component is deployed when it is put into production for the first time; a component 

is upgraded when it is replaced by a new version of the same component; a component is 

replaced when the existing component is removed from the information system and a new 

component with similar functionality is added to the information system; a component is 

decommissioned when it is removed from the information system; and a component is integrated 

when modifications are made to it that enable it to 'talk' to another component” (Dreyfus, 2009).8   

We received survey responses covering 99 software applications. The change cost 

estimates reported ranged from less than one-person-month to over two-person-years. 

Respondents could also indicate that the time to perform a given operation was unknown. 

Applications for which all change costs were reported as unknown were removed from the 

dataset, leaving us with a final set of 77 software applications for analysis.9  (In the enterprise 

architecture, 58 of these were classified as Core and 19 were classified as Peripheral.) 

For the purposes of our analysis, we combined the change cost estimates for different 

operations into a single measure of the change cost for each. To do this, we calculated the mean 

change cost for each application, across all operations for which a response had been provided.  

The Cronbach’s alpha for our aggregate measure of change cost is 0.78.10 

                                                
8 Specifically, we asked respondents to estimate whether the effort (in person-years) required for each 

operation fell into the following ranges:  <0.10, 0.10-0.249, 0.25-0.49, 0.50-0.99, 1.00-1.99, and > 2.00.  The 
resulting dependent variable was an integer ranging from 1 to 6.  For further details, see Dreyfus, 2009.  

9 In prior work, Dreyfus (2009) and Dreyfus and Wyner (2011) apply different screening criteria to this 
data, resulting in a set of 62 responses.  Later, we discuss the sensitivity of our results to the use of other criteria. 

10 We note that missing values for the change cost associated with individual operations will affect the 
calculation of Cronbach’s alpha.  Where the estimate for an operation is missing, we substitute the mean level of 
change cost estimated for that operation across all respondents to calculate alpha.  Other ways of treating missing 
values result in a minimum value for alpha of 0.66 (acceptable) to a maximum value of 0.89 (extremely good). 
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5.3 Control Variables 

Change costs may be affected by a number of factors that are unrelated to architecture, 

including the source of the component, the users of the component, its internal structure, and 

whether it was the focus of active development at the time of the survey. In addition, the 

respondent’s experience with a given component might affect his or her appraisal of change cost 

in a systematic way. Data on the following variables were collected and included as controls: 

(1) VENDOR indicates whether an application is developed by a vendor (1) or developed 

in-house (0). One component missing an entry for this variable was assigned a value 

of 0.5.  (Omitting this data point did not change the results significantly.) 

(2) CLIENT indicates whether an application is accessed by end-users (1) or not (0). 

(3) COMP indicates whether an application is focused on computation (1) or not (0).  

(4) NTIER indicates whether an application has an N-tier architecture (1) or some other 

type of architecture, such as client-server or monolithic (0). 

(5) ACTIVE indicates whether, at the time of the survey, the component was being 

actively enhanced (1) or was in maintenance mode (0). 

(6) RES_EXP measures the respondent’s experience with the application in question (less 

than one year = 1; 1 – 5 years = 2; More than 5 years =3). 

5.4 Empirical Data 

Table 2 presents the correlation matrix for our variables.  Consistent with our hypotheses, 

both direct coupling (DC) and Core are positively correlated with change cost. They are also 

correlated with each other (0.52).  In this table, we also include data on closeness centrality for 

the entire sample of 77 applications, substituting a value of 0 for the 19 components not in the 

Core.  Hence we observe an extremely high correlation (0.96) between Core and CENT. 
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Among the control variables, Active components tend to have higher change costs. 

Vendor provided components tend to have lower change costs, have lower centrality, be more 

likely to perform computations, be less likely to have N-tier architectures, and be more likely to 

be Active. Components with N-tier architectures tend to be more highly coupled by all measures. 

Table 2 Descriptive Statistics and Correlation Matrix for all Variables. 

	  
Mean	   St.Dev	   #	   CC	   DC	   CORE	   CENT	   VENDOR	   CLIENT	   COMP	   NTIER	   ACTIVE	   RES_EXP	  

CC	   2.46	   1.22	   77	   1	   0.33**	   0.33*	   0.35**	   -‐0.23*	   -‐0.06	   -‐0.11	   0.17	   0.31**	   0.08	  

DC	   3.58	   2.83	   77	   0.33**	   1	   0.52***	   0.68***	   -‐0.19	   0.1	   0.01	   0.39***	   0.21	   -‐0.08	  

CORE	   0.75	   0.43	   77	   0.33**	   0.52***	   1	   0.96***	   -‐0.17	   0.11	   -‐0.04	   0.37***	   0.06	   -‐0.19	  

CENT	   1.73	   1.03	   77	   0.35**	   0.68***	   0.96***	   1	   -‐0.26*	   0.14	   -‐0.04	   0.46***	   0.12	   -‐0.15	  

VENDOR	   0.41	   0.49	   77	   -‐0.23*	   -‐0.19	   -‐0.17	   -‐0.26*	   1	   -‐0.06	   0.39***	   -‐0.52***	   0.35**	   0.1	  

CLIENT	   0.71	   0.45	   77	   -‐0.06	   0.1	   0.11	   0.14	   -‐0.06	   1	   0.15	   0.27*	   0.05	   -‐0.11	  

COMP	   0.39	   0.49	   77	   -‐0.11	   0.01	   -‐0.04	   -‐0.04	   0.39***	   0.15	   1	   -‐0.21	   -‐0.05	   0.12	  

NTIER	   0.53	   0.5	   77	   0.17	   0.39***	   0.37***	   0.46***	   -‐0.52***	   0.27*	   -‐0.21	   1	   0.08	   -‐0.14	  

ACTIVE	   0.26	   0.44	   77	   0.31**	   0.21	   0.06	   0.12	   0.35**	   0.05	   -‐0.05	   0.08	   1	   0.18	  

RES_EXP	   2.04	   0.84	   77	   0.08	   -‐0.08	   -‐0.19	   -‐0.15	   0.1	   -‐0.11	   0.12	   -‐0.14	   0.18	   1	  

	  	  

*	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 

5.5 Empirical Results 

The results of our regression tests are presented in Table 3.  Model 1 (controls only) show 

two of the controls are significant: Vendor provided applications tend to have lower change costs 

and Active applications tend to have higher change costs. Control variables alone explain 18% of 

the variation in change cost across components. 

H2 predicted that direct coupling would be positively correlated with change cost, a 

relationship that was observed in the raw correlations reported earlier. In model 2 however, a 

multivariate regression with control variables included, we find direct coupling is only a weak 

predictor of change cost (p-value = .06), and does not quite reach the threshold for statistical 

significance. This model explains 21% of the variation in change cost across components. In 

model 3, we find that Core membership is a highly significant predictor of change cost (p-value 
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= .005) and has a positive sign.  This model explains 26% of the variation in change cost across 

components, a significant increase relative to the model with only controls. In model 4, when 

both direct coupling and Core membership are included in the same regression, only Core 

membership is significant. This model explains 25% of the variation in change cost across 

components.  Hence adding direct coupling to a model that already includes Core membership as 

a predictor makes the model worse. Whatever power direct coupling has as an explanatory 

variable appears to be fully accounted for by its correlation with Core membership.  It does not 

appear to add additional explanatory power over and above Core membership. In sum, 

hypotheses H1, H2, and H3 appear to be supported by these results, while H4 is rejected. 

Table 3 Regression Models 

Dependent	  variable:	  Change	  Cost	  (Average)	  

Sample:	   Full	   	  	   Core	  only	  

Test	  #	   (1)	   (2)	   (3)	   (4)	   	  	   (5)	   (6)	  

Hypothesis	  
	  

H1	   H2	   H3,H4	   	  	  
	  

H5	  

DC	  
	  

0.10†	  
	  

0.04	   	  	  
	  

	  	  

CORE	  
	   	  

0.89**	   0.77*	   	  	  
	  

	  	  

CENT	  
	   	   	   	  

	  	  
	  

-‐0.76	  

VENDOR	   -‐1.21**	   -‐1.10**	   -‐1.19**	   -‐1.14**	   	  	   -‐1.40**	   -‐1.67***	  

CLIENT	   -‐0.29	   -‐0.26	   -‐0.27	   -‐0.26	   	  	   -‐0.69†	   -‐0.71*	  

COMP	   0.28	   0.17	   0.22	   0.18	   	  	   0.22	   0.34	  

NTIER	   -‐0.17	   -‐0.33	   -‐0.43	   -‐0.47	   	  	   -‐0.44	   -‐0.34	  

ACTIVE	   1.37***	   1.19**	   1.30***	   1.23***	   	  	   1.69***	   1.92***	  

RES_EXP	   0.01	   0.04	   0.09	   0.09	   	  	   -‐0.01	   0.01	  

	  	  
	   	   	   	  

	  	  
	  

	  	  

Constant	   2.77***	   2.47***	   2.11***	   2.06***	   	  	   3.45***	   5.10***	  

Adj.	  Rsquare	   0.18	   0.21	   0.26	   0.25	   	  	   0.25	   0.27	  

f	   3.75**	   3.87**	   4.75***	   4.21***	   	  	   4.17**	   3.94**	  

Observations	   77	   77	   77	   77	   	  	   58	   58	  

	  	  

†	  p<0.1,	  *	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 

These initial results are somewhat surprising.  Specifically, we find that the measure of 

component coupling most associated with IT flexibility is not the number of direct dependencies 
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that a component has with others, but the set of all direct and indirect dependencies it possesses.  

This suggests that the ability to change a component is profoundly impacted by the potential for 

changes to propagate from one component to others via chains of dependencies, and hence 

impact components that may not be obvious from a simple inspection of its “nearest neighbors.”  

The results suggest that the methodology we employ, which focuses on understanding the 

indirect linkages between components using network-based representations of architecture, adds 

significant value to prior methods, which tend to be more abstract and conceptual in nature. 

 In models 5 and 6, we examine only the 59 components in the Core (the largest group of 

components that are directly and indirectly connected to each other). Model 5 contains only 

control variables, and produces results very consistent with model 1, as expected. Model 6 

includes the measure of closeness centrality for Core components. The measure is not significant 

in this model. Hence centrality does not provide additional explanatory power in predicting 

change cost, over and above that provided by Core membership, and hypothesis H5 is rejected. 

5.6 Robustness Checks 

We performed a number of robustness checks on our statistical results to assess whether 

they were sensitive to other assumptions or specifications of variables. First, we note that our 

basic specification does not control for the size of each component, a control variable that could 

plausibly affect the cost of making changes. Data on component size (as measured by the number 

of lines of code and the number of files in each) was available for a subsample of 60 applications 

in the dataset (Dreyfus, 2009). We ran our models on this smaller sample, including these control 

variables. We found that the size controls were insignificant and, as expected, the significance 

level of our control and explanatory variables declined as a result of the decrease in sample size 
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(hence statistical power). However, the results were very consistent with those reported above.  

This first check therefore indicates that our main results are valid and robust. 

We conducted a further test to explore the possibility that transformations of Direct 

Coupling (DC) might be better predictors of change cost, given this variable has a skewed 

distribution (many lower values, and fewer higher values) which is truncated at zero. To assess 

this possibility, we tested the predictive power of the logarithm of Direct Coupling (Ln(DC)).  

This variable achieved greater statistical significance in a model where only control variables 

were present (i.e., model 2 in Table 3). However, this variable still explained less of the variation 

in change cost across the sample than our indicator of Core membership.  Hence this second 

check also indicates that our main results are valid and robust. 

Finally, we explored whether Direct Coupling, or transformations of Direct Coupling, 

would contribute to explaining the remaining variation in change cost among Core components 

(in the same way we did for the centrality measure). Appendix A reports the results of three 

models predicting change cost, the first being a model just with controls, the second being a 

model including controls and Direct Coupling, and the third being a model including controls 

and the logarithm of Direct Coupling (Ln(DC)). In neither the second or third model is Direct 

Coupling statistically significant. This suggests that in our dataset, Core membership is the most 

parsimonious and powerful measure of coupling that explains the cost of change for components.  

Neither of the other measures of coupling contributes additional explanatory power. 

6. Discussion 

The main contribution of this paper is in demonstrating a robust and repeatable network-

based methodology by which to visualize and measure any firm’s enterprise architecture. Our 

methodology is consistent with prior theoretical work in this area, and addresses several 
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important criteria suggested by a review of this prior work. Specifically, the methodology can i) 

integrate the consideration of both business and IT related aspects of architecture; ii) identify the 

distinct layers in the architecture associated with different architectural aspects (e.g., 

differentiating between application and database technologies); iii) reveal the main “flow of 

control” within the architecture and its associated layers, as denoted by the classification of 

components into Shared, Core, Peripheral and Control elements, and: iv) generate measures of 

component coupling that can be used to predict system reliability, adaptability and performance.  

Ultimately, this methodology generates insights that cannot be gained from an inspection of 

documents or processes associated with the enterprise architecture.  

A second contribution of this paper lies in exploring the dynamics of how different types 

of coupling influence the flexibility of enterprise architectures. Specifically, we investigate three 

related measures of coupling that have been explored in prior work, and assess their relative 

power in predicting the costs of making a change to a component. We show that the best measure 

of coupling (i.e., the one most associated with the cost of change) in this dataset is a measure that 

captures both the direct and indirect linkages between components. Once the variation in change 

cost explained by this measure of coupling is accounted for, other measures of coupling (i.e., a 

measure of direct coupling, and the “centrality” of each component) add no further explanatory 

power. While we cannot draw firm conclusions from a single study, the data does indicate that 

when assessing the flexibility of an enterprise architecture, it is important to capture all possible 

ways that change might propagate through the system (i.e., via chains of direct dependencies). 

For practicing managers, our methodology promises to provide a clearer understanding of 

the actual instantiated architecture that they must manage, as opposed to the “idealistic scenario” 

often presented in documents and representations of their organization’s IT systems.  The 
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insights gained from this methodology can be useful in several areas, including i) helping to plan 

the allocation of resources to different systems, given information about the relative 

ease/difficulty with which different components can be changed; ii) monitoring the evolution of 

the enterprise architecture over time, as new components and/or dependencies are introduced 

(e.g., as the result of an acquisition) and, iii) identifying opportunities for system redesign or 

refactoring, (e.g., to reduce coupling in the system, and thereby improve system performance). 

An important caveat to the benefits listed above however, is the need for a way to 

generate and access the granular data needed in order to operationalize our methods.  

Specifically, there is a need to collect data on the dependencies between different elements in the 

enterprise architecture, the direction of these dependencies, and the way that they evolve over 

time. In most organizations we are aware of, this type of data does not readily exist. In some, 

efforts have been made to collect data manually, although there are many challenges associated 

with this approach, including a lack of incentives for managers to provide accurate and timely 

information.  Furthermore, in our study, we found substantial omissions in the data collected 

using a manual process, in comparison to the automated tools we used to uncover dependencies. 

In essence, firms often do not actually know the “real” enterprise architecture that they possess.  

The best solution to this problem would be to develop automated ways to detect and 

capture important dependencies between components in an architecture. This implies the need 

for a significant level of investment by firms who wish to adopt these methods. However, we 

believe the potential benefits associated with these investments would more than recoup the cost, 

given the increase in understanding of enterprise architecture that would result, along with the 

“option value” generated by identifying possible improvements to it. 
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For academia, this study builds on prior work in the area of enterprise architecture, and in 

doing so, satisfies several important criteria by which a methodology for operationalizing EA 

should be judged. First, it integrates both business and technology-related aspects of architecture, 

and in doing so, reveals the interdependencies between these two arenas. Second, it makes what 

has previously been a rather conceptual field of study more concrete, providing a mechanism by 

which to analyze the actual architecture of a firm’s information systems, as opposed to merely 

judging the quality of the processes or documentation by which the firm’s EA is managed. 

Finally, our methodology outputs metrics that capture the level of coupling between different 

elements in a firm’s architecture, which are a driver of a firm’s ability to respond quickly to 

business challenges. In our setting, we demonstrate that the best measure of coupling is one that 

captures all of the direct and indirect dependencies between components in the architecture. 

Our work opens up the potential for further empirical research that could explore the 

linkages between enterprise architecture and performance in a tangible way.  Within 

organizations, further work might focus on the relationship between measures of coupling, and a 

variety of different performance measures relevant for individual components in the architecture 

(e.g., reliability, defects, productivity, turnover and/or cost).  In contrast, studies across different 

organizations might be directed at revealing how measures that capture the overall structure of an 

enterprise’s architecture affect firm-level performance.  The latter area of research is particularly 

promising, given prior literature asserts there should be a strong linkage between certain types of 

architecture and a firm’s flexibility or agility.  One might ask, for example, whether loosely 

coupled enterprise architectures, in general, will facilitate a more rapid response to business 

challenges?  Or are there subtle nuances to account for, with respect to the design of different 
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layers in the architecture (e.g., the use of shared databases)?  Our methodology allows us to 

answer such questions, using a data-driven approach that can be replicated across studies. 

Of course, the data for demonstrating our methods came from a single division within 

one firm in the bio-pharmaceutical industry.  Hence more studies are needed to provide 

validation of our methodology across different contexts, and to deepen our understanding of how 

it should be applied in more complex scenarios.  For example, work is needed to validate the 

different layers/components that should be included in the analysis of enterprise architecture, as 

well as the different types of dependency that exist between these layers/components.  We may 

find that different types of dependency (e.g., “uses” versus “communicates with”) have differing 

predictive powers depending upon the performance dimensions being analyzed.   We may find 

that different measures of the patterns of coupling generated by dependencies (e.g., direct versus 

indirect coupling) may predict performance differently in different settings.   Ultimately, we 

believe our research provides a platform that will enable others to confront questions that until 

now have gone unanswered, given the relative scarcity of empirical methods.  We hope future 

researchers will improve and evolve this platform, in order that we all benefit from the collective 

knowledge of how it can be applied. 
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Appendix A:  Models Predicting Change Cost only for Core Components 
 

MODEL  1 2 3  

DC 
 

0.03 
 

 
DC(ln) 

  
0.09  

VENDOR -1.40** -1.37** -1.37**  
CLIENT -0.69† -0.68† -0.68†  
COMP 0.22 0.20 0.21  
NTIER -0.44 -0.47 -0.46  

ACTIVE 1.69*** 1.64*** 1.65***  
RES_EXP -0.01 0.00 -0.00  

  
   

 
Constant 3.45*** 3.35*** 3.34***  

Adj. Rsquare 0.25 0.24 0.24  
f 4.17** 3.55 3.52  

Observations 58 58 58  
† p<0.1, * p<0.05, ** p<0.01, and ***p<0.001 

 


