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The shape and position of a neuron convey information regarding its molecular and
functional identity. The identification of cell types from structure, a classic method, relies
on the time-consuming step of arbor tracing. However, as genetic tools and imaging
methods make data-driven approaches to neuronal circuit analysis feasible, the need for
automated processing increases. Here, we first establish that mouse retinal ganglion cell
types can be as precise about distributing their arbor volumes across the inner plexiform
layer as they are about distributing the skeletons of the arbors. Then, we describe an
automated approach to computing the spatial distribution of the dendritic arbors, or arbor
density, with respect to a global depth coordinate based on this observation. Our method
involves three-dimensional reconstruction of neuronal arbors by a supervised machine
learning algorithm, post-processing of the enhanced stacks to remove somata and isolate
the neuron of interest, and registration of neurons to each other using automatically
detected arbors of the starburst amacrine interneurons as fiducial markers. In principle,
this method could be generalizable to other structures of the CNS, provided that they
allow sparse labeling of the cells and contain a reliable axis of spatial reference.

Keywords: cell types, classification, retinal ganglion cells, reconstruction, stratification, laminar structures

1. INTRODUCTION
The classification of neuronal types is far from complete.
Advances in genetic engineering for sparse and specific label-
ing (Gong et al., 2003; Wickersham et al., 2006, 2007; Kim
et al., 2008; Chung et al., 2013; Ke et al., 2013) offer improved
data acquisition and molecular identification of neuronal classes.
However, the need for structural information has not dimin-
ished because what defines a true neuronal type is not clear when
only molecular information is available. One challenge facing a
successful classification is to ensure that every cell type is rep-
resented in the sample set. For the structural approach, dense
reconstruction of tissues imaged by electron microscopy offers
a solution to this completeness problem (Denk and Horstmann,
2004; Hayworth et al., 2006; Bock et al., 2011). On the other
hand, electron microscopy is not yet capable of either obtain-
ing large enough sample sets to capture the biological variability
within individual cell types, or imaging cells with very large neu-
ronal arbors. Light microscopy offers high throughput imaging
and a large field of view to complement electron microscopy.
However, the time-intensive tracing step represents a bottleneck
of the overall program.

Recently, it was shown that neurons in the mammalian
retina can achieve submicron precision in their laminar posi-
tioning (Sümbül et al., 2014). This was done by combining
an arbor density formalism (Stepanyants and Chklovskii, 2005)
with a neurite based registration system for sparsely labeled
neurons. The ensuing arbor density classification suggests that
a robust classification of all mammalian retinal ganglion cells
is within reach. However, this study and many other previous
attempts (Sun et al., 2002; Badea and Nathans, 2004; Kong et al.,
2005; Coombs et al., 2006; Völgyi et al., 2009) depend on manual
tracing of individual neuronal arbors, which is a time-intensive
task. Tracing a neuronal arbor creates a “skeleton representa-
tion” of the arbor, which consists of interconnecting line segments
going through the dendrites. The thickness of dendrites along the
line segments is often ignored because tissue preparation artifacts
can result in unreliable estimates. In contrast, a volumetric rep-
resentation includes both the skeleton and the dendrite thickness
along the skeleton. Here, we propose an automated method using
volumetric analysis to aid the classification of neuron types. At
the heart of our approach is the simple observation that while the
arbor density representation in Sümbül et al. (2014) requires a
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precise characterization of laminar positioning, it does not uti-
lize detailed descriptions of arbors. In particular, we demonstrate
that volumetric stratification precision of neurons can match the
trace-based precision in the mammalian retina. Our method is
designed for sparse imaging scenarios. It does not address the
problem of separating the arbors of overlapping neurons from
each other, for which tracing may still be required. Kim et al.
(2014) recently used volumetric analysis and semi-manual arbor
reconstruction to identify bipolar and starburst amacrine cells in
an electron microscopy setting.

Volumetric reconstruction of neuroanatomy from an image
stack involves obtaining a digital representation of the neu-
ronal arbor (i.e., a voxel is “white” if it belongs to the cell, and
“black” otherwise), and registering this representation to other
neuronal structures to achieve a comparative description. As a
first step to reconstruct a sparsely labeled neuron, we use a con-
volutional network (LeCun et al., 1998), which is a supervised
machine-learning architecture, to enhance the image quality and
suppress the acquisition noise. Although robust and accurate
reconstruction of neuronal morphology is still a largely unsolved
problem, it has become a bottleneck only recently as a result
of the advances in high-throughput imaging. The demand for
automated reconstruction prompted the Digital Reconstruction
of Axonal and Dendritic Morphology Challenge (DIADEM chal-
lenge) (Brown et al., 2011). The challenge helped disseminate
many novel approaches (Bas and Erdogmus, 2011; Chothani
et al., 2011; Narayanaswamy et al., 2011; Turetken et al., 2011;
Wang et al., 2011; Zhao et al., 2011). We anticipate that some of
these approaches may be preferable to the convolutional network
module of our method depending on the imaging conditions.
A common problem is that when labeling is not sparse enough,
cells other than the neuron of interest are also reconstructed.
Our solution is to apply a post-processing routine to remove
extraneous objects after the initial reconstruction step.

In the mammalian retina, the dendrites of the starburst
amacrine interneuron form two parallel surfaces in the inner
plexiform layer, which serve as fiducial marks (Haverkamp and
Wässle, 2000). When the tissue is not flattened to preserve inter-
nal structure, it assumes a wavy form under the microscope.
We solve this problem by digitally flattening (unwarping) the
stack with the guidance of starburst surfaces after the imag-
ing is done. Finally, we obtain a common depth coordinate by
registering the starburst surfaces from different stacks to each
other.

2. MATERIALS AND METHODS
2.1. THE DATASET
We use the retinal ganglion cells (RGCs) from a recent study
on the classification of retinal cell types (Sümbül et al., 2014).
The dataset was obtained by confocal microscopy at a voxel size
of 0.4 µm×0.4 µm×0.5 µm. This dataset also includes the rela-
tive positions of On and Off starburst amacrine interneurons for
each RGC, by staining for choline acetyltransferase (Haverkamp
and Wässle, 2000), thereby allowing a stratification analysis of
RGCs based on starburst amacrine arbors. The methodologi-
cal bottleneck of that study was the semi-automated tracing of
RGC arbors, which required an average time of 40 min per

trace with experienced tracers. The full dataset includes five
strongly defined cell types, which have consistent and specific
functional, molecular, and structural identifiers. We focus here
on this subset, and omit the stacks where labeling is too dense
(i.e., existence of many neurites in close proximity from more
than one neuron) or too dim for fully automated analysis. In a
few cases, the starburst surfaces were weakly stained; these were
also omitted. After this culling, two neuron types did not have
enough representatives for statistical analysis and were omitted
altogether. The final dataset comprises 50 neurons that form three
molecularly, physiologically, and structurally homogeneous cell
types.

The JAM-B neurons express the junction adhesion molecule
JAM-B, respond to offset of upward moving stimuli, and their
arbors are asymmetric in the dorsal-ventral axis (in the central
retina) (Kim et al., 2008). The W3 neurons express the TYW3
gene, are sensitive to local edges, and have one of the smallest
arbor sizes in the mammalian retina (Kim et al., 2010). The BDa
neurons express the FSTL4 gene, are On-Off direction sensitive,
and arborize twice (Kim et al., 2010). Finally, these cell types are
known to stratify at characteristic depths in the inner pexiform
layer with submicron precision [distance from the On starburst
surface: 15.6 µm (JAM-B), 5.5 µm (W3), 0.3 µm (BDa)—
BDa neurons stratify again 0.3 µm distal to the Off starburst
surface] (Sümbül et al., 2014).

2.2. VOLUMETRIC RECONSTRUCTION OF SPARSELY LABELED
NEURONS FROM MANUAL TRACES

We use the concept of simple pixel from digital topology (Bertrand
and Malandain, 1994) to probe whether neuronal mass attains
the stratification precision achieved by the arbor traces (skele-
tons). A simple pixel is defined as a pixel that does not change
the topology of the digital image when its value is flipped. (i.e.,
does not create/remove objects, holes, splits, mergers) Similar
approaches were previously used in the reconstruction of dense
electron microscopy images of neuronal tissue (Jain et al., 2010;
Helmstaedter et al., 2013). Specifically, we inflate the individ-
ual traces by respecting the topology of the traces (via simple
pixel characterization), and the geometry of the neurons (via
thresholding the brightness values in the raw image). We use
60% of the maximum brightness value in an image stack as the
threshold. We iterate the inflation process 62 times, potentially
inflating by a single layer of voxels at each step so that somata as
large as (62× 2+ 1)× 0.4 µm= 50 µm in diameter are properly
characterized. Algorithm 1 presents a pseudocode of the steps.
The resulting three dimensional binary stacks are seemingly per-
fect characterizations of neuronal morphology based on the raw
image stacks and the arbor traces (Figure 1) because they respect
both the tree structure (through tracing, Figure 1B), and the den-
dritic widths (through inflation, Figure 1D). The caveat is that the
resulting volumetric representations depend on the laborious task
of (semi-) manual tracing.

2.3. AUTOMATED ENHANCEMENT AND POST-PROCESSING OF RGC
ARBORS

Various approaches have been developed recently for automated
reconstruction of neuronal morphology from sparsely labeled
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Algorithm 1 | Pseudocode for topologically constrained inflation of a

trace. Binary operations on same-size arrays are to be interpreted

elementwise. ¬ (⊕) denotes negation (exclusive-or). imdilate dilates

its first argument using its second argument as the kernel. nnz

returns the number of nonzero (true) entries in an array. Matlab

notation is used in the array on line 12.

Algorithm Inflating a trace.

Input:

1. rawImage, traceImage (m× n× p), maximumGrowthRadius,
threshold (scalar)

Output: volume (m× n× p)

2. (*Initialization *)

3. volume← traceImage, target← rawImage ≥ threshold

4. dilationKernel←(3× 3× 3, binary) 6-neighborhood

5. (*Growth *)

6. for i ← 1 to maximumGrowthRadius

7. do mask← imdilate(volume, dilationKernel) & ¬ volume

8. volumeCopy← volume, previousDiff← -1, current Dif← 0

9. while currentDiff �= previousDiff

10. do differenceVoxels← mask & (volume ⊕ target)

11. for each (x, y, z) such that differenceVoxels (x,y,z)= true

12. do patch← volumeCopy(x-1:x+1,y-1:y+1,z-1:z+1)

13. if simple26(patch) (* Bertrand and Malandain

1994*)

14. then volume(x,y,z)← ¬volume(x,y,z)

15. previousDiff←currentDiff

16. currentDiff← nnz(differenceVoxels)

image stacks (Al-Kofahi et al., 2002, 2008; Schmitt et al., 2004;
Zhang et al., 2007; Losavio et al., 2008; Peng et al., 2010, 2011;
Srinivasan et al., 2010; Bas and Erdogmus, 2011; Turetken et al.,
2011; Wang et al., 2011; Xie et al., 2011; Choromanska et al., 2012;
Turetken et al., 2012; Gala et al., 2014). While these methods can
capture the geometrical layout of neuronal arbors, imperfections
in tissue handling and imaging (e.g., non-uniform labeling of
neurites, high density labeling, low signal-to-noise ratio images)
often result in topological errors such as missing branches and
extraneous structures. On the other hand, blurring and pro-
jection operations are robust against local mistakes. Therefore,
topological imperfections in the reconstruction may be accept-
able for cell type identification purposes so long as the general
morphology of a neuron is captured properly. As a first step,
we use the convolutional network based enhancement of RGC
arbors reported in Sümbül et al. (2014). A convolutional net-
work is a feed-forward network of convolutional filters whose
outputs are transformed by a non-linearity (e.g., sigmoid). An
advantage of such a supervised machine learning approach is that
it does not have free parameters to adjust. Rather, the paradigm
depends on the existence of a labeled training set through which
the various parameters are automatically optimized. The net-
work is trained to transform noisy gray-scale images of sparsely
labeled neurons into cleaner binary images. Here, we improve
the architecture and filter sizes, and provide an efficient imple-
mentation that does not need specialized hardware (http://www.

github.com/zlateski/znn3). The resulting network has 8 layers

FIGURE 1 | Volumetric reconstruction of a BDa neuron starting from a

trace. Maximum intensity projections of the raw image stack (A), the
manually traced arbor (B), the inflated trace after one round of topologically
constrained inflation (C), and the inflated trace after 62 rounds of
topologically constrained inflation (D). In each panel, large image: xy
projection, bottom: zy projection, right: xz projection. Scale bar, 40 µm;
bottom-right, xy projection image in panel D.

with 8 perceptrons in each hidden layer except for the last hid-
den layer, which is a fully connected layer of 100 perceptrons.
The filter sizes within each layer are identical and are as fol-
lows: 5× 5× 1, 5× 5× 1, 3× 3× 3, 5× 5× 1, 3× 3× 3, 3×
3× 3, 1× 1× 1, 1× 1× 1. Therefore, the overall patch size to
decide whether the central voxel of the patch belongs to a neu-
rite or not is 19× 19× 7 voxels (7.6 µm ×7.6 µm ×3.5 µm).
The network has all-to-all connectivity between subsequent lay-
ers, and is trained by backpropagation learning LeCun et al.
(1998).

When the density of labeling is not low enough, somata and
neurites of other neurons appear in the image stacks. On the
other hand, the reconstructed arbors may have breaks due to
dim/inhomogeneous labeling. Therefore, we devise a simple post-
processing routine to isolate the neuron of interest. The algorithm
uses connected component analyses and basic morphological
image operations (i.e., opening and dilation) to remove extrane-
ous structures and somata. In particular, the algorithm detects
the largest object in the image stack and removes the objects
that are smaller than a given size and farther from the largest
object than a given distance. Somata are removed by locating
and removing the white regions that are large enough to fully
enclose a given ellipsoid (Algorithm 2). While soma size is known
to carry information on neuronal identity, it is a weak classi-
fier (Sun et al., 2002; Coombs et al., 2006; Völgyi et al., 2009).
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Algorithm 2 | Pseudocode for post-processing a binary volume.

Various binary operations are as defined in Algorithm 1. Matlab

notation is used for brevity. bwlabeln returns an array the same size

as its argument, where voxels are assigned different values iff they

belong to different objects (26-connectivity). regionVolumes returns a

list of object sizes. bwareaopen removes from its first argument all

objects whose volumes are smaller than the second argument.

imopen performs a morphological opening operation on its first

argument using a cubic kernel whose edge length is given by the

second argument.

Algorithm Post-processing

Input:

1. inStack (m× n× p), dilationRadius, sizeThreshold, searchRadius
(scalar)

Output: outStack (m× n× p)

2. (* Initialization *)

3. threshold←0.7, conservativeThreshold←0.5

4. kernel←binary spherical kernel of radius dilationRadius

5. somaKernel←binary spherical kernel of radius searchRadius

6. (* Normalize the stack *)

7. inStack←inStack-min(inStack(:)), inStack← inStack/max(inStack(:))

8. (* Binarize and dilate the stack *)

9. connectedStack←imdilate(inStack>threshold, kernel)

10. (* Retain the largest component – connected-components
analysis *)

11. labels←bwlabeln(connectedStack)

12. indices←sort(regionVolumes(labels), ’descend’)

13. inStack(labels �= indices(1))←false

14. (* Binarize the stack conservatively and remove small
components *)

15. inStack←inStack>conservativeThreshold

16. inStack←bwareaopen(inStack, sizeThreshold)

17. (* Open and dilate the stack to remove big lumps *)

18. lumps←imdilate(imopen(inStack, searchRadius), searchRadius)

19. outStack←inStack & ¬ lumps

The final image stacks may include axonal projections from other
neurons, imperfectly suppressed noise, missing small branches,
extraneous branches from other neurons, and splits/mergers of
the neuronal arbor depending on the image quality and the spar-
sity of labeling in the tissue. Nevertheless, the next few subsections
demonstrate that the reconstruction quality is high enough to
study stratification patterns and probe neuronal identity.

2.4. QUASI-CONFORMAL UNWARPING OF VOLUMETRIC DATA AND
LAMINAR REGISTRATION

We use the automatically detected starburst surfaces in individ-
ual stacks as fiducial marks (Figure 2). We find quasi-conformal
mappings that independently transform the detected starburst
surfaces into flat surfaces as described in Sümbül et al. (2014)
to maximally preserve local angles within the surfaces (Levy
et al., 2002). The two flattened surfaces are registered to each
other in-plane by matching the xy coordinates of the patch
in which both starburst layers are the flattest. We extend the
resulting transformation to other points in the image stack by
using local polynomial approximations (quadratic in xy, linear

in z). In particular we apply the transformation to individual
voxels of the binary three-dimensional representation of a neu-
ron, rather than its trace points. The transformed voxels are
scaled and shifted in z so as to place the flattened On star-
burst surface at z = 0 µm and the flattened Off starburst surface
at z = 12 µm. Figure 3 depicts the dramatic effect of unwarp-
ing on a BDa neuron. Finally, the histogram of depth positions
of the voxels (depth profile) is obtained by gridding onto a
Cartesian grid with a resolution of 0.5 µm (Figure 3D). The grid-
ding step uses a Kaiser-Bessel kernel (Jackson et al., 1991) to
maintain accuracy in laminar registration, and applies weights
to individual voxels to compensate for the distance fluctuations
between warped voxels. Note that if the arbor density function is
obtained by blurring in xy only (and not in z), then the depth
profile is the projection of the three-dimensional arbor density
function.

2.5. STATISTICAL MEASURES AND OTHER METRICS
The peak position of a depth profile is the signed distance from
the On starburst layer at which the profile achieves its maxi-
mum value. [The On (Off) layer is located at z = 0 µm (z =
12 µm.)] For the bistratified BDa cells, a second peak position is
also reported. This second peak position is defined as the depth
value at least 6 µm away (half the distance between starburst lay-
ers) from the first peak position, at which the remaining profile
achieves its maximum value.

We assume that the peak positions of the depth profiles of
individual neurons of a given type are independent and iden-
tically distributed (i.i.d.) with N(μ, σ 2). The distribution of
the sample variance of n i.i.d. N(μ, σ 2) observations is given
by χ2

n− 1(t(n− 1)/σ 2)(n− 1)/σ 2 , where χ2
n− 1(t) denotes the

chi-squared distribution with n− 1 degrees of freedom. The sym-
metrical 95% confidence interval for σ , given the sample standard
deviation s, is

[√
(n− 1)s2

X−2
n−1(0.975)

,

√
(n− 1)s2

X−2
n−1(0.025)

]
, (1)

where X−2
n− 1 denotes the inverse cumulative distribution function

of χ2
n− 1.

We use the Brown-Forsythe test to infer whether the differ-
ent reconstruction methods return significantly different variance
values for the peak stratification position of cells of the same type.

We define the “signal” in each normalized depth profile for
cells of a given type as the average normalized profile over cells
of that type. Then, the “noise” in each profile is the difference of
the profile from the “signal” component. We define the signal-to-
noise ratio (SNR) for a cell type as the average, of the Euclidean
norm of the signal divided by the Euclidean norm of the noise,
over all cells of that type.

The Crest factor is defined as the peak amplitude of a profile
divided by the root-mean-square value of the profile. That is, it is
the ratio of the peak value to the average value. It indicates how
extreme the peak is in a given depth profile. Since narrow and
sharp peaks in a profile where the “background” regions are small
makes it easy to detect a cell type in the presence of many cell
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FIGURE 2 | Fully automated enhancement and post-processing of

RGC arbors (green), and detection of starburst surfaces (red).

Left: xy (A), xz (B), and zy (C) projections of the raw image of
an RGC. Right: xy (D), xz (E), and zy (F) projections of the

processed arbors and detected starburst surfaces of the same
RGC. Starburst surfaces within a slab are shown and starburst
somata are removed for better visualization. Scale bar, 40 µm;
lower-right, panel D.

types, we use the Crest factor as a figure of merit for the different
approaches analyzed in this paper.

3. RESULTS
3.1. PROJECTIONS OF VOLUMETRIC DATA PRESERVE THE

STRATIFICATION PRECISION OF RGCs
We obtain the volumetric reconstructions of all 50 neurons in
the dataset by inflating their manually reconstructed traces as
described in Algorithm 1. These volumetric reconstructions were
unwarped and registered, to obtain depth profiles of all neurons
in the dataset. Figure 4 shows the average profiles for each neu-
ron type generated from the volumetric reconstructions together
with the average profiles of the traces (skeletons). Two qualita-
tive observations emerge: (i) The peak positions of the average
profiles are preserved across the two methods. The distribution
of mass along the skeletons of neurons preserve the peak strati-
fication depth of the skeletons. (ii) The peaks of the normalized
profile averages are lower in the volume-based approach because
the branches close to the soma are typically thicker than the dis-
tal branches. Table 1 tabulates the Crest factors for both methods,
and quantifies the observation that the trace profiles have slightly
sharper peaks. Profiles with sharper peaks are preferable when
identifying cell types in the presence of a heterogeneous dataset,
similar to spectroscopy.

The specificity of stratification peaks -not just their average- is
important to be able to identify cell types. The sample standard
deviations of the peak position for each cell type do not change
significantly between the skeleton-based and volume-based depth
profiles (Brown-Forsythe test—See Tables 1, 2 for individual n
and p-values). This suggests that neurons of a given type are as
precise about distributing their neuronal volume in depth as they
are about distributing their skeleton-based presence.

Table 1 also tabulates the mean SNR values over the three cell
types using both the trace profiles and the trace-based volumetric

profiles (Methods). Higher SNR values indicate stereotypical
distributions. While n = 3 pairs are too few to probe statisti-
cal significance with rigor, the trace-based volumetric profiles
do not seem to have lower SNR values than the trace profiles.
(Right-sided Wilcoxon signed rank test, n = 3 pairs, p = 0.75)

3.2. AN AUTOMATED METHOD TO PROBE RGC IDENTITY
The stereotypy of the profiles of volume-based reconstructions
obtained by inflating manual traces suggests that it may be possi-
ble to avoid the laborious task of manual tracing altogether for
cell type identification purposes. For comparison, we begin by
implementing simple thresholding: Each image stack is thresh-
olded at 60% of its maximum brightness value. Then, somata
are removed and the resulting binary stack is unwarped and
registered as described in the Methods. The results are not impres-
sive: The extraneous structures and imaging artifacts contaminate
many stacks significantly. As a simple proxy, we observe that the
mistakes perturb the depth profiles enough to create spurious
peaks far away from the original stratification peak in 11 out of
50 stacks (Figure 5A). Therefore, this simple approach is not suit-
able for automation. This is especially clear for cells that stratify
close to the ganglion cell layer. After removing the part of the
profiles where z < −6 µm, we find that the stratification stereo-
typy of the depth profiles is essentially preserved (Tables 1, 2).
Nevertheless, even in this restricted region, the presence of objects
that do not belong to the neuron makes type identification harder,
as reflected by the low SNR values and the Crest factors (Table 1
and Figure 5C).

While the threshold based approach may allow for cell type
identification when the image stacks are sparsely labeled and
have very low noise, insufficient suppression of the background
noise and failure to isolate the neuron of interest from other
structures prevents it from working reliably on our dataset.
Therefore, we apply the convolutional network described in the
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FIGURE 3 | Warping neuronal mass reveals volumetric depth profiles.

Left: xy (A), xz (C), and yz (E) projections of a BDa cell reconstruction
obtained by inflating its trace. Right: xy (B), xz (D), and yz (F)

projections of the reconstructions after soma removal and

quasi-conformal unwarping of the white voxels. Note the depth alignment
of neurites after warping. (G) The normalized depth profiles of the RGC
based on its trace (skeleton) and trace-based volumetric reconstruction.
Scale bar, 40 µm; bottom-right, panel B.

Methods on the image stacks to suppress the background noise,
retain the neuronal structures, and connect the occasionally
disconnected neurite pieces. Subsequently, we apply the post-
processing routine (Methods) to remove the extraneous struc-
tures from the image stack that are not critically close to the
neuron of interest. Notably, no manual labor is used in this
scheme.

A drawback is that the automated approach occasionally
causes splits and mergers in the reconstruction and includes
extraneous structures. On the other hand, the depth profiles—
one-dimensional arbor densities that serve as proxies for the
three-dimensional arbor densities—identify the stratification
peaks correctly (Figure 5B). Moreover, the sample standard devi-
ation of the peak position did not change significantly in any of
the three neuron types (Brown-Forsythe test—See Tables 1, 2 for
individual n and p-values). The Crest factors for this automated
method are lower than those of the trace profiles, but they are
roughly the same as those of the trace-based volumetric profiles.

Lastly, the mean SNR value for the automated method is lower
than that for the trace-based approaches, but it is higher than the
threshold method’s mean SNR value (Table 1).

4. DISCUSSION
Identifying and providing experimental access to homogeneous
cell types of nervous systems is a prerequisite to understanding the
fundamental principles of brain function in health and disease.
Recently, it was shown that a method using a neurite based reg-
istration system and an arbor density representation of neurons
is capable of robustly identifying the mammalian RGC types in
a highly heterogeneous sample set (Sümbül et al., 2014). Notably,
that study relied on traces of neuronal arbors, which are time con-
suming to obtain. Here, we show that the spatial distribution of
the arbor volume attains a stratification precision similar to that
of the arbor trace. Based on this observation, we describe an auto-
mated method that can remove the time intensive tracing step in
identifying cell types. We anticipate our approach to be useful in
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FIGURE 4 | Depth profiles of trace-based volumetric reconstructions

maintain the stereotypy attained by the depth profiles of arbor traces

while having lower peaks. (A) Depth profiles of the arbor traces, (B),
depth profiles of the topology preserving inflations of the traces.

Table 1 | Mean and standard deviation values for the peak positions

and norms of the depth profiles.

Stratification peak Crest factor SNR

JAMB (20) CB2 (15) BDa (15) JAMB CB2 BDa

Trace 16.13± 1.01 5.30± 0.41 0.37± 0.23
12.20± 0.25

4.22 4.96 5.86 5.25

Trace-based
volume

15.43± 1.22 5.43± 0.26 0.40± 0.21
12.37± 0.23

3.69 4.16 4.85 5.68

Automated 15.70± 1.16 5.30± 0.25 0.43± 0.18
12.33± 0.24

3.55 4.09 4.97 4.45

Thresholded
volume (*)

15.35± 1.28 5.37± 0.30 0.37± 0.23
12.43± 0.18

2.79 3.86 3.82 3.24

Values are given as mean ± SD. The number of samples (n-values) are denoted

in parantheses next to the cell type names. (*) Peaks at z < −6 μm are not

considered in the calculation of stratification means and standard deviations.

integrating structural information to studies that investigate the
molecular or functional dynamics of neurons, as well as purely
anatomical pursuits.

We quantify the stratification precision as the standard devia-
tion of the peak position of the depth profiles. We do not observe
significant differences between the stratification precisions of the
depth profiles of the traces and the volumes obtained by inflating
the traces or by our automated method (Table 2). This sug-
gests that the depth distribution of the overall mass can be as
stereotyped as that of of the skeletal mass. Another observation
suggesting volumetric stereotypy is the lack of a significant dif-
ference between the mean SNR values of the normalized depth
profiles of the traces and the volumes obtained by inflating the
traces.

Table 2 | Statistical measures of the variability in peak positions.

Stratification peak

JAMB (20) CB2 (15) BDa (15)

Confidence [0.75, 1.42] [0.29, 0.61] [0.16, 0.34]

intervals [0.18, 0.37]

Trace-based vol. 0.22 0.05 0.68, 0.46

Automated 0.24 0.21 0.38, 0.72

Thresholded(*) 0.23 0.21 1.00, 0.11

The first row indicates the 95% confidence interval of the reported standard

deviation values of the peak positions based on the traces. The remaining rows

are the p-values of the Brown-Forsythe test of equal variance between the indi-

cated method and the trace method. The n-values are denoted in parantheses

next to the cell type names. (*) Peaks at z < −6 μm are not considered.

We have argued that the presented method can be useful in
identifying cell types using three-dimensional arbor densities.
However, we have not attempted a formal classification of the cells
used in this study. While Figure 5C, Tables 1, 2 clearly suggest
that such an attempt would be successful, classification becomes a
hard task only in the presence of a highly heterogeneous dataset.
On the other hand, considering that the automated approach can
maintain the stratification precision attained by the trace based
analysis and the arbor density representation in Sümbül et al.
(2014) used substantial in-plane blurring (and no axial blurring),
it is plausible that arbor densities generated from the output of
our automated method can be classified successfully not only in
the presently studied dataset of three cell types, but also in a more
heterogeneous sample set.

We observe that the peak values of the normalized volumet-
ric profiles are smaller than those of the normalized trace profiles.
This can be explained by the fact that branches closer to the soma
are typically thicker than the distal branches, presumably to min-
imize signal propagation delays while keeping arbor volume to a
minimum (Chklovskii and Stepanyants, 2003).

Dim or inhomogeneous labeling of neurites, denser (not
sparse enough) labeling of neurons, and high noise levels
often result in imperfect reconstructions with the current state-
of-the-art automated approaches. Our convolutional network
implementation is not immune to such imperfections, either.
Removal of failing image stacks decreases the throughput of
the overall method. On the other hand, standard approaches
in machine learning, such as boosting and training deeper net-
works with larger training data, suggest ways of increasing the
throughput by providing better noise suppression and better
reconstruction of arbor topology. Moreover, while other auto-
mated reconstruction methods often require manual tuning
of free parameters, they can be inserted instead of our con-
volutional network implementation as well (Al-Kofahi et al.,
2002, 2008; Schmitt et al., 2004; Zhang et al., 2007; Losavio
et al., 2008; Peng et al., 2010, 2011; Srinivasan et al., 2010; Bas
and Erdogmus, 2011; Turetken et al., 2011, 2012; Wang et al.,
2011; Xie et al., 2011; Choromanska et al., 2012; Gala et al.,
2014).
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FIGURE 5 | Enhancement and post-processing enable automated

peak detection and produce sharper depth profiles with higher

SNR values. (A) Normalized depth profiles obtained by thresholding the
raw stack display large build-ups close to the ganglion cell layer that
create spurious profile peaks and low SNR values. (B) Enhancement
and post-processing remove objects not belonging to the neuron of
interest while retaining the neuron to produce depth profiles with

consistent peak positions and higher SNR values. C, Peak values vs.
peak positions of all four methods. Symbols indicate the mean values,
and the lower/upper bounds indicate the 10th and 90th percentiles.
Each color indicates a different method as defined in the legend, and
each panel depicts a single cell type as indicated at the top. Both
peaks are shown for the bistratified BDa neurons. Peaks at z < −6 µm
are not considered for the threshold method.

While we investigate retinal ganglion neurons in this study, our
approach only assumes (i) the existence of an arbor marker spe-
cific to a cell type and (ii) a method of labeling cells sparsely in a
laminar structure. Therefore, it is readily extendible to other neu-
ron classes of the retina. In particular, the same fiducial marks
(starburst amacrine cells) and very similar sparse labeling meth-
ods can be used to study the classification and co-stratification of
bipolar and amacrine cell classes. The effort required to trace a
neuron increases as the complexity of its arbor increases. Hence,
the potential impact of our method is higher for neurons whose
total dendritic lengths are larger. Cortical neurons are typically
much larger than retinal neurons, and classifying them is an
impending problem (Ascoli et al., 2008). Traditionally, obtaining
datasets of cortical neurons that capture their diversity has been
a practical challenge. However, recent advances in tissue clarifi-
cation and a multiplicity of genetic or viral methods (Gong et al.,
2003; Wickersham et al., 2006, 2007; Kim et al., 2008; Chung et al.,
2013; Ke et al., 2013) enable high-throughput structural imag-
ing of such neurons. Therefore, we speculate that our approach
can be useful in automating the discovery and identification
of cortical cell types if the two requirements mentioned above
are met.
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