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New constructions of RIP matrices

with fast multiplication and fewer rows

Jelani Nelson∗ Eric Price† Mary Wootters‡

November 5, 2012

Abstract

In compressed sensing, the restricted isometry property (RIP) is a sufficient condition for the
efficient reconstruction of a nearly k-sparse vector x ∈ Cd from m linear measurements Φx. It
is desirable for m to be small, and for Φ to support fast matrix-vector multiplication. In this
work, we give a randomized construction of RIP matrices Φ ∈ Cm×d, preserving the `2 norms of
all k-sparse vectors with distortion 1+ε, where the matrix-vector multiply Φx can be computed
in nearly linear time. The number of rows m is on the order of ε−2k log d log2(k log d). Previous
analyses of constructions of RIP matrices supporting fast matrix-vector multiplies, such as the
sampled discrete Fourier matrix, required m to be larger by roughly a log k factor.

Supporting fast matrix-vector multiplication is useful for iterative recovery algorithms which
repeatedly multiply by Φ or Φ∗. Furthermore, our construction, together with a connection
between RIP matrices and the Johnson-Lindenstrauss lemma in [Krahmer-Ward, SIAM. J.
Math. Anal. 2011], implies fast Johnson-Lindenstrauss embeddings with asymptotically fewer
rows than previously known.

Our approach is a simple twist on previous constructions. Rather than choosing the rows
for the embedding matrix to be rows sampled from some larger structured matrix (such as the
discrete Fourier transform or a random circulant matrix), we instead choose each row of the
embedding matrix to be a linear combination of a small number of rows of the original matrix,
with random sign flips as coefficients. The main tool in our analysis is a recent bound for
the supremum of certain types of Rademacher chaos processes in [Krahmer-Mendelson-Rauhut,
arXiv abs/1207.0235].

1 Introduction

The goal of compressed sensing [12,24] is to efficiently reconstruct sparse, high-dimensional signals
from a small set of linear measurements. We say that a x ∈ Cd is k-sparse if ‖x‖0 ≤ k, where
‖x‖0 denotes the number of non-zero entries. The idea is that if x is guaranteed to be sparse or
nearly sparse (that is, close to a sparse vector), then we should be able to recover it with far fewer
than d measurements. Organizing the measurements as the rows of a matrix Φ ∈ Cm×d, one wants
an efficient algorithm R which approximately recovers a signal x ∈ Cd from the measurements Φx;
that is, ‖R(Φx)−x‖2 should be small. There are several goals in the design of Φ and R. We would
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like m� d to be as small as possible, so that Φx can be interpreted as a compression of x. We also
ask that the recovery algorithm R be efficient, and satisfy a reasonable recovery guarantee when x
is close to a sparse vector.

The recovery guarantee most popular in the literature is the `2/`1 guarantee, which compares the
error between x and the recoveryR(Φx) to the error between x and the best k-sparse approximation
of x. More precisely, to satisfy the `2/`1 guarantee there must exist a constant C such that for
every x, R(Φx) satisfies

‖R(Φx)− x‖2 ≤
C√
k
· inf
y∈Cd

‖y‖0≤k

‖x− y‖1. (1)

The value of m and the pair Φ,R can depend on d and k. Above, ‖ · ‖p denotes the `p norm

‖x‖p = (
∑

i |xi|p)
1/p and ‖x‖0 denotes the number of non-zero entries of x.

In this work, we will be concerned with a sufficient condition for the `2/`1 guarantee, known
as the (ε, 2k) restricted isometry property, or (ε, 2k)-RIP. We say that a matrix Φ ∈ Cm×d has the
(ε, k)-RIP if

∀x ∈ Cd, ‖x‖0 ≤ k ⇒ (1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22. (2)

It is known that if Φ satisfies the (ε, k)-RIP for ε <
√

2− 1, then Φ enables the `2/`1 guarantee for
some constant C [11, 13, 14]. Furthermore, this guarantee is achievable by efficient methods such
as solving a linear program [13,17,25].

In this work, we construct matrices Φ which satisfy the RIP with few rows, and which addition-
ally support fast matrix-vector multiplication. The speed of the encoding time is important not
just for encoding x as Φx, but also for the reconstruction of x. Aside from linear programming,
there are several iterative algorithms for recovering x from Φx when Φ satisfies the RIP: for exam-
ple Iterative Hard Thresholding [8], Gradient Descent with Sparsification [29], CoSaMP [44], Hard
Thresholding Pursuit [27], Orthogonal Matching Pursuit [54], Stagewise OMP (StOMP) [26], and
Regularized OMP (ROMP) [45,46]. All these algorithms have running times essentially bounded by
the number of iterations (which is usually logarithmic in d and an error parameter) times the run-
ning time required to perform a matrix-vector multiply with either Φ or Φ∗, and so it is important
that this operation be fast.

If we do not require fast matrix-vector multiplication, it is known that RIP matrices exist
with m = Θ(k log(d/k)). For example, any matrix with i.i.d. Gaussian or subgaussian entries
suffices [7, 15, 42]. This is known to be optimal even for the `2/`1 recovery problem itself via
a connection to Gelfand widths [30, 37] (see a discussion in [7, Section 3]), and is even required
to obtain a weaker randomized guarantee [23]. However, for such matrices, näıve matrix-vector
multiplication requires time O(dm). Ideally, for the applications above, this would instead be
nearly linear in d. This has caused a search for RIP matrices that support fast matrix-vector
multiplication, leading to constructions that unfortunately require m to be larger than the optimal
by several logarithmic factors. We discuss previous work in closing this gap, and our contribution,
in more detail in Section 1.2 below.

1.1 Johnson-Lindenstrauss

The Johnson-Lindenstrauss (JL) lemma of [34] is related to the RIP, and, as we will see below, our
constructions of RIP matrices will imply constructions of Johnson-Lindenstrauss transforms with
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fast embedding time. The JL lemma states that there is a way to embed N points in `d2 into a
linear subspace of dimension approximately logN , with very little distortion. 1

Lemma 1. For any 0 < ε < 1/2 and any x1, . . . , xN ∈ Rd, there exists a linear map A ∈ Rm×d for
m = O(ε−2 logN) such that for all 1 ≤ 1 < j ≤ N ,

(1− ε)‖xi − xj‖2 ≤ ‖Axi −Axj‖2 ≤ (1 + ε)‖xi − xj‖2.

For any fixed set of vectors x1, . . . , xN , we call a matrix A as in the lemma an ε-JL matrix for
that set. It is known that there are sets of N vectors for which m = Ω((ε−2/ log(1/ε)) logN) is
required [5]. In fact, this bound holds for any, not necessarily linear, embedding into `m2 .

The JL lemma is a useful tool for speeding up solutions to several problems in high-dimensional
computational geometry; see for example [32,55]. Often, one has an algorithm which is fast in terms
of the number of points but slow as a function of dimension: a good strategy to approximate a solu-
tion quickly is to first reduce the input dimension via the JL lemma before running the algorithm.
Recently dimensionality reduction via linear maps has also found applications in approximate nu-
merical algebra problems such as linear regression and low-rank approximation [19, 20, 43, 47, 52],
and for the k-means clustering problem [9]. Going back to our original problem, the JL lemma also
implies the existence of (ε, k)-RIP matrices with O(ε−2k log(d/k)) rows [7].

Due to its algorithmic importance, it is of interest to obtain JL matrices which allow for fast
embedding time, i.e. for which the matrix-vector product Ax can be computed quickly. Paralleling
the situation with the RIP, if we do not require that A support fast matrix-vector multiplication,
there are many constructions of dense matrices A which are JL matrices with high probability
[1, 6, 22, 28, 33, 34, 41]. For example, we may take A to have i.i.d. Gaussian or subgaussian entries.
However, for such A matrix-vector multiplication takes time O(dm), where as before we would like
it to be nearly linear in d. As with the RIP, if we require this embedding time, there is gap of
several logarithmic factors between the upper and lower bounds on the target dimension m. We
review previous work and state our contributions on this gap below.

1.2 Previous Work on Fast RIP/JL, and Our Contribution

Above, we saw the importance of constructing RIP and JL matrices which not only have few rows
but also support fast matrix-vector multiplication. Below, we review previous work in this direction.
We then state our contributions and improvements, which are summarized in Figure 1.

The best known construction of RIP matrices with fast multiplication come from either subsam-
pled Fourier matrices (or related constructions) or from partial circulant matrices. Candès and Tao
showed in [15] that a matrix whose rows are m = O(k log6 d) random rows from the Fourier matrix
satisfies the (O(1), k)-RIP with positive probability. The analysis of Rudelson and Vershynin [51]
and an optimization of it by Cheraghchi, Guruswami, and Velingker [18] improved the number of
rows required for the (ε, k)-RIP to m = O(ε−2k log d log3 k). For circulant matrices, initial works
required m� k3/2 to obtain the (ε, k)-RIP [31,50]; Krahmer, Mendelson and Rauhut [38] recently
improved the number of rows required to m = O(ε−2k log2 d log2 k).

The first work on JL matrices with fast multiplication was by Ailon and Chazelle [2], which
had m = O(ε−2 logN) rows and embedding time O(d log d + m3). In certain applications N can

1The JL lemma is most commonly stated over R, so we state it this way here. However, as in [39], all of our
results extend to complex vectors and complex matrices.

3



be exponentially large in a parameter of interest, e.g. when one wants to preserve the geometry
of an entire subspace for numerical linear algebra [19, 52] or k-means clustering [9], or the set of
all sparse vectors in compressed sensing [7]. Thus, while the number of rows in this construction
is optimal, for some applications it is important to improve the dependence on m in the running
time. Ailon and Liberty [3] improved the running time to O(d logm+m2+γ) for any desired γ > 0
(with the same number of rows), and more recently the same authors gave a construction with
m = O(ε−4 logN log4 d) supporting matrix-vector multiplies in time O(d log d) [4]. Krahmer and
Ward [39] improved the target dimension to m = O(ε−2 logN log4 d).

This last improvement of [39] is actually a more general result. Specifically, they showed that,
when the columns are multiplied by independent random signs, any (O(ε), O(logN))-RIP matrix
becomes an ε-JL matrix for a fixed set of N vectors with probability 1−N−Ω(1). Since we saw above
that sampling O(ε−2k log d log3 k) rows from the discrete Fourier or Hadamard matrix satisfies
(ε, k)-RIP with constant probability, conditioning on this event and applying the result of [39]
implies a JL matrix with m = O(ε−2 logN log d log3(logN)) = O(ε−2 logN log4 d) and embedding
time O(d log d). We will use the same method to obtain fast JL matrices from our constructions of
RIP matrices.

Another way to obtain JL matrices which support fast matrix-vector multiplication is to con-
struct sparse JL matrices [10, 21, 35, 36, 56]. These constructions allow for very fast multiplication
Ax when the vector x is itself sparse. However, these constructions have an Ω(ε) fraction of nonzero
entries, and it is known that any JL transform with O(ε−2 logN) rows requires an Ω(ε/ log(1/ε))
fraction of nonzero entries [48]. Thus, for constant ε and dense x, multiplication still requires time
Θ(dm).

In this work we propose and analyze a new method for constructing RIP matrices that support
fast matrix-vector multiplication. Loosely speaking, our method takes any “good” ensemble of RIP
matrices, and produces an ensemble of RIP matrices with fewer rows by multiplying by a suitable
hash matrix. We can apply our method to either subsampled Fourier matrices or partial circulant
matrices to obtain our improved RIP matrices.

Our construction follows a natural intuition. For example, let A be the discrete Fourier matrix,
and suppose that S is an m × d matrix with i.i.d. Rademacher entries, appropriately normalized.
If m = Θ(ε−2k log(d/k)), then SA satisfies the (ε, k)-RIP with high probability, because S has the
RIP, and A is an isometry. Unfortunately, this construction has slow matrix-vector multiplication
time. On the other hand, if S′ is an extremely sparse random sign matrix, with only one non-zero
per row, then S′A is a subsampled Fourier matrix, supporting fast multiplication. Unfortunately, in
order to show that S′A satisfies the RIP with high probability, m must be increased by polylog(k)
factors. This raises the question: can we get the best of both worlds? How sparse must the sign
matrix S be to ensure RIP with few rows, and can it be sparse enough to maintain fast matrix-
vector multiplication? In some sense, this question, and our results, connects the two lines of
research—structured matrices and sparse matrices—on fast JL matrices mentioned above. Our
results imply we can improve the number of rows over previous work by using such a sparse sign
matrix with only polylog(d) non-zeroes per row.

Our Main Contribution: We give randomized constructions of (ε, k)-RIP matrices with m =
O(ε−2k log d log2(k log d)) and which support matrix-vector multiplication in time O(d log d) +
m · logO(1) d. When combined with [39], we obtain a JL matrix with a number of rows m =
O(ε−2 logN log d log2((logN) log d)) = O(ε−2 logN log3 d) and same embedding time. Thus for

4



Ensemble # rows m needed for RIP Matrix-vector
multiplication time

Restrictions Reference

Partial Fourier O(ε−2k log d log3 k) O(d log d) [18, 51]

Partial Circulant O(ε−2k log2 d log2 k) O(d logm) [38]

Hash ×
Partial Fourier

O(ε−2k log d log2(k log d)) O(d log d) +mpolylog d k ≥ log2.5 m this work

Hash ×
Partial Circulant

O(ε−2k log d log2(k log d)) O(d logm) +mpolylog d k ≥ log2 m this work

Figure 1: Table of results.

both RIP and JL, our constructions support fast matrix-vector multiply using the fewest rows
known.

Our RIP and JL matrices maintain the O(d log d) running time of the sampled discrete Fourier
matrix as long as k < d/polylog d, and never have multiplication time larger than d · logO(1) d even
for k as large as d. Our results are given in Figure 1.

We remark that the restrictions k ≥ polylogm in Figure 1 can be eliminated as long as ε is
not too small, because in this case it is already known how to obtain optimal RIP matrices with
fast multiplication for small k. More precisely, the Fast Johnson-Lindenstrauss Transform of [2],
combined with [7], give an (ε, k)-RIP matrix with m = O(ε−2k log(d/k)) rows that supports matrix-
vector multiplies in time O(d log d) as long a k ≤ ε2/3d1/3/ polylog d. Meanwhile, our restrictions
in Figure 1 require k ≥ polylogm. Thus, the only case when neither our result nor the results
of [2, 7] applies occurs when ε < (polylog d)/

√
d. We note that when ε < 1/

√
d, it is unknown

how to obtain any (ε, k)-RIP matrix with fewer than d < 1/ε2 rows, and this is already trivially
obtained by the identity matrix.

1.3 Notation and Preliminaries

We set some notation. We use [n] to denote the set {1, . . . , n}. We use ‖·‖2 denote the `2 norm
of a vector, and ‖·‖, ‖·‖F to denote the operator and Frobenius norms of a matrix, respectively.
For a set S and a norm ‖·‖X , d‖·‖X (S) denotes the diameter of S with respect to ‖·‖X . The set

of k-sparse vectors x ∈ Cd with ‖x‖2 ≤ 1 is denoted Tk. In addition to O(·) notation, for two
functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for some
absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for some constants c, C. For clarity, we
have made no attempt to optimize the values of the constants in our analyses.

Once we define the randomized construction of our RIP matrix Φ, we will control |‖Φx‖22−‖x‖22|
uniformly over Tk, and thus will need some tools for controlling the supremum of a stochastic process
on a compact set. For a metric space (T, d), the δ-covering number N (T, d, δ) is the size of the
smallest δ-net of T with respect to the metric d. One way to control a stochastic process on T is
simply to union bound over a sufficiently fine net of T ; a more powerful way to control stochastic
processes, due to Talagrand, is through the γ2 functional [53].

Definition 2. For a metric space (T, d), an admissible sequence of T is a sequence of nets
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A1, A2, . . . of T so that |An| ≤ 22n. Then

γ2(T, d) := inf sup
t∈T

∞∑
n=1

2n/2d(An, t),

where the infimum is taken over all admissible sequences {An}.

Intuitively, γ2(T, d) measures how “clustered” T is with respect to d: if T is very clustered, then
the union bound over nets above can be improved by a chaining argument. A similar idea is used
in Dudley’s integral inequality [40, Theorem 11.1], and indeed they are related (see [53], Section
1.2) by

γ2(T, d) .
∫ diamd(T )

0

√
logN (T, d, u) du. (3)

It is this latter form that will be useful to us.

1.4 Organization

In Section 2 we define our construction and give an overview of our techniques. We also state
our most general theorem, Theorem 6, which gives a recipe for turning a “good” ensemble of RIP
matrices into an ensemble of RIP matrices with fewer rows. In Section 3, we apply Theorem 6 to
obtain the results listed in Figure 1. Finally, we prove Theorem 6 in Sections 4 and 5.

2 Technical Overview

Our construction is actually a general method for turning any “good” RIP matrix with a suboptimal
number of rows into an RIP matrix with fewer rows. Many previous constructions of RIP matrices
involve beginning with an appropriately structured matrix (a DFT or Hadamard matrix, or a
circulant matrix, for example), and keeping only a subset of the rows. In this work we propose a
simple twist on this idea: each row of our new matrix is a linear combination of a small number of
rows from the original matrix, with random sign flips as the coefficients. Formally, we define our
construction as follows.

Let AM be a distribution on M × d matrices, defined for all M , and fix parameters m and B.
Define the injective function h : [m]× [B]→ [mB] as h(b, i) = B(b− 1) + i to partition [mB] into
m buckets of size B, so h(b, i) denotes the ith element in bucket b. We draw a matrix A from AmB,
and then construct our m× d matrix Φ(A) by using h to hash the rows of A into m buckets of size
B.

Definition 3 (Our construction). Let AM be as above, and fix parameters m and B. Define a new
distribution on m× d matrices by constructing a matrix Φ ∈ Cm×d as follows.

1. Draw A ∼ AmB, and let ai denote the rows of A.

2. For each (b, i) ∈ [m]× [B], choose a sign σb,i ∈ {±1} independently, uniformly at random.

3. For b = 1, . . . ,m let

ϕb =
∑
i∈[B]

σb,iah(b,i),

and let Φ = Φ(A, σ) be the matrix with rows ϕb.
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We use Ab to denote the B × d matrix with rows ah(b,i) for i ∈ [B].

Equivalently, Φ may be obtained by writing Φ = HA, where A ∼ AmB, and H is the m×mB
random matrix with columns indexed by (b, i) ∈ [m]× [B], so that

Hj,(b,i) =

{
σb,i b = j

0 b 6= j
.

Note that there are two sources of randomness in the construction of Φ: there is the choice of
A ∼ AmB, and also the choice of the sign flips which determine the matrix H. Our RIP matrix
will be the appropriately normalized matrix Φ/

√
mB.

We consider two example distributions for AM . First, we consider a bounded orthogonal en-
semble.

Definition 4 (Bounded orthogonal ensembles). Let U ∈ Cd×d be any unitary matrix with |Uij | ≤ 1
for all entries Uij of U . Let ui denote the ith row of U . A matrix A ∈ CM×d is drawn from the
bounded orthogonal ensemble associated with U as follows. Select, independently and uniformly at
random, a multi-set Ω = {t1, . . . , tM} with ti ∈ [d]. Then let A ∈ CM×d be the matrix with rows
ut1 , . . . , utM .

Popular choices (and our choices) for U include the d-dimensional discrete Fourier transform
(resulting in the Fourier ensemble), or the d×d Hadamard matrix, both of which support O(d log d)
time matrix-vector multiplication.

The second family we consider is the partial circulant ensemble.

Definition 5 (Partial Circulant Ensemble). For z ∈ Cd, the circulant matrix Hz ∈ Cd×d is given
by Hzx = z ∗ x, where ∗ denotes convolution. Fix Ω ⊂ [d] of size M arbitrarily. A matrix A is
drawn from the partial circulant ensemble as follows. Choose ε ∈ {±1}d uniformly at random, and
let A be the rows of Hε indexed by Ω.

As long as the original matrix ensemble A supports fast matrix-vector multiplication, so does
the resulting matrix Φ. Indeed, writing Φx = HAx as above, we observe that there are mB nonzero
entries in H, so computing the product HAx takes time O(mB), plus the time it takes to compute
Ax. When A is drawn from the partial Fourier ensemble, Ax may be computed in time O(d log d)
via the fast Fourier transform. We will choose B = polylog(d), and so Φx may be computed in
time O(d log d + mpolylog d). When A is the partial circulant ensemble, Ax may be computed in
time d log(mB) by breaking it up into d/(mB) blocks, each of which is a mB×mB Toeplitz matrix
supporting matrix-vector multiplication in time O(mB log(mB)). Thus, in this case Φx may be
computed in time O(d log(mB) +mB) = O(d logm) +m polylog d.

Having established the “multiplication time” column of Figure 1, we turn to the more difficult
task of establishing the bounds on m, the number of rows. We note that Φ/

√
mB has the (ε, k)-RIP

if and only if

sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ ≤ ε,
and so our goal will be to establish bounds on supx∈Tk

∣∣∣‖Φx‖22 /(mB)− ‖x‖22
∣∣∣. We will show that

if A satisfies certain properties, then in expectation this quantity is small. Specifically we require
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the following two conditions. First, we require a random matrix from A to have the RIP with a
reasonable, though perhaps suboptimal, number of rows:

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√

L

M
(?)

for some quantity L, for suitably large M > M0.
Second, the matrices Ab whose rows are the rows of A indexed by h(b, i) for i ∈ [B] should be

well-behaved. Define (†) to be the event that

max
b∈[m]

sup
x∈Ts
‖Abx‖2 ≤ `(s) (†)

for some function `(s) and all s ≤ 2k. We require that (†) happen with constant probability:

PA∼A [(†) holds] ≥ 7/8. (??)

for some sufficiently small function `.
As long as these two requirements on A are satisfied, and all matrices in the support of A

have entries of bounded magnitude, the construction of Definition 3 yields a RIP matrix, with
appropriate parameters. The following is our most general theorem.

Theorem 6. Fix ε ∈ (0, 1), and fix integers m and B. Let A = AmB be a distribution on mB × d
matrices so that ‖ai‖∞ ≤ 1 almost surely for all rows ai of A ∼ A. Suppose that (?) holds with

L ≤ mBε2,

and M = mB > M0. Suppose further that (??) holds, with

`(s) ≤ Q1

√
B +Q2

√
s

and that
B ≥ max{Q2

2 log2m,Q2
1 logm log k}, and k ≥ Q2

1 log2m.

Finally, suppose that m > m0, for

m0 =
k log d log2(Bk)

ε2
.

Let Φ be drawn from the distribution of Definition 3. Then

sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . ε,
that is, 1√

mB
Φ satisfies the (O(ε), k)-RIP, with 3/4 probability.

In Section 3, we will show how to use Theorem 6 to prove the results reported in Figure 1, but
first we will outline the intuition of the proof of Theorem 6.

By construction, the expectation of ‖Φx‖22 over the sign flips σ is simply ‖Ax‖22, and (?) guaran-
tees that this expectation is under control, uniformly over x ∈ Tk. The trick is that A has mB rows,
rather than m, and this provides slack to handle the fact that the guarantee (?) is not optimal.
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The problem is then to argue that for all x ∈ Tk, ‖Φx‖22 is close to its expectation. The proof
of Theorem 6 proceeds in two steps. First, we condition on A and control the deviation

E
σ

sup
x∈Tk

∣∣∣‖Φx‖22 − E
σ
‖Φx‖22

∣∣∣ . (4)

Second, we take the expectation with respect to A ∼ AmB.
In Theorem 11 we carry out the first step and bound the deviation (4) by Talagrand’s γ2

functional γ2(Tk, ‖·‖X), where ‖x‖X := maxb ‖Abx‖2 is a norm which measures the contribution
to ‖Φx‖2 of the worst bucket b of the partition function h. Our strategy is to write ‖Φx‖22 as
‖X(x)σ‖22, for an appropriate matrix X(x) that depends on A. Finally we use a result of Krahmer,
Mendelson, and Rauhut [38] to control the Rademacher chaos, obtaining an expression in terms of
γ2(Tk, ‖·‖X).

In the second step, we unfix A, and γ2(Tk, ‖·‖X) becomes a random variable. In Theorem 12,
we show that, as long as (??) holds, γ2(Tk, ‖·‖X) is small with high probability over the choice of
A ∼ AmB. By (3), it is sufficient to bound the covering numbers N (Tk, ‖·‖X , u). This is similar
to [51], which must bound the same N (Tk, ‖·‖X , u) but in a setting where B = 1. Both papers
use Maurey’s empirical method to relate the covering number to E[maxb ‖Abg‖2] for a Gaussian
process g. But while [51] loses a

√
logm factor in a union bound over b, we only lose a constant

factor as long as B ≥ polylog d. This difference is what gives our log k improvement in m. It is
also the most technical piece of our proof, and is presented in Section 5.

Finally, we put all of the pieces together. As long as mB is large enough and the condition
(?) holds, Eσ ‖Φx‖2 /

√
mB will be close to ‖x‖2 in expectation over A. At the same time as long

as the condition (??) holds, the deviation (4) is small in expectation over A ∼ AmB. Choosing B
appropriately controls the restricted isometry constant of Φ, at the cost of slightly increasing the
embedding time.

3 Main Results

Before we prove Theorem 6, let us show how we may use it to conclude the results in Figure 1.
To do this, we must compute L and `(s) from the conditions (?) and (??), when A is the Fourier
ensemble (or any bounded orthogonal ensemble), and when A is the partial circulant ensemble.

3.1 Bounded orthogonal ensembles

Suppose A is a bounded orthogonal ensemble. The RIP analysis of [18,51] shows

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√
k log3 k log d

M
,

provided that M & k log3 k log d, so we may take L . k log3 k log d. Further, the analysis of [51]
(see Lemma 17) implies that

PA∼A
[
∃s ∈ [2k] : max

b∈[m]
sup
x∈Ts
‖Abx‖2 ≥ `(s)

]
≤ 2km max

s∈[2k]
PA∼A

[
sup
x∈Ts
‖A1x‖2 ≥ `(s)

]
≤ 1/8

when

`(s) h log1/4(m)
√
B + log1/4(m)

√
s log2(k) log(d) log(B).

9



Thus, we may take Q1 . log1/4m and Q2 . log1/4(m) log(k)
√

log(d) log(B) . log2.5(d) With these
parameter settings, Theorem 6 implies the following theorem.

Theorem 7. Let ε ∈ (0, 1). Let A be a bounded orthogonal ensemble (for example, the Fourier
ensemble), and suppose that Φ is as in Definition 3. Further suppose B ≥ log6.5 d and k ≥ log2.5m.
Then for some value

m = O

(
k log d log2(k log d)

ε2

)
,

we have that
sup
x∈Tk

∣∣∣‖Φx‖22 − ‖x‖22∣∣∣ ≤ ε
with 3/4 probability.

3.2 Circulant Matrices

Suppose that A is the partial circulant ensemble. By the analysis in [38],

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√
k log2 k log2 d

M
,

for M & k log2 k log2 d. Concentration also follows from the analysis in [38], as a corollary of
Theorem 10 (see [38, Theorem 4.1]).

Lemma 8. (Implicit in [38])

PA∼A
[
∃s ∈ [2k] : max

b∈[m]
sup
x∈Ts
‖Abx‖2 ≥ `(s)

]
≤ 1

8

when
`(s) h

√
B +

√
s log k log d.

Thus, we may take Q1 . 1 and Q2 . log k log d. Then Theorem 6 implies the following theorem.

Theorem 9. Let ε ∈ (0, 1). Let A be the partial circulant ensemble, and suppose Φ is constructed
as in Definition 3. Further suppose B ≥ log2m log2 k log2 d and k ≥ log2m. Then, for some value

m = O

(
k log d log2(k log d)

ε2

)
,

we have that, as long as m < d/B,

sup
x∈Tk

∣∣∣‖Φx‖22 − ‖x‖22∣∣∣ ≤ ε
with 3/4 probability.

We remark that the condition m ≤ d/B does not actually effect the results reported in Figure 1.
Indeed, if mB > d, we may artificially increase d to d′ = mB by embedding Tk in Cd′ by zero-
padding. Applying Theorem 9 with d = d′ implies an RIP matrix with O(ε−2k log d′ log2(k log d))
rows and embedding time O(d′ log d′) + mpolylog d′. Because B = polylog d, we have d′ =
dpolylog(d), and there is no asymptotic loss in m by extending d to d′. Further, in this parameter
regime, d′ log d′ = mB log d′ = mpolylog d.

10



4 Proof of Theorem 6

We will use the following theorem from [38].

Theorem 10. [38, Theorem 1.4] Let S ⊂ Cm×M be a symmetric set of matrices, S = −S. Let
σ ∈ {±1}M uniformly at random. Then

E sup
X∈S

∣∣∣‖Xσ‖22 − E ‖Xσ‖22
∣∣∣ . (dF (S)γ2(S, ‖·‖) + γ2

2(S, ‖·‖)
)

=: E′.

Furthermore, for all t > 0,

P
[

sup
X∈S

∣∣∣‖Xσ‖22 − E ‖Xσ‖22
∣∣∣ > C1E

′ + t

]
≤ 2 exp

(
−C2 min

{
t2

V 2
,
t

U

})
,

where C1 and C2 are constants,

V = d2→2(S)(γ2(S, ‖·‖) + dF (S)),

and
U = d2

2→2(S).

The first step in proving Theorem 6 is to bound the restricted isometry constant of Φ in terms
of the γ2 functional, removing the dependence on σ.

Theorem 11. Suppose A = AM is a distribution on M × d matrices so that (?) holds, and let Φ
be as in Definition 3. Then

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . 1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB
. (5)

where
‖x‖X := max

b∈[m]
‖Abx‖2 .

Proof. Let H(b) = { h(b, i) : i ∈ [B] } be the multiset of indices of the rows of A in bucket b, and
as above let Ab denote the B × d matrix whose rows are indexed by H(b). Let σb =

∑B
i=1 σb,iei

denote the vector of sign flips associated with bucket b. Notice that, by construction, conditioning
on A ∼ A, we have

E
σ
‖Φx‖22 = ‖Ax‖22 , (6)

and so

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2

∣∣∣∣
≤ EA

[
1

mB
Eσ sup

x∈Tk

∣∣∣‖Φx‖22 − Eσ ‖Φx‖22
∣∣∣+ sup

x∈Tk

∣∣∣∣ 1

mB
Eσ ‖Φx‖22 − ‖x‖

2
2

∣∣∣∣
]

=
1

mB
EAEσ sup

x∈Tk

∣∣∣‖Φx‖22 − ‖Ax‖22∣∣∣+ EA sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣
.

1

mB
EAEσ sup

x∈Tk

∣∣∣‖Φx‖22 − ‖Ax‖22∣∣∣+

√
L

mB
, (7)

11



where we have used (?) in the last line and (6) in the penultimate line.
Condition on the choice of A until further notice, and consider the first term. We may write

E := E
σ

sup
x∈Tk

∣∣∣‖Φx‖22 − E
σ
‖Φx‖22

∣∣∣ = E
σ

sup
x∈Tk

∣∣∣∣∣∑
b

|〈σb, Abx〉|2 − E
σ

∑
b

|〈σb, Abx〉|2
∣∣∣∣∣ .

Now, we apply Theorem 10 to S = {X(x) ∈ Cm×mB | x ∈ Tk}, where X(x) is defined as follows:

X(x) =



−(A1x)∗− 0 0 · · · 0

0 −(A2x)∗− 0 · · · 0

0 0 −(A3x)∗− · · · 0
...

...
...

...

0 0 0 · · · −(Amx)∗−


.

Let σ be the vector in {−1, 1}M defined as (σ∗1, . . . , σ
∗
m)∗. By construction, ‖X(x)σ‖22 =

∑
b |〈σb, Abx〉|

2,
and so by Theorem 10, it suffices to control dF (S) and γ2(S, ‖·‖). The Frobenius norm of X(x) is

‖X(x)‖2F =
∑
b∈[m]

‖Abx‖22 = ‖Ax‖22 .

For the γ2 term, notice that for any x, y ∈ Tk,

‖X(x)−X(y)‖ = max
b∈[m]

‖Ab(x− y)‖2 = ‖x− y‖X .

Thus, γ2(S, ‖·‖) = γ2(Tk, ‖·‖X). Then Theorem 10 implies that

E . max
x∈Tk

‖Ax‖2 γ2(Tk, ‖·‖X) + γ2
2(Tk, ‖·‖X).

Plugging this into (7), we conclude

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . 1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB
. (8)

�

Theorem 11 leaves us with the task of controlling γ2(Tk, ‖·‖X), which we do in the following
theorem.

Theorem 12. Suppose that A is a matrix such that (†) holds, with

`(s) ≤ Q1

√
B +Q2

√
s.

Suppose further that ‖ai‖∞ ≤ 1 for all i, and suppose that

B ≥ max{Q2
2 log2m,Q2

1 logm log k}, and k ≥ Q2
1 log2m.

Then
γ2(Tk, ‖·‖X) .

√
kB log d · log(Bk).

12



Proof. By (3),

γ2(Tk, ‖·‖X) .
∫ Q

u=0

√
logN (Tk, ‖·‖X , u) du, (9)

where Q = supx∈Tk ‖x‖X . Notice that we can bound

Q2 = sup
x∈Tk

max
b
‖Abx‖22 = sup

x∈Tk
max
b

∑
i∈[B]

∣∣〈ah(b,i), x
〉∣∣2 ≤ B sup

x∈Tk
‖x‖21 ≤ Bk

using the fact that each entry of ah(b,i) has magnitude at most 1. We follow the approach of [51]
and estimate the covering number using two nets, one for small u and one for large u.

For small u, we use a standard `2 net of B2: we have

‖x‖X ≤ Q ‖x‖2

so N (Tk, ‖·‖X , u) ≤ N (Tk, ‖·‖2 , u/Q). Observing that Tk is the union of
(
d
k

)
=
(
d
k

)O(k)
copies of

Bk
2 (the unit `2-ball of dimension k), we may cover Tk by covering cover each copy of Bk

2 with a
net of width u/Q. By a standard volume estimate [49, Eqn. (5.7)], the size of each such net is
(1 + 2Q/u)k, and so√

logN (Tk, ‖·‖X , u) .
√
k log(d/k) + k log(1 + 2Q/u) .

√
k log(dQ/u).

For large u the situation is not as simple. We show in Lemma 13 that, as long as (†) holds,√
logN (Tk, ‖·‖X , u) .

√
kB log d

u
.

We plug these bounds into (9) and integrate, using the first net for u ∈ (0, 1) and the second
for u > 1. We find∫ Q

u=0

√
logN (Tk,max

b
‖Fb · ‖, u) du .

∫ 1

u=0

√
k log(dQ/u) du+

∫ Q

u=1

√
kB log d

u
du

.
√
k log(dQ) +

√
kB log d logQ

.
√
kB log d logQ

≤
√
kB log d log(Bk)

as claimed. �

It remains to put Theorem 11 and Theorem 12 together to prove Theorem 6.
Proof. (Proof of Theorem 6.) We need to show that

∆ := sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . ε
with 3/4 probability. We have by (??) that (†) holds with 7/8 probability over A, and we will
show that ∆ . ε with 7/8 probability when A is drawn from the distribution A′ = (A | (†) holds).
Together, this will imply the conclusion of Theorem 6.
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Note that as long as (?) holds for A, (?) holds for A′ as well. Indeed,

E
A∼A′

sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ ≤ (8

7

)
E

A∼A
sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ . ε,
so (?) holds for A′. For the rest of the proof, we consider A ∼ A′, so we have

1√
mB

E
A

sup
x∈Tk
‖Ax‖2 ≤

√
1 +O(ε) . 1.

Under the parameters of Theorem 6 and because (†) holds for all A ∼ A′, Theorem (12) implies

γ2(Tk, ‖·‖X) ≤
√
kB log d · log(Bk).

Then

1

mB
E
A

[
sup
x∈Tk
‖Ax‖2 · γ2(Tk, ‖·‖X)

]
.

√
k log(d) · log(Bk)√

m
≤ ε.

Similarly,

1

mB
E
A
γ2

2(Tk, ‖·‖X) .
k log(d) log2(Bk)

m
≤ ε2.

By Theorem 11, and using the above bounds,

E
A

[∆] .
1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB

. ε+ ε2 + ε

. ε.

Therefore by Markov’s inequality, we have ∆ . ε with arbitrarily high constant probability over
A ∼ A′. In particular, we may adjust the constants so that ∆ . ε with probability at least 7/8
over A ∼ A′, which was our goal. �

5 Covering number bound

In this section, we prove the covering number lemma needed for the proof of Theorem 12. Recall
the definition ‖x‖X = maxb∈[m] ‖Abx‖2, and that Tk is the set of k-sparse vectors in Cd with `2
norm at most 1.

Lemma 13. Suppose that the conditions of Theorem 12 hold. Then

N (Tk/
√
k, ‖·‖X , u) ≤ (2d+ 1)O(B/u2).

We will prove this under the assumption that x ∈ Tk is real, using only that (†) holds for
s ≤ k and that A has bounded entries. Then by Proposition 16 in the Appendix, we have
N (Tk/

√
k, ‖·‖X , u) over the complex numbers is less than N (T2k/

√
2k, ‖·‖X̃ , u) over the reals,
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where ‖·‖X̃ denotes a version of the ‖·‖X for a matrix Ã of bounded entries that satisfies (†) for
s ≤ 2k. Adjusting the constants by a factor of 2 gives the final result.

As in [51], we use Maurey’s empirical method (see [16]). Consider x ∈ Tk/
√
k, and choose a

parameter s. For i ∈ [s], define a random variable Zi, so that Zi = ejsign(xj) with probability
|xj | for all j ∈ [d], and 0 with probability 1 − ‖x‖1. Notice that by the assumption that x is real,
sign(xj) is well defined. Further, because Tk/

√
k ⊂ B1, this is a valid probability distribution. We

want to show for every x that

E
∥∥∥∥x− 1

s

∑
Zi

∥∥∥∥
X

.

√
B

s
. (10)

This would imply that the right hand side is at most u for s . B/u2. If this holds, then the set of
all possible 1

s

∑
Zi forms a u-covering. As there are only 2d+ 1 choices for each Zi, there are only

(2d+ 1)s different vectors of the form 1
s

∑s
i=1 Zi. These form a u-covering, so Eq. (10) will imply

N (Tk, ‖·‖X , u) ≤ (2d+ 1)O(B/u2).

We now show Eq. (10). Draw a Gaussian vector g ∼ N(0, Is), and define

G(x) = E
g,Z

∥∥∥∑Zigi

∥∥∥
X

By a standard symmetrization argument followed by a comparison principle (Lemma 6.3 and
Eq. (4.8) in [40] respectively, or the proof of Lemma 3.9 in [51]),

E
∥∥∥∥x− 1

s

∑
Zi

∥∥∥∥
X

.
1

s
G(x),

so it suffices to bound G(x) by O(
√
Bs).

Let L = {i : |xi| > logm
k } be the set of coordinates of x with “large” value in magnitude. Then

G(x) ≤ G(xL) + G(xL)

by partitioning the Zi into those from L and those from L and applying the triangle inequality.
Notice that xL is “spiky” and xL is “flat:” more precisely, we have

‖xL‖1 ≤
1

logm
and

∥∥xL∥∥∞ ≤ logm

k
, (11)

using Cauchy-Schwarz to bound the `1 norm. To bound G(xL) and G(xL) we use the following
lemma.

Lemma 14. Suppose that (†) holds. Then the following inequalities hold for all x:

G(x) .
√
Bs ‖x‖1 logm (12)

G(x) .
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)√
s‖x‖∞ + log k (13)
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Proof. Let Z ∈ {−1, 0, 1}d×s have columns Zi, and Z =
∑

i Zi. Then

G(x) = E max
b∈[m]

‖AbZg‖2

Consider ‖AbZg‖2 for a single b ∈ [m]. This is a C-Lipschitz function of a Gaussian for C =
‖AbZ‖2→2. Therefore [40, Eq. (1.4)],

Pg[‖AbZg‖2 > E
g
‖AbZg‖2 + t ‖AbZ‖2→2] < e−Ω(t2).

Hence by a standard computation for subgaussian random variables [40, Eq. (3.13)]),

G(x) . E
Z

max
b∈[m]

E
g
‖AbZg‖2 +

√
logm ‖AbZ‖2→2 .

Now,

E
g
‖AbZg‖2 ≤

√
E
g
‖AbZg‖22 = ‖AbZ‖F =

√
B ‖Z‖1 (14)

and

E
Z

√
B ‖Z‖1 ≤

√
B E

Z
‖Z‖1 =

√
Bs ‖x‖1 ≤

√
Bs. (15)

Thus

G(x) ≤
√
Bs ‖x‖1 +O

(
E
Z

max
b∈[m]

√
logm ‖AbZ‖2→2

)
. (16)

Thus it suffices to bound ‖AbZ‖2→2 in terms of ‖x‖1 and ‖x‖∞. First, we have

‖AbZ‖2→2 ≤ ‖AbZ‖F

and so by Equations (14) and (15) we have

G(x) ≤
√
Bs ‖x‖1 logm,

as desired for Equation (12).
Second, we turn to Equation (13). For a matrix A ∈ m × d and a set S ⊂ [d], let A|S denote

the m× d matrix with all the columns not indexed by S set to zero. Then, we have

‖AbZ‖2→2 ≤
∥∥∥Ab|supp(Z)

∥∥∥
2→2
‖Z‖2→2 ≤ max

|S|≤min(k,s)
‖Ab|S‖2→2 ‖Z‖

1/2
∞ . (17)

In the final step, we used the fact that for any matrix A, ‖A‖2→2 ≤
√
‖A‖1→1‖A‖∞→∞ (see

Lemma 15 in the Appendix). By the assumption (†) and the choice of `,

max
b∈[m]

sup
x∈Tmin(k,s)

‖Abx‖2 ≤ Q1

√
B +Q2

√
min(k, s),

so
max
b∈[m]

‖AbZ‖2→2 ≤ ‖Z‖
1/2
∞

(
Q1

√
B +Q2

√
min(k, s)

)
.
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Finally, we bound EZ ‖Z‖∞. By a Chernoff bound, for any j ∈ supp(x), we have

P
[ ∣∣∣∣(∑Zi

)
j

∣∣∣∣ > s |xj |+ t

]
≤ e−Ω(t).

Integrating, we have
E ‖Z‖∞ . s ‖x‖∞ + log k.

Thus
E
Z

max
b∈[m]

‖AbZ‖2→2 . (s ‖x‖∞ + log k)1/2
(
Q1

√
B +Q2

√
min(k, s)

)
.

Combining this with Equation (16) gives (13). �

We return to the proof of Lemma 13. Recall that the goal was to bound

G(xL) + G(xL) .
√
Bs.

By (11) and (12), G(xL) .
√
Bs. Furthermore,

G(xL) .
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)√
s‖xL‖∞ + log k

≤
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)(√s logm

k
+
√

log k

)

=
√
Bs

(
1 +Q1

(
logm√

k
+

√
logm log k

s

)
+Q2

(√
min(k, s) logm√

kB
+

√
logm log k

B

min(k, s)

s

))
.

Since we have assumed B & Q2
2 log2m, the Q2 term is bounded by a constant. Further, k &

Q2
1 log2m, and s ≥ B & Q2

1 logm log k, and so the Q1 term is also constant. Thus, we conclude

G(x) ≤ G(xL) + G(xL) .
√
Bs,

which was our goal.

6 Conclusion

In compressed sensing, it is of interest to obtain RIP matrices Φ supporting fast (i.e. nearly linear
time) matrix-vector multiplication, with as few rows as possible. Not only does fast multiplication
reduce the amount of time it takes to collect measurements, it also speeds up many iterative
recovery algorithms, which are based on repeatedly multiplying by Φ or Φ∗. Similarly, because of
applications in computational geometry, numerical linear algebra, and others, one wants to obtain
JL matrices with few rows and fast matrix-vector multiplication. In this work, we have shown how
to construct RIP matrices supporting fast matrix-vector multiplication, with fewer rows than was
previously known. Combined with the work of [39], this also implies improved constructions of fast
JL matrices.

Our work leaves the obvious open question of removing the two O(log(k log d)) factors separating
our constructions from the lower bounds. It seems that both logarithmic factors come from the
estimation (3). It would be interesting to see if they could be removed by more sophisticated
chaining techniques such as majorizing measures.
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Appendix

Lemma 15. For any complex matrix A, ‖A‖22→2 ≤ ‖A‖1→1 · ‖A‖∞→∞.

Proof. First we consider the case of Hermitian A, then arbitrary A. For Hermitian A, let λ be
the largest (in magnitude) eigenvalue of A and v be the associated eigenvector. We have

‖A‖1→1 ≥
‖Av‖1
‖v‖1

=
‖λv‖1
‖v‖1

= |λ| = ‖A‖2→2 .
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For arbitrary A,

‖A‖22→2 = ‖A∗A‖2→2 ≤ ‖A
∗A‖1→1 ≤ ‖A

∗‖1→1 · ‖A‖1→1 = ‖A‖∞→∞ · ‖A‖1→1

as desired. In the last inequality we used the fact that ‖ · ‖∞→∞ is equal to the largest `1 norm of
any row, and ‖ · ‖1→1 is equal to the largest `1 norm of any column. �

Proposition 16. Let f : Cd → R2d act entrywise by replacing a + bi with (a, b). For any integer
r, define F : Cr×d → R2r×2d to act entrywise by replacing an entry a+ bi by the 2× 2 matrixa −b

b a

 .
Recall that Tk ⊂ Cd is the set of unit norm k-sparse complex vectors, and let Ss ⊂ Rs be the set of
unit norm s-sparse real vectors. Recall that ‖·‖X is a norm on Cd given by ‖x‖X = maxb ‖Abx‖2,
and let ‖·‖X̃ be a norm on R2d given by ‖x‖X̃ = maxb ‖F (Ab)x‖2. Then

1. If (†) holds, then maxb supx∈Ss
‖F (Ab)x‖2 ≤ `(s) for s ≤ 2k.

2. With ‖·‖X̃ as above, we have

N (Tk, ‖·‖X , u) ≤ N (S2k, ‖·‖X̃ , u).

Proof. By construction, we have f(Ax) = F (A)f(x), and also ‖f(x)‖2 = ‖x‖2. Further, f(Tk) ⊂
S2k and f−1(Ss) ⊂ Ts. Thus, item 1 follows because

max
b

sup
x∈Ss

‖F (Ab)x‖2 ≤ max
b

sup
y∈Ts
‖F (Ab)f(y)‖2 = max

b
sup
y∈Ts
‖Aby‖2 ≤ l(s)

Similarly, item 2 follows because for any x, y ∈ Tk,

‖x− y‖X = max
b∈[m]

‖Ab(x− y)‖2

= max
b∈[m]

‖F (Ab)f(x− y)‖2

= max
b∈[m]

‖F (Ab)(f(x)− f(y))‖2

= ‖f(x)− f(y)‖X̃ .

Hence
N(Tk, ‖·‖X , u) = N(f(Tk), ‖·‖X̃ , u) ≤ N(S2k, ‖·‖X̃ , u).

�

Lemma 17. Let F denote the d×d Fourier matrix. Let Ω with |Ω| = B be a random multiset with
elements in [d], and for S ⊆ [d] let FΩ×S denote the |Ω| × |S| matrix whose rows are the rows of F
in Ω, restricted to the columns in S. Then for any t > 1,

max
|S|=k

‖FΩ×S‖ .
√
t(B + kβ)
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with probability at least
1−O

(
exp

(
−min

{
t2, tβ

}))
,

where
β = log2 k log d logB.

Proof. (Implicit in [51]). Let X = sup|S|=k
∥∥Ik − 1

BF
∗
Ω×SFΩ×S

∥∥, where Ik is the k × k identity
matrix. It is shown in [51] that

E
Ω
X .

√
k log2 k log d logB

B
(EX + 1) =:

√
kβ

B
(EX + 1).

This implies that

EX ≤ 1 +
O(kβ)

B
=: α. (18)

Indeed, whenever x2 ≤ A(x+ 1), we have x < A+ 1 or else we conclude (A+ 1)2 ≤ A2 + 2A. Let
α denote the right hand side of (18). We may plug this expectation into the proof of Theorem 3.9
in [51], and we obtain

P [X > Ctα] ≤ 3 exp(−C ′tαB/k) + 2 exp(−t2)

for constants C and C ′. In the case X ≤ Ctα, we have

max
|S|=k

‖FΩ×S‖ ≤
√
B(1 + Ctα) ≤

√
B +

√
BCtα,

and so we conclude that
max
|S|=k

‖FΩ×S‖ ≤
√
B +O

(√
t(B + kβ)

)
with probability at least

1− 3 exp(−C ′t(β +B/k))− 2 exp(−t2).

�
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