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Abstract

Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose

homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the

expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its

transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is

a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery

contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin

activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and

suppresses hepatic glucose production independently of cell cycle progression. Through a cell-

based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases

PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering

cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA

transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then

acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results
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in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is

chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of

this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle

machinery in post-mitotic cells to control glucose homeostasis independently of cell division.

To discover new factors that can regulate PGC-1α activity through its acetylation status, a

high throughput enzyme-linked immunoassay was designed to specifically and

quantitatively monitor the level of PGC-1α acetylation in U-2OS cells (Extended Data Fig.

1a). A library of 1600 compounds, including bioactive and natural compounds, was screened

(Fig. 1a). Interestingly, the compound with the highest z score for PGC-1α deacetylation

was fascaplysin, a known CDK4 inhibitor12 (Extended Data Fig. 1b). CDK4 regulates G1 to

S phase transition and its kinase activity is dependent on its binding to one of the three D-

type cyclins including cyclin D113. We, therefore, investigated the effect of this cell cycle

complex on PGC-1α acetylation and function, in connection to nutrient and insulin

metabolic actions.

First, we calculated an IC50 of 0.7μM for fascaplysin-induced PGC-1α deaceylation, which

is similar to its IC50 for CDK4 inhibition (Extended Data Fig. 2a). Fascaplysin-induced

PGC-1α deacetylation overlapped with Rb dephosphorylation, a well-characterized CDK4

substrate14 (Fig. 1b). PD 0332991, the most specific CDK4 inhibitor available15, led to a

similar decrease of PGC-1α acetylation (Fig. 1c, Extended Data Fig. 2b). Furthermore,

CDK4 depletion through transient shRNA transfection had the same effect as chemical

inhibitors, confirming that CDK4 activity controls PGC-1α acetylation levels (Fig. 1d,

Extended Data Fig. 2c).

Because CDK4 inhibitor-induced PGC-1α deacetylation was not affected when Sirtuin 1 or

HDAC class I/II were inhibited (Extended Data Fig. 2d), we tested whether cyclin D1-

CDK4 regulates PGC-1α acetylation through GCN5, the principal PGC-1α

acetyltransferase. Indeed, knockdown of GCN5 significantly blunted fascaplysin-induced

PGC-1α deacetylation (Fig. 1e). In contrast, PCAF-mediated acetylation was not affected by

fascaplysin, further suggesting that CDK4 inhibition modulates PGC-1α acetylation through

GCN5 (Extended Data Fig. 2e). In vitro catalytic activity of GCN5 immunoprecipitated

from cells treated with fascaplysin was reduced by 50% relative to vehicle control (Fig. 1f).

We observed physical interaction between ectopically expressed or endogenous CDK4 and

GCN5, suggesting that CDK4 could regulate GCN5 activity by direct phosphorylation (Fig.

1g, Extended Data Fig. 2f). Cyclin D1-CDK4 kinase directly phosphorylated GCN5 in vitro

and its phosphorylation was inhibited by fascaplysin (Fig. 1h, Extended Data 2g).

Systematic mutagenesis revealed two phosphorylation sites, T272 and S372, located within

the GCN5’s conserved PCAF domain. Alanine substitutions of these two sites (“GCN5

AA”) ablated GCN5 phosphorylation by cyclin D1-CDK4 in vitro, and reduced PGC-1α

acetylation (Fig. 1i, 1j, Extended Data Fig. 2h, 2i). Compared to GCN5 wild-type, in vitro

catalytic activity of GCN5 AA was decreased, but remained insensitive to fascaplysin (Fig.

1k). CDK4 phosphorylation on GCN5 augmented acetyltransferase catalytic activity by

increasing Vmax, while Km for Acetyl-CoA binding was unaffected (Fig. 1k). Because

GCN5 functions as a complex with subunits important for its activity16, its phosphorylation
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by CDK4 could modulate interaction between GCN5 and subunits. We found one subunit,

PAF65β, interacting less with GCN5 AA compared to GCN5 wild-type, when tested with

modestly overexpressed GCN5, where PGC-1α acetylation was not saturated (Extended

Data Fig. 2j, 2k). Taken together, these results indicate that cyclin D1-CDK4 regulates

PGC-1α acetylation through the direct phosphorylation and activation of GCN5

acetyltransferase activity.

Since PGC-1α acetylation is tightly linked with its co-transcriptional activity8,9,17, we

investigated whether cyclin D1-CDK4 could modulate PGC-1α’s gluconeogenic target

genes. To study cyclin D1-CDK4 kinase effects in a PGC-1α mediated manner, we induced

PGC-1α in primary hepatocytes via adenoviral overexpression or forskolin addition

(Extended Data Fig. 3a). In primary hepatocytes, chemical inhibition of CDK4 significantly

increased gluconeogenic genes and glucose production, consistent with reduced PGC-1α

acetylation (Fig. 2a, 2b, 2c, Extended Data Fig. 3b). CDK4 depletion produced similar

effects (Fig. 2d, 2e, 2f, Extended Data Fig. 3c). Conversely, induction of CKD4 activity by

cyclin D1 wild-type overepxression or Cyclin D1 T286A mutant, a hyperactive mutant allele

spared from proteasomal degradation19, but not cyclin D1 K112E (a mutant that cannot

activate CDK4 kinase activity18), suppressed gluconeogenic genes and glucose production,

corresponding with PGC-1α acetylation changes (Fig. 2g, 2h, 2i, Extended Data Fig. 3d).

Because cyclin D1-CDK4 can phosphorylate other regulatory components of gluconeogenic

pathway20 (Extended Data Fig. 3e), we examined whether cyclin D1-CDK4 kinase

modulates glucose production through PGC-1α and GCN5. As expected, the induction of

gluconeogenic genes by CDK4 inhibition was completely blunted when PGC-1α was stably

knockdown in liver cells (Extended Data Fig. 3f). Also, CDK4 knockdown did not increase

glucose production and gluconeogenic gene expression in GCN5 depleted hepatocytes (Fig.

2j, Extended Data Fig. 3g). GCN5 AA had a marginal ability to suppress hepatic

gluconeogenesis compared to GCN5 wild-type, and displayed no significant changes when

combined with CDK4 inhibition (Fig. 2k, Extended Data Fig. 3h). Together, these results

strongly suggest that the effects of cyclin D1-CDK4 on gluconeogenesis are mediated via

GCN5-PGC-1α complex.

We examined whether liver gluconeogenesis was altered when cyclin D1-CDK4 kinase

activity was manipulated in whole animals. When PD 0332991 was administered to refed

mice, it increased Pck1 expression and glycemia without changing circulating insulin levels

(Fig. 2l, 2m, Extended Data Fig. 3i, 3j). In contrast, hepatic cyclin D1 T286A expression

significantly repressed fasting gluconeogenic genes, glycemia and hepatic capacity to

produce glucose as assessed by a pyruvate tolerance test (Fig. 2n, 2o, 2p, Extended Data Fig.

3k). We confirmed that PD 03322991 or cyclin D1 T286A adenoviral administration

produced those physiological changes without causing liver toxicity (Extended Data Fig. 4a,

4b). Collectively, these data indicate that changes in hepatic cyclin D1-CDK4 activity are

sufficient to control hepatic gluconeogenesis and whole body glucose homeostasis.

Next, we investigated if cyclin D1-CDK4 complex is regulated under nutritional and

hormonal changes. In spite of that parenchymal hepatocytes are post-mitotic, hepatic protein

and mRNA expression of cyclin D1 were significantly increased upon 4hr refeeding, which
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was not a strain-specific phenomenon (Fig. 3a, 3b, Extended Data Fig. 5a, 5b). This

induction of cyclin D1 corresponded with elevated cyclin D1-CDK4 activity as observed by

increases of Rb, GCN5 phosphorylation and elevated kinase activity of immunoprecipitated

CDK4 upon refeeding (Fig. 3b, 3c, Extended Data Fig. 5c). Interestingly, cyclin D1

expression was regulated upon refeeding only in liver, and CDK4 inhibitor administration

altered PGC-1α target genes only in liver and white adipose tissue (Extended Data Fig. 5d,

5e). Although CDK4 regulates glucose metabolism in other tissues than liver, it is unknown

whether this regulation is dependent on PGC-1α21.

Cyclin D1-CDK4 activity increase upon refeeding was uncoupled from cell cycle

progression. Known cell division markers did not change upon refeeding (Extended Data

Fig. 5f). Consistently, we found no difference in hepatocyte ploidy profile, Ki-67 expression

levels and BrdU incorporation between the livers of fasted and refed mice (Fig. 3d, 3e,

Extended Data Fig. 5g). Alteration of cyclin D1-CDK4 activity in liver by hepatic

overexpression of cyclin D1 T286A or by a pharmacological inhibition caused no changes in

cell cycle progression during fasting and refeeding, analyzed by hepatic ploidy and Ki-67

expression (Extended Data Fig. 5h, 5i, 5j).

GSK3β, active during fasting and inactive during refeeding due to its phosphorylation by

insulin-AKT signaling, negatively regulates cyclin D1 through phosphorylation of T286,

causing nuclear exclusion of cyclin D1 and proteasomal degradation19,22. We hypothesized

that insulin stimulation and subsequent inactivation of GSK3β allow cyclin D1 to form an

active complex with CDK4, promoting PGC-1α acetylation. Insulin or two GSK3β

inhibitors increased nuclear cyclin D1 protein when tested in an overexpressed or

endogenous manner (Fig. 3f, Extended Data Fig. 5k). This increase correlated with elevated

PGC-1α acetylation and significant reduction of gluconeogenic genes (Fig. 3g, Extended

Data Fig. 5l). In accordance, insulin increased CDK4-mediated GCN5 phosphorylation (Fig.

3h). Interestingly, we found that amino acids, but not insulin, increased cyclin D1 mRNA

expression in primary hepatocytes (Extended Data Fig. 5m, 5n, 5o). To test if amino acids

could be dietary components promoting cyclin D1 mRNA in liver, mice were fed with

empty calorie, glucose only or glucose and amino acids diets for 4 hr. A significant cyclin

D1 mRNA induction was observed only when amino acids were added to the diet (Fig. 3i).

These results indicate that amino acids contribute to the fed response along with insulin

signaling to enhance cyclin D1 levels during refeeding.

To test if cyclin D1-CDK4 complex constitutes an important axis of the nutrient and insulin

signaling to regulate glucose metabolism, we generated liver-specific cyclin D1 KO (“D1

LKO”) mice by crossing mice expressing a floxed cyclin D1 allele23 with albumin-Cre

expressing mice24. Cyclin D1 deletion in liver did not interfere with liver development and

caused no compensatory increases on other cyclins (Extended Data Fig. 5p, 5q). D1 LKO

mice had similar gluconeogenic gene expression and glycemia during fasting compared to

wild-type mice, consistent with CDK4 inactivation due to the absence of cyclin D1 (Fig. 3j,

3k). However, in the refed state, D1 LKO mice showed a significant increase in

gluconeogenic genes and glycemia compared to wild-type mice while induction of Rb

phosphorylation and PGC-1α acetylation upon refeeding were lacking (Fig. 3l, 3m,

Extended Data Fig. 5r, 5s). CDK4 inhibitor failed to further increase gluconeogenic genes
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and glycemia in D1 LKO mice, suggesting cyclin D1 in liver mediates metabolic effects

caused by CDK4 inhibition (Extended Data Fig. 5t, 5u). Primary hepatocytes isolated from

D1 LKO mice had increased gluconeogenic gene expression and higher glucose production

compared to wild-type hepatocytes (Extended Data Fig. 5v, 5w). Consistent with elevated

refeeding blood glucose levels, D1 LKO mice exhibited moderate, yet significant insulin

and glucose intolerance, further supporting that cyclin D1-CDK4 mediates, at least in part,

insulin action in liver (Fig. 3n, 3o). When taken in aggregate, our findings indicate that

insulin suppresses hepatic gluconeogenesis during refeeding, in part by activating cyclin D1-

CDK4 complex to suppress PGC-1α activity.

Lastly, we investigated whether cyclin D1-CDK4 activity was altered in diabetic mice. In

the livers of fasted Leprdb/db mice, basal phosphorylations of AKT and its downstream

targets were elevated, consistent with the hyperinsulinemia of db/db mice (Fig. 4a).

Accordingly, db/db mice had elevated fasted levels of cyclin D1 and phosphorylation of Rb,

comparable to refed db/+ mice. In db/db mice, gluconeogenic genes and insulin signaling

were refractory to fasting/refeeding transitions, indicating an uncoupling of insulin signaling

and its repressive effects on gluconeogenic programming (Fig. 4a, Extended Data Fig. 6a).

We observed similar chronic elevations of cyclin D1 and insulin signaling impairment in

high fat diet fed mice (Extended Data Fig. 6b). In accordance with chronic elevation of

cyclin D1 in diabetic mice, phosphorylation of GCN5 remained higher, refractory to fasting/

refeeding transitions in diabetic compared to control mice (Extended Data Fig. 6c, 6d).

These results suggest that in insulin resistant mice, compensatory hyperinsulinemia

maintains a chronically active cyclin D1- CDK4 complex that is not sufficient to counteract

increased gluconeogenesis. Hyperinsulinemia might explain other studies showing different

activities of insulin signaling in fasted diabetic animals25,26.

We examined whether hyperactivation of cyclin D1-CDK4 complex in db/db mice could

alleviate hyperglycemia. Hepatic overexpression of cyclin D1 T286A in db/db mice,

reduced gluconeogenic genes and glycemia to db/+ mouse levels whereas cyclin D1 K112E

caused only minor suppressions of those parameters (Fig. 4b, 4c, Extended Data Fig. 6e). A

similar pattern was observed in high fat diet fed mice (Extended Data Fig. 6f, 6g, 6h). We

confirmed that cyclin D1 T286A overexpression in db/db mice indeed repressed hepatic

glucose production by using hyperinsulinemic-euglycemic clamp experiments (Fig. 4d, 4e,

4f, 4g, 4h).

Our studies support a regulatory model in which insulin facilitates the formation of an active

cyclin D1-CDK4 complex that subsequently suppresses gluconeogenesis, in part, by

decreasing PGC-1α activity through GCN5-mediated acetylation (Extended Data Fig. 6i).

Under type 2 diabetic conditions, cyclin D1 protein levels are dysregulated due to

hyperinsulinemia and insulin resistance, which contributes to its inability to fully repress

gluconeogenesis during the fed state. In addition, cyclin D1 is also controlled at the

transcriptional level by dietary intake of amino acids, further contributing to insulin’s action,

although the mechanisms are currently unknown. Despite the functional activation of cyclin

D1-CDK4 during refeeding, hepatocytes undergo no cell cycle progression. Interestingly,

genome-wide association studies have revealed that mutations of CDKN2A, a CDK4

inhibitor, are significantly correlated with a high risk of type 2 diabetes27. Combined with
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the role of cyclin D1-CDK4 in β-islet pancreatic cell proliferation and the involvement of its

target, E2F1, in oxidative metabolism28,29, induction of gluconeogenesis in liver could

predict the tendency of hyperglycemia in cancer patients treated with CDK4 inhibitors30

Future studies will address the metabolic functions of cell cycle components in different

tissues and their utility as therapeutictargets in metabolic diseases.

Methods

Animal Experiments

8-10 weeks old male BALB/c mice and 8-10 weeks old male C57BL/6 mice were purchased

from Taconic Farms. 10 weeks old male BKS.Cg-Dock7m +/+ Leprdb/J heterozygous (db/+)

and homozygous (db/db) mice were from Jackson Laboratory. After a delivery of mice to

the animal facility, a one-week acclimation period was given before experiments. No

randomization and blind techniques were applied in this study. Liver-specific cyclin D1 KO

(D1 LKO) mice were generated by crossing mice expressing a floxed Cyclin D1 allele

(mixed background between 129/SvJ and C57BL/6 and back-crossed to C57BL/6 for 5

times)23 with albumin-Cre expressing mice24. 60 kcal% high fat diet (D12492i) and its

control diet (D12450J) were administered to animals for 3 months prior to experiments.

PD 0332991 was dissolved in 20mM sodium lactate solution made at pH 4.0. The

compound (150mg/kg) or buffer solution was given to each mouse once per day via oral

gavage. After two consecutive administrations, all mice were sacrificed upon 4hr refeeding

followed by overnight fasting, except the administration was reduced to once in the

experiments with D1 LKO mice. To overexpress cyclin D1 T286A or K112E in liver,

adenoviruses were injected through tail-vein and GFP adenovirus was used as a negative

control (all constructs with 1.5X109 infectious particles per lean mouse and 2.0X109 per

obese mouse). All mice were sacrificed after 4 days of injection followed by overnight

fasting unless indicated otherwise (the fasting started 1hr after the dark-cycle initiated in the

facility). Prior to the sacrifice, all mice were tail bled to measure glycemia using Precision

Xtra from Abbott Diabetes Care. Upon harvest, livers were removed and snap frozen in

liquid nitrogen until processed.

For BrdU incorporation, 100μg per body weight gram was given intraperitoneally 16hr prior

to the harvest. For RNA extraction from pancreas, we followed the modified protocol

previously reported31 and the quality of RNA samples was verified by 28S/18S presence

using 1% agarose gel electrophoresis. For diet experiments, 3% agar was autoclaved and

mixed with glucose (1.8 kcal/g), amino acids (0.9 kcal/g) or both. Each amino acid was

weighed and mixed as LabDiet (5001) formula indicates. For pyruvate tolerance test,

pyruvate (2g/kg, dissolved in PBS) was injected intraperitoneally to overnight-fasted mice, 4

days after adenoviral injections. For glucose tolerance test and insulin tolerance test, mice

were fasted for 6hr prior to injection and glucose (1g/kg dissolved in PBS) and insulin

(0.75U/kg diluted in PBS) were delivered by intraperitoneal injection. Glycemia was

monitored by tail-bleeding every 15-20 minutes and if hypoglycemia caused by insulin

injection was observed, 1g/kg glucose was injected and the mice was exempted from

experiment. All animal experiments were designed and conducted by following the Dana-

Farber's Institutional Animal Care and Use Committee.
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Insulin and Serum Biochemistry Measurement

Upon sacrifice, serum samples were gathered from blood collected via cardiac puncture.

Insulin was measured with Ultra Sensitive Mouse Insulin ELISA Kit (Crystal Chem,

90080). All kits used to measure serum biochemistry including alanine transaminase

(EALT-100), aspartate transaminase (EASTR-100), lactate dehydrogenase (DLDH-100),

creatine kinase (ECPK-100) and total bilirubin (DIBR-100), were purchased from Bioassay

Systems.

High Throughput Chemical Screening

U-2OS human osteosarcoma cells were infected with Flag-tagged-PGC-1α and GCN5

expressing adenovirus and were split to 384 well plates. The chemical compounds were

added to the cells and incubated overnight. Cells were harvested and lysates were transferred

to ELISA plates (Nunc, 460372) coated with M2 Flag-antibody (Sigma, F1804) in order to

immunoprecipitate PGC-1α. The plates were washed with PBST buffer and acetylated-

lysine antibody (Cell Signaling, 9441) was added to detect the acetylation level of PGC-1α.

After primary antibody incubation, HRP-IgG-Rabbit antibody (Jackson Immuno Research,

711035152) was added as a secondary antibody. A plate reader recorded the signal after

incubating the plates with HRP-reacting ELISA substrate (Thermo Scientific, 37069) to

generate chemiluminescence at 425nm. Further details for the screening conditions are

available upon request.

Adenoviruses, Constructs and Recombinant Information

All adenoviruses were generated by using pAdTrack/pAdEasy system and amplified in

HEK293A cells. Adenoviruses were purified by cesium chloride gradient centrifugation and

dialyzed in Tris-HCl buffer made at pH 8 before usage. Flag-HA-PGC-1α (mouse) and

Flag-GCN5 (mouse) adenoviruses were made as previously described8,9. Flag-Cyclin D1

wild-type and K112E (mouse) adenoviruses were generated by subcloning from reported

constructs given from Dr. Piotr Sicinski. Flag-Cyclin D1 T286A (human) was subcloned

from a construct obtained from Addgene deposited by Dr. Bruce Zetter. Adenovirus with

short-hairpin RNA was driven by a U6 promoter and subcloned from a pLKO.1 vector.

pLKO.1 vector with shRNA against mouse CDK4 construct targeting 5’-

CCTAGCTAGAATCTACAGCTA-3’ was obtained from Dana-Farber RNAi Screening

Facility. pLKO.1 vector with shRNA containing scrambled sequence, 5’-

CAACAAGATGAAGAGCACCAA-3’, were used to generate a control virus.

The sequence of shGcn5 against GCN5 was previously used and described9. pLKO.1

vectors with various shRNAs against human CDK4 were obtained from Dana-Farber RNAi

Screening Facility with following sequences; shCdk4#1 5’-

GACACTGAGAGGGCAATCTTT-3’, shCdk4#2 5’-GTGGAGTGTTGGCTGTATCTT-3’,

shCdk4#3 5’-CATGCCAATTGCATCGTTCAC-3’, shCdk4#4 5’-

GAGATTACTTTGCTGCCTTAA-3’, and shCdk4#5 5’-

GTTCTTCTGCAGTCCACATAT-3’.
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Cell Lines and Primary Hepatocytes Cultures

HEK293A, U-2OS, HepG2 cells were purchased from ATCC (CRL-1573, HTB-96 and

HB-8065) and maintained in DMEM containing 10% FBS under 5% CO2 condition. All

transformed cells were tested negative for mycoplasma using a PCR mycoplasma detection

kit (Takara Bio Inc, 6601). All constructs were transfected using Polyfect (Qiagen, 301105)

and cells were harvested after 48hr or 72hr of transfection. Medium was changed everyday

as well as 3hr prior to harvest. For U-2OS cells, 1μM CDK4 inhibitors were added 8hr

before the harvest. DMSO was used as a negative control treatment for all chemical

treatments used in this study. Lentiviral shRNAs for shScr and Pgc1α were produced by

transfecting HEK293A cells with pLKO.1 shScr and shPgc1α and the sequences of shRNAs

have been reported previously32. Control and PGC-1α stably knockdown HepG2 cells were

generated by infecting cells with lentiviral particles and selected with puromycin for a week.

Primary hepatocytes were isolated from 8-10 weeks old male BALB/c mice by perfusion

with liver digest medium (Invitrogen, 17703-034) followed by 70μm mesh filtration. Percoll

(Sigma, P7828) gradient centrifugation allowed primary hepatocytes isolation from other

cell types and debris. On 6 well plates, 4X105 cells per well were seeded in plating medium

(DMEM with 10% FBS, 2mM sodium pyruvate, 1% penicillin/streptomycin, 1μM

dexamethasone, and 100nM insulin). After 3hr of seeding, medium was changed and

incubated overnight in maintenance medium (DMEM, 0.2% BSA, 2mM sodium pyruvate,

1% penicillin/streptomycin, 0.1μM dexamethasone, and 1nM insulin). To infect cells with

adenovirus, 3-8X106 infectious particles per well were added to cells for 4hr. Cells were

harvested within 48hr after infection and medium was changed everyday as well as 3hr prior

to harvest. 1μM CDK4 inhibitors and GSK3β inhibitors were added overnight whereas

200nM insulin was added 1.5hr prior to the harvest. When necessary, medium was changed

to starvation medium (DMEM, 0.2% BSA, 2mM sodium pyruvate, and 1% penicillin/

streptomycin) for 3hr and cells were stimulated with 10μM forskolin for additional 1.5hr.

When glucose production was measured, cells were incubated in starvation medium for 2hr

followed by 3hr incubation in glucose free medium (phenol-red/glucose free DMEM, 0.2%

BSA, 2mM sodium pyruvate and 20mM sodium lactate). Glucose level in medium was

measured by glucose assay kit from Bioassay System (EBGL-100) following the

manufacturer’s instruction. For amino acids addition, primary hepatocytes were incubated

overnight with amino acids free medium (Earl’s balanced salt solution, 25mM glucose,

2mM sodium pyruvate, 1% penicillin/streptomycin, BME vitamin mix and 0.2% fatty acids

free BSA). Cells were harvested after 4hr incubation with 4mM HEPES-KOH pH 7.4

buffer, MEM (minimum essential medium) amino acids or nonessential amino acids.

Cell Lysis, Immunoprecipitation and Western Blot Analysis

In case of PGC-1α acetylation detection from PGC-1α overexpressed cells, cells were

harvested in RIPA buffer (containing protease inhibitor cocktail, 5mM NaF, 5mM

glycerate-2-phosphate, 20mM nicotinamide, 1μM DTT and 1μM trichostatin A). Flag-

HAPGC-1α was immunoprecipitated with Flag-beads (Sigma A2220). For endogenous

PGC-1α immunoprecipitation, cells or pulverized tissues were incubated with buffer A in

order to obtain nuclear pellets (buffer A: 10mM HEPES-KOH pH 7.9, 10mM KCl, 1.5mM

MgCl2, 0.25% Igepal and reagents mentioned above). Once cytoplasmic fractions were
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removed, nuclear pellets were lysed in RIPA buffer without SDS. From the lysate,

endogenous PGC-1α was immunoprecipitated by anti-PGC-1α antibody (Santa Cruz

Biotechnology sc-13067) coupled with Dynabeads protein A (GE Lifescience 1001D). For

endogenous co-immunoprecipitation experiments, proteins from nuclei were extracted in

CHAPS based lysis buffer (10mM HEPES-KOH pH 7.4, 150mM NaCl, 0.5% Igepal, 0.3%

CHAPS, 10% glycerol and reagents mentioned above). The lysate was precleared with

protein A (GE Lifescience 17-0780-01) and anti-CDK4 antibody (Santa Cruz Biotechnology

sc-260) was added in order to immunoprecipitate. GCN5 pull-down with anti-phospho-S*P

antibody was carried out with whole cell lysates extracted with RIPA buffer without SDS

followed by protein A preclearing and incubation with anti-phospho-S*P antibody (Cell

Signaling 2325). All immunoprecipitated samples were washed at least 4 times with lysis

buffer. For all endogenous immunoprecipitation experiments, rabbit IgG antibody was used

as a negative control.

The following antibodies were used for western blot analysis: anti-PGC-1α (sc-13067), anti-

CDK4 (sc-260), anti-Cyclin D1 (sc-450) from Santa Cruz Biotechnology; anti-Acetylated-

Lysine (9441), anti-GCN5 (3305), anti-pSer780 Rb (3590 or 8180), anti-Rb (9313), anti-

Cyclin D1 (2978), anti-pThr308 AKT (2965), anti-pSer473 AKT (4060), anti-AKT (9272),

anti-pSer9 GSK3β (9323), anti-GSK3β (9315) from Cell signaling; anti-Lamin B (ab16048),

anti-Rabbit IgG (ab37415) from Abcam, anti-tubulin (05-661) from Millipore; anti-Flag

(A8592), anti-βactin (A2228) from Sigma. Anti-PAF65β antibody was given from Dr.

Yoshihiro Nakatani33.

In Vitro CDK4/Cyclin D1 Kinase Assay

GST-Cyclin D1-CDK4 complex (0142-0143-1) and GST-Rb (733-928aa, 0040-0000-6)

were purchased from ProQinase and 6XHis-GCN5 full length (ALX-201-280-C002) was

from Enzo Life Science. Recombinant GST-GCN5 proteins (1-224aa, 1-386aa, 1-553aa,

1-837aa) were generated with pGEX-5X-2 vectors containing the corresponding sequences

of mouse GCN5. pGEX-2X-GST-FoxO1 (1-300aa) and FoxO1 (290-570aa) were a

generous gift from Dr. Alex Banks. pGEX 4T-3 FoxO3A was purchased from Addgene

deposited by Dr. Michael Greenberg. GST-PGC-1α SR domain protein was generated in the

lab34. For the comparison between GCN5 and Rb phosphorylation, 6XHis-GCN5 (200ng),

GST-Rb (150ng) and GST-cyclin D1-CDK4 (50ng) were used in the assay. Kinase reactions

were carried out in a kinase buffer (50mM HEPES-KOH buffered at pH 7.5, 10mM MgCl2)

with 20μM ATP, 1mM DTT and 2.5μCi of [γ-32P]-ATP from Perkin Elmer

(BLU002A250UC). The reaction was incubated at 30°C for 30min and terminated by adding

SDS sample buffer and boiling at 100°C for 5min. Recombinant proteins were analyzed

after SDS-PAGE gel electrophoresis separation and silver-stained with SilverQuest silver

staining kit from Invitrogen (LC6070).

For in vitro kinase assay with immunoprecipitated cyclin D1-CDK4 kinase from liver,

lysates were extracted from pulverized livers by using Ipegal based buffer (20mM HEPES-

KOH pH 7.9, 125mM NaCl, 1mM EDTA, 1% Ipegal, protease inhibitor cocktail, 5mM NaF,

5mM glycerate-2-phosphate, 20mM nicotinamide, 1μM DTT and 1μM trichostatin A).

Cyclin D1-CDK4 kinase was immunoprecipitated from 400μg of lysates by anti-CDK4
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antibody and rabbit IgG antibody was used as a negative control. Kinase reactions were

carried out with 2.5μg of recombinant Rb in a similar condition described above except

5mM NaF and 5mM glycerate-2-phosphate were included in a kinase buffer.

In Vitro GCN5 Acetyltransferase Activity Assay

Flag-GCN5 was immunoprecipitated with Flag-beads from nuclear lysates of U-2OS cells

that were infected with GCN5 adenoviruses and treated with DMSO or 1μM fascaplysin.

Flag-GCN5 protein was eluted from the beads by rotating the lysates and beads with 3XFlag

peptide (Sigma F4799) at 4°C for 2hr. The eluates were further purified using Amicon

centrifugal filters (Millipore UFC5030). Following the manufacturer's instructions, the

enzymatic activity was measured using a fluorimetric acetyltransferase assay kit (Active

Motif 56100). Kinetic constants were calculated with Michaelis-Menten equation based on

arbitrary fluorescence unit generated during 15min reaction.

Gene Expression Analysis

Total RNA was isolated with Trizol (Invitrogen, 15596-026). 2μg of RNA was used to

generate cDNA with High Capacity cDNA Reverse Transcription Kit (Applied Biosystmes,

4368813) following the manufacturer’s protocol. For gene expression analysis, cDNA

samples were mixed with Sybr Green qPCR mastermix (Applied Biosystem 4309155) and

were analyzed by CFX384 Real-Time system from Bio-Rad. All primers and sequences are

available upon request.

FACS Analysis for Hepatocytes Ploidy Proflie

Primary hepatocytes were isolated as described above. The cells were suspended in PBS and

1X106 cells were added drop-by-drop to pre-chilled 75% Ethanol for 30min. Ethanol was

aspirated and cells were washed and resuspended in PBS with RNase A (Invitrogen,

12091-021) at a final concentration of 70units/ml. Propidium iodide (BD Biosciences,

556463) was added at a final concentration of 5μg/ml to the cells and incubated for 30min

with brief vortexing in between. The samples were protected from light until analyzed with

BD FACSCanto II.

BrdU and Ki-67 Staining

Upon sacrifice, liver and small intestine were collected. Liver was washed in PBS briefly

and small intestine was flushed and washed with PBS. Tissues were fixed in 4%

formaldehyde for 48hrs and transferred to 70% ethanol before paraffin-embedded and

sectioned. Anti-BrdU antibody (B2531) was from Sigma. The antibody was run on an

automated platform, Leica BOND-III. The retrieval step used Leica’s ER1 solution for

30min, and the primary antibody was incubated at 1:2000 dilution for 30min. The Bond

Polymer Refine Detection kit was used which includes the secondary and DAB chromogen

detection. The Ki-67 was also run on the BOND-III using the same detection kit. Anti-Ki-67

antibody (VP-RM04) was from Vector and was incubated at 1:250 dilution for 30min. The

retrieval solution used on the BOND-III was Leica's ER2 antigen retrieval solution and

incubated for 20min.
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Hyperinsulinemic-euglycemic clamp studies

Hyperinsulinemic euglycemic clamps were performed as previously reported with minor

modifications35. Mice were operated to implant an indwelling catheter in the right jugular

vein seven days prior to study. Four days before study, mice were infected with GFP or

cyclin D1 T286A adenovirus by tail vein injection. Following overnight fasting, mice were

infused with a fixed amount of insulin (40 mU/kg/min) and a variable amount of 20%

dextrose to maintain euglycemia. 3-[3H] glucose was included in the infusates in order to

trace whole-body rates of glucose metabolism. Whole-body glucose uptake was determined

under steady-state conditions during the final 40 minutes of the clamp when exogenous

glucose infusion and endogenous glucose production are in equilibrium with whole-body

disposal. Whole-body glucose disposal was calculated as the ratio of the 3-[3H]-glucose

infusion rate and the specific activity of plasma glucose and hepatic glucose production

represents the difference between the glucose infusion rate and whole-body uptake

calculation.

Statistics

All statistics are described in figure legends. In general, for two experimental comparisons,

two-tailed unpaired student t-test was used. For multiple comparisons, one-way ANOVA

with Tukey, Newman-Keuls or Dunnett post test were applied. For glucose tolerance test,

insulin tolerance test and hyperinsulinemic-euglycemic clamp, two-way ANOVA with

repeated comparison was applied. When cells were used for experiments, three replicates

per treatment were chosen as an initial sample size. All western-blot analysis has been

repeated at least three times. In case of mice experiments that require technical

manipulations, at least 7 mice were used per treatment based on our previous experiences. If

technical failures such as tail-vein injection failure, inadequate intraperitoneal injection and

oral gavage occur prior to harvest, those samples were excluded from final analysis.

Statistical significance is represented by asterisk corresponding to *P<0.05, **P<0.01,

***P<0.001.
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Figure 1.
Cyclin D1-CDK4 modulates PGC-1α acetylation through GCN5. a) Scatter plot of

chemicals plotted with first test z scores on the X-axis and repeated test scores on the Y-

axis. b) Fascaplysin reduces PGC-1α acetylation and Rb phoshorylation. c) Fascaplysin and

PD 0332991 treatments decrease PGC-1α acetylation. d) CDK4 knockdown causes PGC-1α

deacetylation. e) GCN5 knockdown blunts fascaplysin-mediated PGC-1α deacetylation. f)
GCN5 acetyltransferase activity is reduced upon fascaplysin treatment (n=2, mean±S.E.M).

g) Endogenous GCN5 and CDK4 interact. h) Cyclin D1-CDK4 kinase phosphorylates

GCN5 in vitro. i) GCN5 T272A/S372A (AA) phosphorylation by cyclin D1-CDK4 kinase is

diminished compared to GCN5 wild-type (WT). j) GCN5 T272A/S372A displays decreased

acetyltransferase capacity. k) GCN5 T272A/S372A has decreased acetyltransferase activity

and insensitivity to fascaplysin treatment. Kinetic constants were calculated by Michaelis-

Menten equation (n=4, AU/min=arbitrary unit/min, mean±S.E.M). U-2OS cells were used

for these experiments.

Lee et al. Page 14

Nature. Author manuscript; available in PMC 2014 December 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Cyclin D1-CDK4 regulates gluconeogenesis in primary hepatocytes and whole animals. a-b)

PD 0332991 increases gluconeogenic gene expression and glucose production (a: one-way

ANOVA with Tukey post test, n=3, b: two-tailed unpaired t-test, n=8). c) PGC-1α

acetylation is decreased by PD 0332991 treatment. d-e) CDK4 knockdown increases

gluconeogenic gene expression and glucose production (d: oneway ANOVA with Tukey

post test, n=6, e: two-tailed unpaired t-test, n=6). f) PGC-1α acetylation is decreased upon

CDK4 deletion. g-h) Cyclin D1 wild-type decreases gluconeogenic gene expression, and

cyclin D1 wild-type and cyclin D1 T286A, but not cyclin D1 K112E, repress glucose

production (g: one-way ANOVA with Tukey post test, n=3/GFP, PGC-1α, n=6/Cyclin D1

WT and KE, h: one-way ANOVA with Dunnett post test, n=8). i) Overexpression of cyclin

D1 wild-type (WT) and T286A (TA), but not cyclin D1 K112E (KE), induces PGC-1α

acetylation. j) GCN5 knockdown blunts the increase of glucose production by CDK4

knockdown (two-tailed unpaired t-test, n=8). k) PD 0332991 increases glucose production

with GCN5 wild-type (WT), but not with GCN5 T272A/S372A (AA) (one-way ANOVA

with Newman-Keuls post test, n=8). l-m) PD 0332991 administration increases Pck1 gene
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expression and glycemia in mice (two-tailed unpaired t-test, n=18/vehicle, n=17/PD

0332991). n-o) Gluconeogenic gene expression and glycemia are reduced by cyclin D1

T286A overexpression in liver (two-tailed unpaired t-test, n=10/GFP, n=9/D1 T286A). p)

Cyclin D1 T286A overexpression in liver decreases hepatic glucose production capacity

assessed by pyruvate tolerance test (two-tailed unpaired t-test, n=20/GFP, n=24/D1 T286A

AUC=area under curve). Statistical significance is represented by asterisk corresponding to

*P<0.05, **P<0.01, ***P<0.001. Data are shown as mean±S.E.M.
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Figure 3.
Cyclin D1-CDK4 is regulated by insulin/GSK3β and hepatic cyclin D1 deletion causes

increased gluconeogenesis and glycemia upon refeeding. a) Cyclin D1 gene expression is

increased during refeeding (one-way ANOVA with Tukey post test, n=3/fast and10hr refed,

n=4/4hr refed). b) Cyclin D1 protein and Rb phosphorylation are induced upon refeeding

(N=nuclear and C=cytoplasmic liver extracts). c) Phosphorylation of GCN5 is increased

upon refeeding. GCN5 was immunoprecipitated using anti-phosphoS*P (pS*P) antibody

from livers infected with GFP or GCN5 adenovirus. d) Hepatocytes ploidy does not change

upon fasting and refeeding (n=5). e) Ki-67 staining in liver shows no differences upon

fasting and refeeding. Small intestine was used as a positive control. f) Nuclear cyclin D1

protein level is increased upon insulin and GSK3β inhibitors treatment in primary

hepatocytes. All cells were infected with cyclin D1 wild-type adenovirus. g) Insulin and

GSK3β inhibitors suppress gluconeogenic gene expression. All cells were infected with

PGC-1α adenovirus (oneway ANOVA with Tukey post test, n=6). h) Phosphorylation of

GCN5 is induced by insulin and blunted by PD 0332991 treatment. GCN5 was

overexpressed whereas GFP was used as a negative control. i) Cyclin D1 is transcriptionally

induced by dietary intake of amino acids. Mice were fasted overnight or refed 4hr with chow

diet, empty calorie, glucose or glucose and amino acids diet (one-way ANOVA with Tukey

post test, n=5). j-k) Liver-specific cyclin D1 KO (D1 LKO) mice exhibit no differences on

gluconeogenic gene expression and glycemia during fasting. l-m) D1 LKO mice display

increased gluconeogenic gene expression and glycemia upon 4hr refeeding (one-way

ANOVA with Tukey post test, combined 4 cohorts of n=3/fasting, n=5/refeeding). n) D1

LKO mice show mild glucose intolerance (two-way ANOVA, multiple comparison, n=11/

Lee et al. Page 17

Nature. Author manuscript; available in PMC 2014 December 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



WT1, n=7/WT2, n=10/D1 LKO). o) D1 LKO mice exhibit mild insulin intolerance (two-

way ANOVA, significant interaction, multiple comparison, n=10/WT1, n=7/WT2, n=9/D1

LKO). Statistical significance is represented by asterisk corresponding to *P<0.05,

**P<0.01, ***P<0.001. Data are shown as mean±S.E.M.
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Figure 4.
In diabetic hyperinsulinemic mice, cyclin D1-CDK4 is dysregulated and hyperactivation of

cyclin D1-CDK4 attenuates the diabetic phenotype. a) Cyclin D1 is chronically elevated in

livers of db/db mice (N=nuclear and C=cytoplasmic liver extracts). b-c) Cyclin D1 T286A,

but not cyclin D1 K112E, overexpression in liver represses gluconeogenic genes and

glycemia in db/db mice (one-way ANOVA, Tukey post test, n=6/GFP, D1 K112E, n=5/D1

T286A). d-h) In db/db mice, cyclin D1 T286A overexpression in liver suppresses hepatic

glucose production tested by hyperinsulinemic-euglycemic clamp. d) Plasma glycemia and

glucose infusion rate (twoway ANOVA, significant interaction, n=7). e) Body weights. f)
Clamped glucose infusion rate. g) Whole-body glucose uptake. h) Hepatic glucose output

(average of last 40min values for f-g, two-tailed unpaired t-test for d-h, n=7). Statistical

significance is represented by asterisk corresponding to *P<0.05, **P<0.01, ***P<0.001.

Data are shown as mean±S.E.M.
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Extended Data Figure 1.
A cell-based high throughput screen reveals compounds regulating PGC-1α acetylation. a)
Scheme of high throughput chemical assay. b) Compounds with significant z scores either

>3.0 or <-3.0 are listed. Inhibitors indicate the compounds that increased PGC-1α

acetylation while activators indicate the ones that decreased PGC-1α acetylation.
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Extended Data Figure 2.
Cyclin D1-CDK4 modulates PGC-1α acetylation through GCN5. a) Fascaplysin decreases

PGC-1α acetylation in dose-dependent manner. Dose-dependent response of PGC-1α

acetylation treated with fascaplysin concentrations ranging from 31.25nM to 8μM. IC50

value was calculated using three independent measurements from the assay described in

Extended Data Fig. 1 a. b) Chemical structures of fascaplysin and PD 0332991. c) CDK4

is knockdown by various CDK4 shRNAs used in Fig. 1d. d) Fascaplysin decreases PGC-1α

acetylation upon EX527 or trichostatin A treatments. Cells were treated for 8hr in case of

1μM fascaplysin and 4hr in case of 1μM EX527 or trichostatin A prior to harvest. DMSO (-)

was used as a control treatment. e) Fascpalysin has blunted effect on PCAF-mediated

PGC-1α acetylation. f) Ectopically expressed CDK4 and GCN5 interact. As a comparison,

PGC-1α, Sirt1 and Sirt6 were used while GFP was overexpressed as a negative control. g)
Phosphorylation of GCN5 by cyclin D1-CDK4 complex is reduced by fascaplysin. DMSO

or 1μM fascaplysin was added to the kinase reaction. h) In vitro phosphorylation of GST-

GCN5 recombinant proteins (1-224aa, 1-386aa, 1-553aa, 1-837aa) by cyclin D1-CDK4 and

the protein level of those fragments. i) GCN5 wild-type (WT), treated with fascaplysin and

GCN5 T272A/S372A (AA) mutant immunoprecipitated by anti-phospho-S*P (pS*P)

antibody. j) Acetylation of PGC-1α closely follows the amount of PAF65β bound to GCN5.

Nuclear extracts of U-2OS overexpressing various amounts of GCN5 were used for western-

blot analysis to detect GCN5 and PAF65β. Empty vector was transfected as a negative

control. k) Interaction between GCN5 T272A/S372A (AA) and PAF65β is reduced

compared to GCN5 wild-type (WT). U-2OS cells were used for western-blot analysis

experiments.
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Extended Data Figure 3.
Cyclin D1-CDK4 regulates gluconeogenesis in primary hepatocytes and in whole animals.

a) Western-blot analysis of endogenous, forskolin-induced (Fsk) or adenovirally

overexpressed (O/E) PGC-1α. Nuclear extracts of primary hepatocytes were used to

immunoprecipitate PGC-1α. Cells were infected with GFP or PGC-1α 48hr prior to harvest.

10μM forskolin was added for 2hr before harvest. b) PD 0332991 increases forskolin-

induced gluconeogenic gene expression. Primary hepatocytes were treated with 10μM

forskolin for 1.5hr following 3hr of starvation medium incubation while 1μM PD 0332991

was added overnight (one-way ANOVA with Tukey post test, n=3). c) CDK4 knockdown

increases forskolin-induced gluconeogenic gene expression (one-way ANOVA with Tukey

post test, n=3). d) Cyclin D1 wild-type, but not cyclin D1 K112E mutant, suppresses

forskolin-induced gluconeogenic gene expression (one-way ANOVA with Tukey post test,

n=3). e) Phosphorylation of GCN5, FoxO1 N-terminus, FoxO1 C-terminus, FoxO3A and

PGC-1α SR domain by cyclin D1-CDK4. f) PGC-1α knockdown blocks the increase of

forskolin-induced gluconeogenic genes by fascaplysin in HepG2 cells. PGC-1α knockdown

or a negative control HepG2 cells were treated with 30μM forskolin and 1μM fascaplysin

overnight (one-way ANOVA with Tukey post test, n=3). g) GCN5 knockdown blunts the

increase of gluconeogenic gene expression caused by CDK4 knockdown. qRT-PCR analysis

of Pck1 and Gcn5 and western-blot of CDK4 and GCN5 knockdown are shown. All cells

were infected with PGC-1α adenoviruses (one-way ANOVA with Tukey post test, n=15). h)
PD 0332991 increases gluconeogenic genes when combined with GCN5 wild-type (WT)

overexpression, but not with GCN5 T272A/S372A (AA) mutant. GFP infected cells shown

as a comparison to GCN5 overexpressing cells. All cells were infected with PGC-1α
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adenoviruses (two-tailed unpaired t-test, n=6). I-j) Insulin levels measured from serum and

western-blot analysis of Rb and AKT using nuclear (N) and cytoplasmic (C) liver extracts

from mice treated with vehicle or 150mg/kg PD 0332991, shown in Fig. 2lm (i: two-tailed

unpaired t-test, n=18/GFP, n=17/PD 0332991). k) Levels of cyclin D1 and Rb

phosphorylation in GFP or Cyclin D1 T286A tail-vein injected mice, shown in Fig. 2n-o.

Statistical significance is represented by asterisk corresponding to *P<0.05, **P<0.01,

***P<0.001. Data are shown as mean±S.E.M.
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Extended Data Figure 4.
PD 0332991 administration or cyclin D1 T286A adenoviral overexpression does not cause

toxicity compared to its respective control treatment. a) Basal physiological indexes of mice

challenged with either vehicle or PD 0332991 administration (n=5). b) Basal physiological

indexes of mice injected with either GFP or cyclin D1 T286A adenoviruses (n=5).

(ALT=alanine transaminase, AST=aspartate transaminase, LDH=lactate dehydrogenase,

mean±S.E.M)

Lee et al. Page 24

Nature. Author manuscript; available in PMC 2014 December 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Extended Data Figure 5.
Cyclin D1-CDK4 is regulated by insulin/GSK3β and hepatic specific cyclin D1 deletion

causes increased gluconeogenesis and glycemia upon refeeding. a) Cyclin D1 transcripts are

increased upon refeeding. qRT-PCR analysis of Ccnd1, Ccnd2 and Ccne1 gene expression

upon overnight fasting, 4hr and 10hr refeeding in BALB/c mice livers (one-way ANOVA

with Tukey post test, n=3). b) Cyclin D1 protein is increased upon refeeding. Western-blot

analysis of cyclin D1 protein levels and associated signaling pathway upon fasting and

refeeding measured from nuclear (N) and cytoplasmic (C) liver extracts from BALB/c mice.
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c) Cyclin D1-CDK4 kinase activity is increased upon 4hr refeding. In vitro 32P

incorporation into recombinant Rb by immunoprecipitated cyclin D1-CDK4 kinase from

whole-cell extracts of overnight fast and 4hr refed livers. d) Western-blot analysis of cyclin

D1 protein level and associated signaling pathway upon fasting and refeeding and qRT-PCR

analysis of Ccnd1 and Pgc1α mRNA level in various tissues (L=liver, M=skeletal muscle,

B=brown adipose tissue, W=epididymal white adipose tissue, and P=pancreas, two-tailed

unpaired t-test, n=12/L, n=4/M, B, W, P). e) qRT-PCR analysis of PGC-1α target genes in

liver and epididymal white adipose tissues (eWAT) upon vehicle or PD 0332991 treatment

(two-tailed unpaired t-test, n=10). f) Ccnb1 and Pcna gene expressions in liver do not

change upon fasting and refeeding (n=3/fast and 10hr refed, n=4/4hr refed). g) BrdU

incorporation in liver does not change upon fasting and refeeding. Small intestine was used

as a positive control. h) Ki-67 staining in liver does not change upon fasting and refeeding

following vehicle or PD 0332991 administration. Small intestine used as a positive control.

i) Ki-67 staining in liver does not change upon fasting and refeeding following GFP or

cyclin D1 T286A tail-vein injection. Small intestine used as a positive control. j) Hepatic

ploidy profiles of livers of GFP or cyclin D1 T286A adenovirus tail-vein injected mice do

not show significant difference. Ploidy analysis of primary hepatocytes isolated from livers

measured by propidium iodide staining and flow cytometry (n=6/fast and 4hr refed,

n=4/10hr refed). k) Western-blot analysis of endogenous nuclear (N) and cytoplasmic (C)

cyclin D1 protein level upon insulin or GSK3β inhibitors treatments in primary hepatocytes.

l) PGC-1α acetylation is increased upon insulin or GSK3β inhibitors treatment in primary

hepatocytes. m) No effect of insulin or GSK3β inhibitors on cyclin D1 mRNA level (n=3).

n) Minimum essential medium (MEM) amino acids addition increases cyclin D1 mRNA in

primary hepatocytes (one-way ANOVA with Tukey post test, n=3). o) Insulin does not

change Ccnd1 mRNA in primary hepatocytes (oneway ANOVA with Tukey post test, n=3).

p-q) Body, liver weights and Ccnd1 and Ccnd2 gene expression of wild-type and liver-

specific cyclin D1 KO (D1 LKO) mice (combined 4 cohorts of n=3/fasting, n=5/refeeding).

r) Western-blot analysis of cyclin D1 protein levels and associated signaling pathway by

using nuclear and cytoplasmic liver extracts from wild-type and D1 LKO mice upon fasting

(F) and 4hr refeeding (R). s) Endogenous acetylation of PGC-1α is decreased in livers of D1

LKO mice compared to wild-type mice. Western-blot analysis of acetylation of PGC-1α

immunoprecipitated from liver nuclear extracts. All mice were sacrificed upon 4hr

refeeding. t-u) PD 0332991 increases glycemia with similar tendency for gluconeogenic

gene expression only in wild-type mice, but not in D1 LKO mice (two-tailed unpaired t-test,

n=8, except n=6 for vehicle treated wild-type mice). v-w) Gluconeogenic gene expression

and hepatic glucose production are increased in primary hepatocytes isolated from D1 LKO

mice (v: one-way ANOVA Tukey post test, n=3, w: two-tailed unpaired test, n=6).

Statistical significance is represented by asterisk corresponding to *P<0.05, **P<0.01,

***P<0.001. Data are shown as mean±S.E.M.
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Extended Data Figure 6.
In diabetic hyperinsulinemic mice, cyclin D1-CDK4 is dysregulated and hyperactivation of

cyclin D1-CDK4 attenuates the diabetic phenotype. a) qRT-PCR analysis of gluconeogenic

and Ccnd1 gene expression changes upon fasting and refeeding in Leprdb/+ (db/+) and

Leprdb/db (db/db) mice livers (two-tailed unpaired t-test, n=3). b) Cyclin D1 protein is

chronically elevated upon fasting and refeeding in livers of high fat diet fed mice compared

to control diet fed mice. Nuclear (N) and cytoplasmic (C) liver extracts were used. c-d)
Phosphorylation of GCN5 is elevated upon fasting in db/db or high fat diet fed (HFD) mice

liver compared its respective control mice and it remains insensitive to fast-refed transitions.

Western-blot analysis of GCN5 immnunoprecipiated by anti-phosphoS*P (pS*P) antibody

using liver extracts from mice that were tail-vein injected with adenoviruses expressing GFP

or GCN5 (F=16hr fast, R=4hr refed). e) Cyclin D1 and Rb phosphorylation levels in livers

from db/db mice tail-vein injected with GFP, cyclin D1 T286A, or cyclin D1 K112E

adenoviruses, shown in Fig. 4b-c. Nuclear and cytoplasmic liver extracts were used. f-g)
Cyclin D1 T286A overexpression reduces gluconeogenic genes and glycemia in high fat diet

fed mice (two-tailed unpaired t-test, n=6/GFP, n=7/D1 T286A). h) Cyclin D1 and Rb

phosphorylation levels in livers of high fat diet fed mice that were tail-vein injected with

adenoviruses expressing GFP or cyclin D1 T286A, shown in Extended Data Fig. 4f-g. i)
Overall Model. Statistical significance is represented by asterisk corresponding to *P<0.05,

**P<0.01, ***P<0.001. Data are shown as mean±S.E.M.

Lee et al. Page 27

Nature. Author manuscript; available in PMC 2014 December 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


