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  Abstract 

When an elastic block (e.g., an elastomer or a soft tissue) is compressed to a critical strain, the 

smooth surface of the block forms creases, namely, localized regions of self-contact.  Here we 

show how this instability behaves if the solid stiffens steeply. For a solid that stiffens steeply at 

large strains, as the compression increases, the surface is initially smooth, then forms creases, 

and finally becomes smooth again.  For a solid that stiffens steeply at small strains, creases will 

never form and the surface remains smooth for all levels of compression. We also obtain the 

critical conditions for the formation and disappearance of wrinkles.  When the surface does 

become unstable, we find that creases always set in at a lower compression than wrinkles.  Our 

findings may shed light in developing crease-resistant materials.   
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1. Introduction 

 Biot (1963) analyzed an elastic block compressed under the plane strain conditions (Fig. 

1a, b), and predicted that the flat surface of the block was unstable when the compression 

reached a critical strain of 0.46.  This theoretical prediction remained unchallenged until Gent 

and Cho (1999) noted its disagreement with their experimental finding that the surface formed 

creases at a critical strain of 0.35.  Hohlfeld (2008) and Hohlfeld and Mahadevan (2011) showed 

that Biot’s solution and creases are two distinct instabilities, and that creases set in at a critical 

strain of 0.35.  Biot linearized the boundary-value problem around a state of finite homogeneous 

deformation, and his solution corresponds to a smooth, wavy surface (i.e., wrinkles) of small 

strain relative to the homogeneous state (Fig. 1c).  By contrast, a crease is a localized, self-

contact region of large strain relative to the homogeneous state (Fig. 1d). The critical strain for 

the onset of creases has since been obtained by several other approaches of numerical analysis 

(Hong et al., 2009; Wong et al., 2010; Cai et al., 2010; Tallinen et al., 2013).  Furthermore, 

Hohlfeld (2013) mapped the onset of a crease to the coexistence of two scale-invariant states. A 

post-bifurcation analysis of Cao and Hutchinson (2012) showed that Biot’s solution is unstable. 

 No evidence exists that Biot’s smoothly wavy surfaces have ever been observed 

experimentally on homogeneous elastic blocks under compression.  Creases, however, have been 

observed routinely on elastic blocks compressed by various means, including mechanical forces 

(Cai et al., 2012; Gent and Cho, 1999; Ghatak and Das, 2007; Mora et al., 2011), constrained 

swelling (Arifuzzaman et al., 2012; Barros et al., 2012; Dervaux and Ben Amar, 2012; Dervaux et 

al., 2011; Guvendiren et al., 2010; Ortiz et al., 2010; Pandey and Holmes, 2013; Tanaka, 1986; 

Tanaka et al., 1987; Trujillo et al., 2008; Weiss et al., 2013; Zalachas et al., 2013), temperature 

change (Kim et al., 2010), electric fields (Park et al., 2013; Wang et al., 2012; Wang et al., 2011; 

Wang and Zhao, 2013a; Xu and Hayward, 2013), and light (Yoon et al., 2012). Creases have been 

studied in soft tissues (Bayly et al., 2014; Jin et al., 2011; Yang et al., 2007).  Creases have been 

related to the Schallamach waves arising during the frictional sliding of a rubber against a rigid 
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surface (Gabriel et al., 2010), and to the osmotic collapse of a water-filled cavity in a hydrogel 

(Cai et al., 2010).  Creases can also form on the interface between two elastic solids (Jin et al., 

2014).   Applications of creases have been explored, including the use of creases to control 

chemical patterns (Kim et al., 2010; Yoon et al., 2012), enzymatic activity (Kim et al., 2010), 

cellular behavior (Saha et al., 2010), and adhesion (Chan et al., 2011).   

 Although wrinkles have never been observed experimentally on large homogeneous 

elastic blocks under compression, many factors affect the behavior of creases, and may even 

promote the formation of wrinkles.  Surface energy adds a barrier to the nucleation of creases, 

and makes nucleation defect-sensitive (Chen et al., 2012; Yoon et al., 2010).  When the loading 

is an electric field, wrinkles may form when the elastocapillary effect is strong enough (Wang 

and Zhao, 2013a). For a layer of finite thickness with a traction-free bottom surface, creases on 

the top surface are subcritical—that is, as the applied compressive strain increases and then 

decreases, creases form and disappear with hysteresis (Hohlfeld and Mahadevan, 2012).  For a 

stiff film on a soft substrate under compression, the film forms periodic wrinkles at a small 

strain (Bowden et al., 1998).  As the strain increases, the wrinkles double their period, and 

ultimately lead to deep folds (Pocivavsek et al., 2008).  When the film and the substrate have 

comparable moduli, the transitions between creases, wrinkles and folds become complex 

(Hutchinson, 2013; Wang and Zhao, 2013b). Complex behavior also occurs in a solid of gradient 

modulus (Diab et al., 2013; Wu et al., 2013).  If the substrate is pre-compressed, creases are 

subcritical, and form and disappear with hysteresis (Chen et al., 2014).   

 Biot’s original analysis, as well as much of the subsequent theoretical work, represents 

the elastic solid by the neo-Hookean model.  This model describes elastomers of long polymer 

chains well, but is inadequate when materials stiffen steeply.  A soft biological tissue, for 

example, is usually a composite of a compliant matrix and stiff fibers (Fung, 1993). When the 

tissue is under a small strain, the matrix carries much of the load, but the fibers are not tight, so 

that the tissue is soft. As the strain increases, the fibers gradually tighten and rotate to the 
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loading direction, so that the tissue stiffens steeply.  As another example, an elastomer is a 

three-dimensional network of long and flexible polymer chains (Treloar, 1975).  When the 

elastomer is under no stress, the chains undergo thermal motion and coil. When the elastomer is 

subject to moderate strains, the chains uncoil and the stress-strain relation of the elastomer is 

well represented by the neo-Hookean model, which is derived under the assumption of Gaussian 

chains.  When the chains become nearly straight, however, they no longer obey the Gaussian 

statistics, and the stress-strain curve rises steeply and deviates significantly from the neo-

Hookean model.  Destrade et al. (2009) analyzed the onset of wrinkles on the surface of a 

bending block.  They showed that when the material stiffens at a relatively small strain, the 

critical strain of the onset of wrinkles differs significantly from that of a neo-Hoookean material.  

These authors, however, did not consider the formation of creases.    

 Here we represent a strain-stiffening material by using the Gent model (Gent, 1996), and 

study the initiation and development of creases by using a finite element method. For a solid 

that stiffens at large strains, as the compression increases, the surface is initially smooth, then 

forms creases, and finally becomes smooth again.  For a solid that stiffens at small strains, 

creases will never form and the surface remains smooth for all levels of compression. We also 

study the condition for the onset of wrinkles by using linear perturbation.  If a strain-stiffening 

material does become unstable under compression, we find that creases—rather than wrinkles—

will form. 

 

2. Strain-stiffening materials 

 We list the equations that govern the boundary-value problems of finite elasticity 

(Holzapfel, 2000). A body deforms in space from the stress-free state to a current state. In the 

body, a material particle is at spatial location X in the stress-free state, and is at spatial location 

x in the current state.  The function ( )Xx  describes the deformation of the body from the stress-

free state to the current state.  The deformation gradient is 
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( )
K

i
iK X

xF
∂
∂

=
X

. (1) 

Let iKs  be the nominal stress.  The balance of forces requires that 

  
∂s
iK

∂X
K

=0 . (2) 

The balance of forces also requires that 

  iKiK TNs = , (3) 

where KN  is the unit vector normal to a small flat region in the body in the stress-free state, and 

T
i

 is the nominal traction (i.e., the force applied on the region in the current state divided by 

the area of the region in the stress-free state). 

 The body is made of an elastic material, taken to be incompressible, 

   det F( ) = 1 . (4) 

The density of the Helmholtz free energy is a function of the deformation gradient, ψ F( ) . The 

equation of state is 

  s
iK
=
∂ψ F( )
∂F
iK

−ΠH
iK

, (5) 

where T−=FH , and Π  is a hydrostatic pressure to be determined by the boundary-value 

problem.  When the material undergoes a rigid-body rotation, the free energy is invariant, so 

that ψ  depends on F through the Green deformation tensor FTF .  This dependence, together 

with (5), implies the balance of moments acting on any small part of the body, s
iK
F
jK
= s

jK
F
iK

.    

 Following Gent (1996), we model strain-stiffening materials by using the free energy 

function 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

lim

1
lim 1log

2 J
JJµψ . (6) 
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 The Gent model represents the magnitude of deformation by a single scalar, J
1
= F

iK
F
iK
−3 .  The 

model has two material parameters, µ  and limJ .  In the limit of small deformation, 

0/ lim1 →JJ , the Gent model recovers the neo-Hookean model 2/1Jµψ = , with µ  being the 

shear modulus.  In the limit of large deformation, 1/ lim1 →JJ , the free energy diverges and the 

stress-strain curve turns vertical. The parameter limJ  represents the limiting deformation. The 

stress-strain relation of the Gent materials is 

  iKiKiK HF
JJ

s Π−
−

=
lim1 /1

µ
. (7) 

 For a block in a state of homogeneous, plane-strain deformation, when the width 

changes by a factor of λ , the height changes by a factor of λ−1 , and the deformation gradient is 

  F =
λ 0 0
0 1 0
0 0 λ−1

"

#

$
$
$

%

&

'
'
'

. (8)  

The nominal stress in the direction of compression is 

  
lim

22

3

/)2(1
)(
J

s
−+−

−
= −

−

λλ
λλµ

. (9) 

In obtaining (9), we have used the traction-free boundary condition 033 =s , which gives 

( )lim
222 /)2(1 J−+−=Π −− λλµλ . Define the compressive strain by ε = 1−λ . For a given value of 

limJ , the stress-strain curve turns vertical at a limiting strain limε  (Fig. 2a).  The limiting strain 

increases with limJ  (Fig. 2b). 

 

3. Creases  

 We study the initiation and development of creases by using the finite element software 

ABAQUS.  We implement the Gent model by writing a user-defined subroutine UMAT, which is 

available online as the supplementary information of this paper.  We assume that surface of the 
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solid forms a periodic array of creases, and one period of the solid is a block of width W and 

height H in the stress-free state (Fig. 1a). The width W of the block is assumed to be 3.5 times of 

the height H of the block, a ratio that is representative of experimental observations (Cai et al., 

2012). Taking advantage of the symmetry of a crease, we only simulate one half of the block.  We 

fix the horizontal position of the mid-plane of the block, compress the block under the plane 

strain conditions by prescribing horizontal displacement on the edge of the block, and fix the 

vertical position of the bottom plane of the block (Fig. 1d). To break the translational symmetry, 

we place a quarter of a small circle on the surface as a defect. The size of the defect is much 

smaller than the length scale of the problem, H . In the vicinity of the defect, we resolve the field 

by using meshes much smaller than the size of the defect.   

 Our calculation shows that, as the applied compressive strain increases, the surface is 

initially flat, then forms a crease, and finally becomes flat again.  This surprising sequence of 

development is understood by inspecting the distribution of deformation in the block at several 

values of the applied compressive strain (Fig. 3).  Here the particular sequence is calculated 

using a Gent material with 5.4lim =J  . The colors correspond to the values of the scalar measure 

of deformation, J1.  Recall that the free energy density ψ  is a monotonic function of J1. At 

351.0=ε , the surface of the block is flat and the deformation in the block is homogeneous (Fig. 

3a). A crease initiates at the critical strain 396.0=ε .  After the crease sets in, the deformation 

becomes inhomogeneous. The formation of the crease reduces deformation in a T-shaped region 

close to the surface and in the region underneath the tip of the crease (Fig. 3b). However, in a 

wing-shaped regions on the two sides near the tip of the crease (in green), the deformation 

exceeds the applied deformation. The two effects—the reduced deformation in the T-shaped 

region and the increased deformation in the wing-shaped region—compete.  The combination of 

these two effects guarantees that the total energy of the creased state is lower than the flat state. 

Self-contact of the surface starts to form when the crease initiates, and the crease first grows 
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deeper as the applied strain ε  increases. However, the wing-shaped region also grows larger 

(Fig. 3c).  Due to the strain-stiffening effect, the energy penalty in the wing-shaped region may 

increase faster than the energy reduction in the T-shaped region. When 498.0=ε , the crease 

depth is maximal (Fig. 3c). With the further increase of ε , the penalty of forming a deep crease 

is so high that the crease starts to smoothen instead. When 556.0=ε , both the crease depth and 

penalty region become smaller (Fig. 3d). When 579.0=ε , the surface becomes nearly flat again, 

and the value of J1 in the whole block of material is close to limJ  (Fig. 3e).  

 We plot the bifurcation diagram by using the applied strain ε  as the control variable, 

and the normalized crease depth HL /  as a proxy for the state of the block (Fig. 4).  For a Gent 

material of 5.4lim =J , the crease depth first grows larger as the strain ε  increases. The crease 

depth reaches the maximal at the strain of ε =0.498 . With further increase of the strain ε , the 

crease depth starts to decrease, and the crease is smoothened. At strain 579.0=ε , the crease 

depth becomes zero again, and the crease disappears. The dependence of the normalized crease 

depth HL /  on strain ε  for other limJ  is also plotted in Fig. 4. For large values of limJ , the 

limiting stretches are large, so that the mesh near the tip of the crease distorts severely.  The 

computation remains stable to a larger applied strain as we refine the mesh further, but will be 

extremely expensive to reach the disappearance of the creases.  Therefore, we only included the 

results that show the clear growth and smoothening of creases. When ∞→limJ , the material 

recovers the neo-Hookean material. The crease depth HL /  is zero until a crease sets in at 

strain around 0.354. Then the crease depth HL /  monotonically increases with ε . For finite 

limJ , the creases always smoothen at some finite strain. With the decrease of limJ , the critical 

strain for the onset of crease increases. At the same time, the strain for the disappearance of 

crease decreases with the decrease of limJ . When 1.3lim ≤J , creases are completely suppressed.   
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 The conditions for the onset and disappearance of creases depend on the value of limJ  

(Fig. 5).  The lower part of the curve corresponds to the strain for the initiation of the crease, and 

the upper part of the curve corresponds to the strain for the disappearance of the crease. No 

crease forms when 1.3lim ≤J .  Creases can only form in the region enclosed by the curve.  The 

window of strain for the existence of creases decreases with the decreases of limJ .  

 

4. Wrinkles  

 When a body of a Gent material is compressed, will the flat surface of the body form 

wrinkles instead of creases?  To answer this question, we determine the critical condition for the 

onset of wrinkles, and compare the condition with that for the onset of creases.  We perturb the 

homogeneous state with a field of small, inhomogeneous strain.  We look for the condition 

under which the homogeneous deformation bifurcates into the inhomogeneous state.  This 

bifurcation corresponds to the onset of wrinkles (Fig. 1c). The inhomogeneous field is governed 

by linear partial differential equations.  Their general solutions under the plane strain 

conditions can be represented by functions of complex variables (Stroh, 1958).  We solve the 

field using a method of functions of a single complex variable (Suo, 1990).  The Stroh formalism 

has been used to perform linear perturbation analysis by many authors (e.g., Suo et al. 1992, 

Find other people,  Dsdestyade et al 2009, Cai et al. 2013).    

 

4.1 Two states with small difference in deformation gradient and pressure 

 For a body made of an incompressible material, specified by a free energy function ψ F( )  

and a set of boundary conditions, we ask if the body can be in two distinct states.  A standard 

method to answer this question exists if the difference between the two states is restricted to be 

small in deformation gradient and pressure.  Represent one state by functions x0 X( )  and 
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Π0 X( ) , and the other state by functions x X( )  and Π X( ) .  Define the difference of the two 

fields by the functions  

   x = x X( )−x0 X( ) ,  (10) 

  Π =Π X( )−Π0 X( ) . (11) 

Similarly write the difference in deformation gradient, stress and traction as F =F−F0 , 

s = s−s0  and T =T−T0 .  

 The two states both satisfy (1)-(5), giving the equations that govern the difference 

between the two states: 

  
( )
K

i
iK X

xF
∂
∂

=
X~~

, (12) 

  
∂s
iK
X( )

∂X
K

=0 , (13) 

  iKiK TNs ~~ = , (14) 

  0
~0 =iKiKFH , (15) 

  ( ) Π−=
~~~ 00

iKjLiKjLiK HFCs F , (16) 

where H0 = F0( )
−T

, and the fourth order tensor of tangent moduli is 

  C
iKjL
F0( ) =

∂2ψ F( )
∂F
iK
∂F
jL

"

#

$
$

%

&

'
'
F=F0

+ΠH
iL
0H

jK
0 . (17) 

In obtaining (15)-(17), we have assumed that the differences in the deformation gradient and in 

the pressure between the two states are small enough to allow the Taylor expansion around the 

state F0  and Π0 .  This assumption is valid when the other state represented by x X( )  and 

Π X( )  corresponds to wrinkles, but not creases.  Given the state represented by x0 X( )  and 
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Π0 X( ) , (12)-(17) define a boundary-value problem that governs the incremental state x X( )  and 

Π X( ) . 

 

4.2 Represent general solutions using functions of complex variables 

 We further assume that the state represented by x0 X( )  and Π0 X( )  is a homogeneous 

deformation, so that iKjLC  is a tensor of the same value for all material particles in the body. A 

combination of (12), (13) and (16) gives that 

   
( ) ( )

0
~~

0
2

=
∂

Π∂
−

∂∂

∂

K
iK

KL

j
iKjL X

H
XX

x
C XX

. (18) 

A combination of (12) and (15) gives that 

  
( )

0
~

0 =
∂

∂

K

i
iK X
xH X

. (19) 

Equations (18) and (19) are linear, homogeneous, constant-coefficient, partial differential 

equations that govern the incremental deformation ( )Xx~  and incremental pressure ( )XΠ
~

.  

 In the stress-free state, the body fills a half space below the plane X
3
=0 .  Because the 

incremental field is governed by linear equations, wrinkles of arbitrary shape can be represented 

by a linear superposition of Fourier components.  Each Fourier component correspond to a field 

invariant in a direction lying in the X
1
,X

2( ) .  We make this direction coincide with the axis X
2

.   

Consequently, the state is represented by functions of two variables, x X
1
,X

3( )  and Π X
1
,X

3( ) . 

 We now adopt the method of Stroh (1958) to obtain the general solution to equations (18) 

and (19).  Write both x X
1
,X

3( )  and Π X
1
,X

3( )  in terms of a function of a single variable:   

  x X
1
,X

3( ) = Af z( ) , (20) 

  Π X
1
,X

3( ) =Q "f z( ) . (21) 
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Here 31 pXXz += , f z( )  is an analytical function, and !f z( ) = df z( ) /dz .  The quantities p, Q 

and A
j
 are determined as follows. 

 Substituting (20) and (21) into (18) and (19), we obtain that  

  C
i1 j1

+ p C
i1 j3

+C
i3 j1( )+ p2Ci3 j3( )Aj − Hi10 + pHi30( )Q =0 , (22) 

  ( ) 00
3

0
1 =+ jjj ApHH . (23) 

These are four linear, homogeneous algebraic equations for 321 ,, AAA  and Q , corresponding to 

an eigenvalue problem.  Non-trivial solution exists if and only if 

  0det =Μ , (24) 

where  

  ( ) ,33
2

133111 jijijijiij CpCCpCM +++=    

  ,0 , , 44
0

3
0
14

0
3

0
14 =+=−−= MpHHMpHHM jjjiii  (25) 

with 3 ,2 ,1=i  and 3 ,2 ,1=j .  

 Although M is a four-by-four matrix, we note that  detM  is a sixth-order polynomial of 

p .  A real-valued p would correspond to body waves and spread the incremental field in the 

entire body.  Here we look for surface waves, and assume that all roots of (24) are complex-

valued p.  Because the coefficients of the sixth-order polynomial are real-valued, the six roots of 

the polynomials form three complex conjugates.  We label the three roots with positive 

imaginary part by p
α

 ( α = 1, 2, 3 ), and their complex conjugates by αp .  We label the 

corresponding quantities solved from the eigenvalue problem by ( )αααα QAAA ,,, 321  and 

A
1α
,A
2α
,A
3α
,Q

α( ) .  For each value of α , the quantities A
1α
,A
2α
,A
3α
,Q

α( )  can be normalized by 

an arbitrary complex number.   
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 Let z
α
= X

1
+ p

α
X
3

, and f
1
z
1( ), f2 z2( ), f3 z3( )  be three arbitrary analytical functions.   The 

functions x X
1
,X

3( )  and Π X
1
,X

3( )  are real-valued.  The general solution to (18) and (19) is a 

linear superposition of the three analytical functions: 

  x
i
= A

iα
f
α
z
α( )

α=1

3

∑ + A
iα
f
α
z
α( )

α=1

3

∑ , (26) 

  Π = Q
α
f '

α
z
α( )

α=1

3

∑ + Q
α
f '

α
z
α( )

α=1

3

∑ . (27) 

We use the Greek letter α  for the summation over a non-tensor suffix and explicitly indicate the 

summation. 

 Substituting (26) and (27) into the equation of state (16), we obtain the incremental 

nominal stress iKs
~ : 

  s
i3
= L

iα
f '

α
z
α( )

α=1

3

∑ + L
iα
f '

α
z
α( )

α=1

3

∑ , (28) 

  s
i1
= − L

iα
p
α
f '

α
z
α( )

α=1

3

∑ − L
iα
p
α
f '

α
z
α( )

α=1

3

∑ , (29) 

where 

  ( ) αααα QHACpCL ijjijii 33313 −+= . (30) 

 For the incompressible Gent material, the tangent moduli iKjLC  and the components of 

the matrices αiA , αQ  and αiL  are given in the Appendix. 

 

4.3 Critical condition for the onset of wrinkles 

 The Stroh representation involves three complex variables.  We now derive the critical 

condition for the onset of wrinkles using the method of a single complex variable (Suo, 1990; 

Weiss et al., 2013). Let z be a complex variable of the form 31 qXXz += , with q being an 
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arbitrary complex number with a positive imaginary part.  Observe that at the surface of the 

body, 03 =X , the complex variable z coincides with z1, z2 and z3 defined above.  Write 

  ( ) ( ) ( ) ( )[ ]Tzfzfzfz 321 ,,=f . (31) 

Once we obtain ( )zf  for any z, we can replace z with z1, z2 and z3, and use f
1
z
1( ) , f

2
z
2( )  and 

f
3
z
3( )  to describe the wrinkled state.  

 The surface of the body ( 03 =X ) is traction-free, so that (28) reduces to 

  L !f X
1( )+L !f X

1( ) =0 . (32) 

This equation sets the boundary condition for the function ( )zf .  The boundary-value problem is 

solved as follows.  Assume that the material occupies the lower half plane ( 03 ≤X ). Because no 

singularity is present in the material, L !f z( )  is a function analytic in the lower half plane.  

Consequently, L !f z( )  is a function analytic in the upper half plane. By the theorem of analytic 

continuation, the boundary condition (32) requires that both functions be analytic in the entire 

plane (Carrier et al., 1983).  The wrinkles are disturbance localized on the surface of the gel, so 

that the analytic functions vanish as ∞→z . The only function analytic in the entire plane and 

vanishing as ∞→z  is the function being zero everywhere. Consequently, the solution to the 

boundary-value problem (32) is 

  L !f z( ) =0 . (33)  

 Equation (33) is an eigenvalue problem. A nontrivial solution of ( )z'f  exists if and only if 

  0det =L . (34) 

For the in-plane deformation of a Gent material, a combination of (34) and (A.11) gives the 

critical condition for the onset of wrinkles.  The determinant of L  is a purely imaginary number.  

Figure 6 plots idetL  as a function of the applied strain. As J
lim

 increases, the curves approach 



1/25/2015 15 

the behavior of the limiting case for the neo-Hookean materials, ∞→limJ .  When ∞→limJ , the 

solution ε =0.456  recovers the Biot condition for the onset of wrinkles in a neo-Hookean 

material.  When limJ  > 169.8 , there are two admissible solutions. When limJ  = 169.8 , equation 

(34) has a unique solution 580.0=ε . When limJ  < 169.8 , equation (34) has no solution, i.e. no 

wrinkles are predicted by the linear perturbation method.  

 The critical conditions for the formation of wrinkles obtained by the linear perturbation 

analysis are compared with those of creases (Fig. 5). As  J
lim

 decreases, the branch of smaller 

strains increases, but the branch of larger strains decreases. Observe that creases always form at 

a smaller strain than wrinkles. Thus, creases, rather than wrinkles, should be observed in the 

Gent materials. 

 Once the critical strain is determined by (34), the eigenvector is 

   ⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

13113

1

/
1
LLe

e
. (35) 

Consequently, the field of the wrinkled state is determined by f
1
! z

1( ) =w z1( )  and 

f
3
! z

3( ) = − L11 /L13( )w z3( ) , where ( )zw  is an arbitrary scalar-valued function.  

 

5. Conclusions and discussions 

 In this paper, we study the initiation and development of creases in strain-stiffening 

materials. As a result, strain-stiffening effect raises the critical strain for crease initiation and 

smoothens creases when the compressive strain is large enough. When the strain-stiffening 

effect is strong enough, creases can be completely suppressed. As a comparison, we also study 

the initiation of wrinkles in strain-stiffening materials by the linear perturbation method under 

Stroh formalism. The classical Stroh formalism is extended for incompressible materials. Our 
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calculations show that creases always form at a lower strain than wrinkles, and should be 

observed. 

 The stretchability of soft tissues varies with age, pathology, humidity, as well as the type 

of tissues.  Tendons and ligaments can be uniaxially stretched to a strain of around 15% 

(Holzapfel, 2001), cartilage 120% (Holzapfel, 2001), skins 110% (Dunn et al., 1985), and aorta 

100% (Holzapfel, 2001).  These values correspond to J
lim
=0.06 , 75.2 , 36.2  and 00.2 , 

respectively.  These small values of  J
lim

 suggests that strain-stiffening effect can play a 

significant role to suppress the formation of creasing in these soft tissues.  

 For polymers, the limiting stretch can be estimated as n , with n  being the number of 

monomers between two crosslinkers. The value of n  can be as small as several or as large as 

thousands, and limJ  can be correspondingly tuned by changing the crosslink density. The value 

of limJ  can also be tuned by mixing polymers of different kinds.  It is hoped that our theoretical 

prediction of the smoothening and suppressing of creases can soon be demonstrated 

experimentally. 

 

Appendix A. Tangent moduli C  and matrices A , Q  and L  of the Gent materials 

 When the material is specified as an incompressible Gent material with free energy as 

shown in (6), according to (17), we obtain the tensor of tangent moduli: 

  
( )

0000
2

lim1

1
lim

lim1 /1
2

/1 jKiLjLiKKLijiKjL HHFF
JJ
J

JJ
C Π+

−
+

−
=

−µ
δδ

µ
. (A1) 

The field of finite deformation before perturbation is under a homogeneous plane strain 

condition, and the principal stretches are in the directions coinciding with 21 ,XX  and 3X . 

Consequently, ( )10  ,1 , −= λλdiagF , ( )λλ  ,1 ,10 −= diagH . The hydrostatic pressure 0Π  is 



1/25/2015 17 

determined by the boundary condition 033 =s , and according to (7), we get 

( )lim1
20 /1/ JJ−=Π −µλ . The tangent moduli reduce to the following nonzero elements: 

  
( )

( )2lim1

1
lim

2

lim1

4

1111
/1

2
/1
1

JJ
J

JJ
C

−
+

−

+
=

−− µλλµ
, 

( )
( )2lim1

1
lim

lim1

2

2222
/1

2
/1
1

JJ
J

JJ
C

−
+

−

+
=

−− µλµ
, 

  
( )2lim1

1
lim

2

lim1
3333

/1
2

/1
2

JJ
J

JJ
C

−
+

−
=

−−µλµ
, (A2) 

  
lim1

232332323131131321211212 /1 JJ
CCCCCC

−
======

µ
, (A3) 

 
( )2lim1

1
lim

22111122
/1

2
JJ
J

CC
−

==
−µλ

, 
( )2lim1

1
lim

33111133
/1

2
JJ
J

CC
−

==
−µ

, 
( )2lim1

1
lim

1

33222233
/1

2
JJ
J

CC
−

==
−−µλ

,(A4) 

  
lim1

3

12212112 /1 JJ
CC

−
==

−µλ
, 

lim1

2

13313113 /1 JJ
CC

−
==

−µλ
, 

lim1

1

23323223 /1 JJ
CC

−
==

−µλ
. (A5) 

 Next we substitute (A2)-(A5) to the Stroh formalism.  The complex numbers 1p  and 3p  

are determined by (24), which is specialized to 

  ( ) 02242 =++ −λλλ pgp , (A6) 

where 

   ( ) ( ) 2244

1lim

2
2 −− ++−+
−

= λλλλλ
JJ

g . (A7) 

The two roots with positive imaginary part of the above equation are 

  
( ) ( )

2

2

1 2
4

λ

λλ −+
=

gg
ip ,   

( ) ( )
2

2

3 2
4

λ

λλ −−
=

gg
ip . (A8) 

The components of the matrices αiA , αQ  and αiL  for the in-plane deformation are  

  111 pA = , 313 pA = , 2
31

−−= λA , 2
33

−−= λA ; (A9) 

 ( ) ( )⎥
⎦

⎤
⎢
⎣
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−

−
++

−
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2
1
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1
1

21
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−

−
++

−
= −22
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2
3
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3
3

21
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µλ

JJ
p

JJ
p

Q ;(A10) 
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  ( )42
1

lim1
11 /1

−−
−

= λ
µ p
JJ

L , ( )42
3

lim1
13 /1

−−
−

= λ
µ p
JJ

L ,  

  ( )( )2122

lim1

1
31 /1

pg
JJ
pL λλλ
µ

++
−

−= − , ( )( )2322

lim1

3
33 /1

pg
JJ
p

L λλλ
µ

++
−

−= − . (A11) 

 

Appendix B. Implementation of the Gent material in ABAQUS  

We implement the Gent model in the finite element software ABAQUS by writing a user-

defined material subroutine, UMAT. We use a compressible form of the Gent free energy density 

(Wang et al., 2013) 

  ( ) ( )2
limlim

1
lim 1

2
log1log

2
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= J

J
KJ

J
JJ µ

µ
µ

ψ , (B1) 

where ( )Fdet=J  and the parameter K  is the bulk modulus. The last two terms in (B1) is the 

energy density related to a volume change, and they are non-zero when 1≠J . The 

incompressible Gent material (6) can be recovered in the limit, K /µ→∞ . 

 In the user subroutine UMAT, the Cauchy stress tensor σ , defined as T

J
F
F

σ
∂
∂

=
ψ1

, is 

implemented as 

  ( ) ijjKiKij J
J

J
KFF

JJ
Jσ δ

µµµ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−
=

−

1
2

2
/1 limlim1

1

. (B2) 

The fourth order Jacobian tensor D  is defined as  

  ( ) ( ) 2mKnKnKmKijmnij HδFHδFJDJσ +=δ , (B3) 

which can be calculated as (Wilson, 2005) 

  mK
nK

ij
nKijijmn F
δF
δσ

HσD ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= . (B4) 

For a Gent material, it can be derived that 
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 (B5) 

Substituting (B2) and (B5) into (B4), we can calculate the Jacobian tensor.  

 In the ABAQUS subroutine UMAT, we need to implement the Cauchy stress tensor (B2), 

the Jacobian tensor (B4), and the free energy density (B1). The UMAT checks how far the state is 

from the limiting stretch for every material particle in every increment to ensure that the state 

stays within the limit J
1
= J

lim
. We implement this requirement in the UMAT as follows.  The 

calculation is conducted incrementally.  After the UMAT finishes the calculation at a given 

increment, if 311lim −<− eJJ , the UMAT abandons the original increment, and attempts the 

calculation again with an increment half of the original one.  Then the UMAT checks the 

criterion 311lim −<− eJJ  again.  The UMAT attempts to satisfy the criterion 311lim −<− eJJ  for 

a maximal times, say 5 times; if not, the UMAT aborts the simulation. 
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                          (a)                                                   (b)                                

 
                        (c)                                               (d)                                
 
 
Fig. 1 (a) In the stress-free state, a block of elastic material is of width W and height H. Under 
compression the material may deform in several ways. (b) The block undergoes homogeneous 
compression. (c) The surface forms wrinkles. (d) The surface forms a crease of crease depth L.  
The applied strain ε  is defined by the compressive displacement divided by the initial width of 
the block. 
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                                     (a)                                                                 (b)                                
 
 
Fig. 2 The Gent model characterizes a strain-stiffening material with two parameters:  µ  and 

limJ .  (a) The compressive stress-strain curve for a Gent material with J
lim
= 4.5 .  A unit cube is 

compressed under the plane strain condition, with the width changing by a factor of λ , the 

height changing by a factor of λ−1 .  The compressive strain is defined by ε = 1−λ , and the stress s 
is normalized by µ .  The stress-strain curve turns vertical at the limiting strain limε .  (b) The 

limiting strain limε  increases with limJ .  
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                                        (a) 351.0=ε                                        (b) 430.0=ε  

 
          (c) 498.0=ε                             (d) 556.0=ε                       (e) 579.0=ε  

 
 
 
Fig. 3 As the applied strain ε  increases, the surface is initially flat, then forms a crease, and 
finally becomes flat again. The calculation is carried out with a Gent material of 5.4lim =J .  (a)-
(e) correspond to states at increasing levels of applied strain.  The colors represent the scalar 
measure of the deformation, 1J . 

 

 

1J  
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Fig. 4 The normalized crease depth HL /  as a function of the applied strain ε . When ∞→limJ , 
the Gent model recovers the neo-Hookean model, and the crease initiates when ε  reaches 
around 0.354. With the decrease of limJ , the critical strain for the onset of the crease increases, 

and the crease disappears when the applied strain is large enough. When limJ  is below about 3.1, 
no crease forms at any strain. 
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Fig. 5 The critical strains for the initiation and disappearance of a crease as a function of limJ . 
The circles represent the results of finite element simulations. Also plotted are the critical 
conditions of the initiation and disappearance of wrinkles. 
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Fig. 6 The critical strains for wrinkles are determined by 0det =L .  Plotted here are idetL  as 

a function of the applied strain ε  for three values of limJ . When 169.8lim >J , Ldet  becomes 

zero at two values of the applied strain.  When 169.8lim =J , 0det =L  has a single solution 

580.0=ε .  When 169.8lim <J , ( )Ldet  cannot reach zero at any applied strain. 

 
 
 


