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Abstract

Background: PET-based texture features have been used to quantify tumor

heterogeneity due to their predictive power in treatment outcome. We investigated

the sensitivity of texture features to tumor motion by comparing static (3D) and

respiratory-gated (4D) PET imaging.

Methods: Twenty-six patients (34 lesions) received 3D and 4D [18F]FDG-PET

scans before the chemo-radiotherapy. The acquired 4D data were retrospectively

binned into five breathing phases to create the 4D image sequence. Texture

features, including Maximal correlation coefficient (MCC), Long run low gray

(LRLG), Coarseness, Contrast, and Busyness, were computed within the

physician-defined tumor volume. The relative difference (d3D-4D) in each texture

between the 3D- and 4D-PET imaging was calculated. Coefficient of variation (CV)

was used to determine the variability in the textures between all 4D-PET phases.

Correlations between tumor volume, motion amplitude, and d3D-4D were also

assessed.

Results: 4D-PET increased LRLG (51%–2%, p,0.02), Busyness (57%–19%,

p,0.01), and decreased MCC (51%–2%, p,7.561023), Coarseness (55%–10%,

p,0.05) and Contrast (54%–6%, p.0.08) compared to 3D-PET. Nearly negligible

variability was found between the 4D phase bins with CV,5% for MCC, LRLG, and

Coarseness. For Contrast and Busyness, moderate variability was found with

CV59% and 10%, respectively. No strong correlation was found between the tumor
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volume and d3D-4D for the texture features. Motion amplitude had moderate impact

on d for MCC and Busyness and no impact for LRLG, Coarseness, and Contrast.

Conclusions: Significant differences were found in MCC, LRLG, Coarseness, and

Busyness between 3D and 4D PET imaging. The variability between phase bins for

MCC, LRLG, and Coarseness was negligible, suggesting that similar quantification

can be obtained from all phases. Texture features, blurred out by respiratory motion

during 3D-PET acquisition, can be better resolved by 4D-PET imaging. 4D-PET

textures may have better prognostic value as they are less susceptible to tumor

motion.

Introduction

Positron emission tomography (PET) with [18F]fluorodeoxyglucose (FDG), a

surrogate of glucose metabolism, is an essential clinical tool for tumor diagnosis,

staging, and monitoring tumor progression [1–4]. Accurate quantification of

tumor characteristics based on [18F]FDG-PET images can provide valuable

information for optimizing therapy [5, 6]. Standardized uptake value (SUV)

measures such as maximum, peak, mean, and total SUV, are commonly used for

quantification of the tumor characteristics [7–10]. High baseline SUV uptake has

been found to be associated with poor treatment outcome in many tumors, such

as esophageal, lung, and head-and-neck cancer [11–13].

High intra-tumoral heterogeneity has been shown to relate to poor prognosis

and treatment resistance [14, 15]. However, SUV measures fail to adequately

capture the spatial heterogeneity of the intra-tumoral uptake distribution [16, 17].

Therefore, texture features, which can be derived from a number of mathematical

models of the relationship between multiple voxels and their neighborhood, are

proposed to describe tumor heterogeneity [18, 19]. Particularly, pretreatment

[18F]FDG PET texture features have shown promise for delineating nodal and

tumor volumes [20, 21] and assessing therapeutic response [22–24]. Studies have

suggested that texture features perform better than SUV measures in treatment

outcome prediction [22, 24–26]. For example, Cook et al (2013) compared the

predictive power of common SUV measures and four neighborhood gray-tone

difference matrix (NGTDM) derived textures in non-small cell lung cancer

(NSCLC) patients [27]. They found that NGTDM-derived Coarseness, Contrast,

and Busyness were not only better prognostic predictors than the SUV measures,

but also better able to differentiate responders from nonresponders.

Despite the clinical potential of texture features, the accurate quantification of

texture features may be hindered by respiratory motion in lung cancer patients.

Motion induced image blurring in static PET images (3D PET) can lead to

reduction in tumor uptake and over estimation of metabolic tumor volume [28–

30]. 4D PET imaging gates PET image acquisition with respiratory motion in

order to improve PET image quality and has been shown to reduce motion
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blurring in the PET images, providing more accurate quantification of lung tumor

activity [28, 31–34]. We hypothesize that fine texture features are likely to be

blurred during 3D PET acquisition of lung tumors.

With the growing interest of texture features and tumor heterogeneity, the

impact of tumor motion on PET-based quantification needs to be studied as it is

still yet unknown. In this study, we compared the quantification of texture

features between 3D and 4D PET imaging. Although numerous texture features

can be found in the literature [22, 35, 36], we focused on five texture features.

Particularly, three NGTDM derived Coarseness, Contrast, and Busyness due to

their predictive value in lung cancer patients [27]. A gray level co-occurrence

matrix (GLCM) derived Maximal Correlation Coefficient (MCC) [37] and gray

level run length matrix (GLRLM) derived Long Run Low Gray level emphasis

(LRLG) [38] were also computed due to their robustness against variation of

reconstruction parameters of PET images [36].

The NGTDM texture features were originally designed to resemble human

perception and were first proposed by Amadasun and King (1989) [18]. In a

coarse image, the texture is made up by large patterns, such as large area with

uniform intensity distribution. Contrast measures the intensity difference between

neighboring regions within the tumor. Busyness is a measure of the intensity

change between multiple voxels and their surroundings. GLCM-MCC was first

introduced by Haralick et al in 1973 [37] and is used to measure the statistical

relationship between two neighboring voxels. GLRLM-LRLG measures the joint

distribution of long runs and low intensity values, where a run is the distance

between two consecutive voxels with the same intensity in a specific direction

[38].

Methods

Patients and imaging

This study was conducted under the Dana-Farber Cancer Institute institutional

review board (IRB) approved protocol (protocol #: 06-294) and written consents

were obtained from all patients. Twenty-six patients (mean age 565¡10 yr, 14

males, 12 females) with NSCLC received a treatment planning CT (both 3D and

4D) two weeks before the start of radiotherapy with or without concurrent

chemotherapy. 3D [18F]FDG-PET/CT, a free breathing chest CT, and a 4D

[18F]FDG-PET scans were acquired 1–2 weeks prior to the therapy. There were

sixteen patients with adenocarcinoma and ten patients with squamous cell

carcinoma. The internal tumor volumes (ITV), which encompassed tumor

motion, of thirty-four lesions (1–3 malignant tumors/patient) were delineated by

an experienced radiation oncologist on a 4D planning CT. 3D PET and 4D PET

scans were performed on a Siemens Biograph PET/CT scanner (Siemens AG,

Erlangen, Germany). Attenuation correction of 3D PET images was performed

using the whole body 3D CT images, while 4D PET images were corrected by the

free breathing chest CT images. 3D PET scans were acquired approximately
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100 min after injection of 16.7–22mCi of [18F]FDG in the patients. For the 3D

PET scan, the images were acquired for 3–5 min/bed position in six to seven bed

positions. The 3D PET images were reconstructed with ordered-subset

expectation-maximization (OSEM) with 4 iterations, 8 subsets, 7 mm full-width-

half-maximum (FWHM) post-filtration, and sampled onto a 1686168 grid

comprised of 4.0664.06 mm2 pixel. The image acquisition of 4D PET followed

immediately after the completion of the 3D PET scan.

4D PET images were acquired at one bed position centered on the tumor and

covering part of the lung for 20–30 min, depending on the comfort of the

patients. An AZ-733V respiratory gating system (Anzai Medical System, Tokyo,

Japan) was employed to monitor patient respiratory motion [39]. The acquired

data were retrospectively binned into five phases starting at inhale peak (bin 1) to

create the 4D image sequence using the phase-based algorithm provided by the

Siemens Biograph PET/CT scanner (Siemens AG, Erlangen, Germany). In

particular, the five phase bins, corresponded to the end of inhalation (bin 1),

inhalation–to–exhalation (bin 2), mid exhalation (bin 3), end of exhalation

(bin4), exhalation–to inhalation (bin 5), respectively. The respiratory gated 4D

PET images were reconstructed with OSEM with 2 iterations, 8 subsets, 5 mm

FWHM, and sampled onto a 2566256 grid comprised of 2.6762.67 mm2 pixel.

Texture features

Planning CT was rigidly registered to 3D- and 4D-PET images with normalized

mutual information. The transformations were then applied to each ITV. The 3D

and 4D PET images were cropped using the registered ITV contour to crop out

the tumor region. Number of voxels per tumor region ranged from 85 to 6483

with median number of voxels5545. Prior to texture feature computation, all

PET images (PET(~x)) were preprocessed using the following equation,

PET ’(~x)~32:
PET(~x){ min PET

max PET{ min PET
ð1Þ

Where minPET and maxPET are the maximum and minimum intensities of PET

within the tumor region. The intensity range of the post-processed image

(PET ’(~x)) was converted into 32 discrete values as suggested by Orlhac et al (2014)

[40].

Within the tumor region, the following four neighborhood gray-tone difference

matrix (NGTDM) derived texture features were computed to quantify tumor

heterogeneity: Coarseness, Contrast, Busyness, and Complexity. These were

implemented in MATLAB (The Mathworks Inc. Natrick MA) using the Chang-

Gung Image Texture Analysis Toolbox [41, 42]. The mathematical definitions of

the NGTDM, GLCM, and GLRLM texture features can be found in Amadasun

and King (1989) [18], Haralick et al (1973, 1979) [37, 43], and Galloway (1975)

[38], respectively.

3D (1686168) and 4D (2566256) PET images were reconstructed to different

matrix sizes based on different reconstruction parameters. Additionally, due to the
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difference in 3D and 4D PET imaging acquisition times, fewer photon counts and

higher noise may be found in the 4D PET images. Therefore, all 4D PET images

were downsampled to the same grid/resolution of 3D PET images using linear

interpolation prior to texture feature computation to reduce noise.

Data analysis

The relative difference (d3D-4D) in texture features between 3D and 4D PET were

calculated:

d3D{4D~100:
Q4D

j {Q3D

Q3D
ð2Þ

Where Q3D is the quantification (i.e. texture features measures) based on 3D PET,

Q4D
j is the quantification based on bin j of the 4D PET images. Wilcoxon signed-

rank test (p,0.05) was performed on pairs to determine if Q3D and Q4D
j were

significantly different. We calculated an avid tumor volume (ATV) as thresholded

PET images with SUV over 40% maximum SUV within the ITV [29]. We

investigated the influence of ATV and ITV on d3D-4D using Spearman’s correlation

coefficient (R) with significant value of p50.05.

Kruskal-Wallis test was used to assess if one phase was significantly different

from the other phases (p,0.05). The variability in the texture features measures

between all five phase bins was assessed using the coefficient of variation (CV).

CV~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{
:
P5

bin~1
(Q4D

bin{
�Q4D)2

s

�Q4D
ð3Þ

�Q4D~
1
5
:
X5

bin~1

Q4D
bin ð4Þ

To estimate the extent of motion, the centers of mass (~Cj) of the PET avid region

(ATV) on all five 4D PET bins were recorded. The amplitude of the tumor motion

was estimated using the maximum difference in ~Cj between the five bins [28, 29]

Amp~ maxf ~Ci{~Cj

�� ��g ð5Þ

Where i and j range from 1 to 5.

To study the impact of tumor motion, we calculated the Spearman’s correlation

coefficient for Amplitude:ATV ratio and d3D-4D with significant value p50.05.

Amplitude:ATV ratio is a measure of motion amplitude relative to the tumor

volume. Large Amplitude:ATV ratio indicates large tumor movement relative to

the tumor size.
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Furthermore, textures may be affected by motion differently according to the

tumor histology. Therefore, we investigated if d3D-4D were significantly different

between adenocarcinomas (21 lesions) and squamous cell carcinomas (13 lesions)

using Mann-Whitney U-test with p,0.05.

Results

4D PET images appeared to have higher uptake and less blurring than the

corresponding 3D PET images (Fig. 1). The differences between 3D and 4D PET

were found to be significant (p,,0.01) for Busyness, MCC, and LRLG as shown

in Table 1. Significant difference for Coarseness was found in all bins (p,,0.01)

except in bin 2 (p50.59) (Table 1). The Coarseness determined on the 3D PET

images was about 10% higher than the 4D PET. 4D PET images were found to

have as much as a 19% increase in Busyness, compared to the corresponding 3D

PET images (Table 1, Fig. 2). MCC was found to be 2% higher in 3D PET than

4D PET, while 2% higher LRLG was found in 4D PET when comparing to 3D

PET. However, Contrast on 3D images was only about 5% lower when compared

to 4D PET and d3D-4D was not significant (p.0.08) (Table 1, Fig. 2).

None of the phases were significantly different from the other for any texture

features (p.0.90, Kruskal-Wallis test). Negligible to moderate variability in the

texture features was found between the five phase bins (Fig. 2). CV was only 1%

for MCC and LRLG, 5% for Coarseness, 9% and 10% for Contrast and Busyness,

respectively. The avid tumor volume (ATV) was poorly correlated to d3D-4D for all

texture features (R520.24–0.38, p50.03–0.07). The correlation between internal

tumor volumes (ITV) and d3D-4D were also found to be poor for all textures

(R520.31–0.30, p.0.02), except LGLR. Although d3D-4D for LGLR was

moderately influenced by ITV (R520.62–20.31, p58.361025–0.08), the

average d3D-4D,2%.

Average motion amplitude was found to be 4.4¡4.6 mm (0.6–20.5 mm). As

shown in Table 2, moderate to substantial correlation was found between

Amplitude:ATV (mm22) and d3D-4D for Busyness (R50.38–0.54) and MCC

(R520.70–20.41) in bin 3–5, whereas poor correlation was found in bin 1–2

with R520.03–0.12. The correlations were also poor for Coarseness (R520.32–

0.18), Contrast (R520.35–20.10), and LRLG (R50.08–0.34) (Table 2).

Moreover, d3D-4D were not significantly different between the histologies,

adenocarcinomas and squamous cell carcinomas, with p.0.26 (Table 3).

Discussion

In this study, we investigated the sensitivity of prognostic PET texture features to

respiratory motion. Our results suggest that texture measures are sensitive to

tumor motion. Substantial differences between 3D and 4D (d3D-4D .10%) were

found in Coarseness and Busyness. Therefore, the temporal resolution offered by

4D PET imaging may lead to more accurate quantification of image features.

Comparison of Texture Features Derived from 3D- and 4D-PET Images
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Fig. 1. 3D (top row) and 4D (bottom row) PET images overlaid onto the 3D CT. All images are displayed in the same intensity window with SUV between
1 and 15.

doi:10.1371/journal.pone.0115510.g001

Table 1. The mean difference (d3D-4D) between 3D and 4D PET images in texture features.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5

MCC 21¡2% 21¡3% 23¡2% 23¡3% 22¡3%

(26%–7%) (211%–8%) (211%–0%) (213%–2%) (211%–6%)

p52.061024 p57.561023 p56.261027 p53.861026 p51.461024

LRLG 2¡3% 1¡2% 1¡2% 1¡3% 1¡3%

(24%–15%) (25%–5%) (27%–5%) (29%–9%) (212%–8%)

p51.561023 p52.461023 p50.02 p59.661023 p58.361023

Coarseness 27¡8% 25¡10% 29¡9% 211¡8% 26¡10%

(230%–16%) (230%–15%) (231%–7%) (230%–4%) (221%–23%)

p54.161024 p50.05 p51.161024 p51.061024 p52.361023

Contrast 5¡14% 4¡15% 6¡22% 5¡18% 4¡19%

(229%–40%) (232%–44%) (236%–93%) (238%–71%) (239%–68%)

p50.08 p50.72 p50.54 p50.12 p50.55

Busyness 8¡16% 7¡18% 13¡18% 19¡24% 9¡18%

(225%–63%) (230%–52%) (220%–67%) (215%–85%) (236%–55%)

p51.461023 p50.01 p51.361024 p53.061025 p57.361024

The ranges of d3D-4D and the p-values for Wilcoson signed-rank test are also shown. MCC5maximal correlation coefficient. LRLG5Long run low gray-level
emphasis

doi:10.1371/journal.pone.0115510.t001
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Coarseness, Contrast, and Busyness considered in this study were originally

designed to resemble human perception and were first proposed by Amadasun

and King (1989) [18]. Cook et al (2012) [27] have shown that these three texture

features are clinically relevant to lung cancer due to their predictive value for

patient outcome. In a coarse image, the texture is made up by large patterns, such

as large area with uniform intensity distribution. As breathing motion blurs the

fine textures in the images, the 3D PET images appear to be more uniform (Fig. 1)

and therefore have more Coarseness than 4D PET images. The sensitivity of

Contrast was found to be insignificant to motion induced blurring. The intensity

difference between neighboring regions within the tumor was observed to be more

pronounced in 4D PET image (Fig. 1), leading to slightly higher (d3D-4D,5%)

Contrast in 4D PET than 3D PET images. Busyness is a measure of the intensity

change between single voxels and their surroundings. Busyness computed with 4D

PET images was found to be as much as 20% higher than the 3D PET images.

Since d3D-4D tended to be higher at large Amplitude:ATV, the quantification of

Busyness is especially sensitive to large relative tumor amplitude. However, 3D

PET imaging was employed in the study of Cook et al (2012). Our results suggest

that the quantification and prognostic value of busyness can be adversely affected

by tumor motion.

GLCM-MCC and GLRLM-LRLG were included in the 3D vs 4D PET imaging

comparison as they are insensitive to reconstruction parameters of PET images

[36]. Tumor motion blurring in 3D PET image can reduce intensity difference

between neighboring voxels. Therefore, neighboring voxels are better correlated in

Fig. 2. Distribution of the difference between 3D and 4D PET (d3D-4D) in the texture features across 34 lesions. The top vertical line of a boxplot
represents 75th—95th percentiles of the data. The bottom vertical line is the 5th—25th percentiles. Interquartile range (IQR) of the data is indicated by the
width of the boxplot. Asterisks indicate the maximum and minimum differences. Median and mean differences are indicated by bar and square inside the box
plots, respectively. MCC5Maximal correlation coefficient. LRLG5Long run low gray-level emphasis. The first boxplot represents the comparisons of 3D and
3D PET textures (d3D-3D). d3D-3D is therefore zero by definition as shown in the first ‘‘boxplot’’ for each texture.

doi:10.1371/journal.pone.0115510.g002

Table 2. Spearman correlation coefficient of Amplitude:ATV (mm22) and d3D-4D and its p-value.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5

MCC 20.07 0.12 20.70 20.62 20.41

p50.71 p50.51 p54.361026 p51.161024 p50.02

LRLG 0.34 0.27 0.08 0.24 0.19

p50.05 p50.11 p50.64 p50.16 p50.28

Coarseness 0.05 0.18 20.32 20.23 0.06

p50.78 p50.31 p50.07 p50.19 p50.74

Contrast 20.14 20.20 20.10 20.23 20.35

p50.44 p50.26 p50.59 p50.18 p50.04

Busyness 0.00 20.03 0.43 0.54 0.38

p50.99 p50.88 p50.01 p59.361024 p50.03

MCC5Maximal correlation coefficient. LRLG5Long run low gray-level emphasis.

doi:10.1371/journal.pone.0115510.t002
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3D PET than 4D PET, leading to significant 2% higher MCC in 3D PET images.

LRLG measures the joint probability of long runs and low gray values. As

observed in Fig. 1, low intensity voxels are more localized (less distance apart) in

the motion blurred 3D PET than in the 4D PET images. Therefore, LRLG was

higher in 4D PET than 3D PET.

In this study, the 4D PET images were binned into five phases. The activity

uptake of each bin was slightly different as in Huang and Wang (2013) [30]. The

bin with the highest SUVmax is often chosen to be the ‘‘best’’ bin for 4D PET

image [29, 44, 45]. However, we found that the variability between phase bins for

MCC, LRLG, and Coarseness were negligible (CV,5%), suggesting that similar

quantification can be obtained from all phases. The small variability may be due

to the small tumor amplitude (4.4¡4.6 mm) in our dataset. On the other hand,

the phase bin variability was found to be moderate for Contrast and Busyness

(CV,10%). The values of Contrast and Busyness may depend on the choice of

phase-bin. MCC, LRLG, and Coarseness are independent of the choice of phase-

bin, and therefore should be recommended for quantification of tumor

characteristics in 4D PET imaging.

Apart from the texture features, studies often investigate the effect of

respiratory motion on the quantification of various SUV measures, especially the

maximum SUV [28, 29, 33]. The SUVmax was found to increase with 4D PET

imaging from 25% to 80% in these studies. The motion induced artifacts not only

lower maximum tumor uptake on the 3D PET images, but may also lead to

misclassification of lesions. For example, Garcı́a Vicente et al (2010) compared the

SUVmax determined on 3D and 4D PET images for 42 lesions in lung cancer

patients [33]. Tumor with SUVmax over 2.5 was considered malignant in their

study. As a result, 40% (17/42) of the lesions needed to be changed from benign to

malignant. To this end, although the results are not shown, we also compared the

differences in four SUV measures (SUVmax, SUVpeak, SUVmean, and SUVtotal). 4D

PET imaging increased the measurements of SUVmax and SUVpeak by about 30%

and 25%, respectively, while increased for SUVmean and SUVtotal were only about

5%. Our results in SUVmax are comparable to the previous studies [28, 29, 33].

However, there is one limitation of our textures and SUV comparison as it has

been shown that malignant tumor tissue can continuously increase the uptake of

[18F]FDG even 2 hours after injection [46–48]. While the 3D PET imaging was

Table 3. p-values for the comparison of d3D-4D between adenocarcinoma and squamous cell carcinoma using Mann-Whitney U-test.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5

MCC p50.48 p50.77 p50.53 p50.90 p50.84

LRLG p50.77 p50.26 p50.48 p50.30 p50.49

Coarseness p50.87 p50.61 p50.79 p50.55 p50.55

Contrast p50.46 p50.68 p51.00 p50.66 p50.45

Busyness p50.59 p50.80 p50.93 p50.86 p50.78

doi:10.1371/journal.pone.0115510.t003
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acquired about 100 min after the [18F]FDG-PET injection, 4D PET imaging was

acquired between 118–135 min after injection. Therefore, the increase in

[18F]FDG-PET seen in our study may not be due solely to respiratory motion.

Dong et al (2013) found a significant correlation between SUVmax and textures

(entropy and energy) derived from PET intensity histograms in patients with

esophageal cancer [49]. SUVmax was also found to be highly correlated to entropy

and energy in a study conducted by Orlhac et al (2014) [40] using patients with

metastatic colorectal, lung, and breast cancer. These two studies may therefore

suggest that the histogram derived textures are likely to be affected by the delayed

imaging. However, none of the textures that were used in our study has been

found to be highly correlated with SUVmax [40]. This may be due to the fact that

the textures we used are based on the spatial relationship between neighborhoods

of voxels, and are not directly dependent on the intensity value of single or

multiple voxels within the tumors. However, further study is needed to better

understand the impact of delayed imaging on texture quantification.

All the PET images in our study underwent attenuation correction using the

free breathing CT images. The blurred anatomical mismatched of the PET/CT

scans due to respiratory motion may affect the quality of the attenuation corrected

4D PET images, and subsequently the quantification of texture features

[29, 50, 51]. Moreover, due to the difference in 3D and 4D PET imaging

acquisition times, fewer photon counts and higher noise may be found in 4D PET

images, which may subsequently affect the accuracy of texture feature definition.

To mitigate the effect of noise, all 4D PET images have a minimum acquisition

time of 20 min. These potential effects will be explored further in a future study.

Conclusions

Texture features, representing tumor heterogeneity, are blurred out by respiratory

motion during 3D PET acquisition. 4D PET imaging reduces motion blurring,

enabling PET-based features to be better resolved. Significant differences were

found in MCC, LRLG, Coarseness, and Busyness between 3D and 4D PET

imaging. When measuring tumor heterogeneity characteristics with PET imaging,

reduced motion blurring by 4D PET acquisition enables significantly better spatial

resolution of texture features. 3D PET textures may lead to inaccurate prediction

of treatment outcome, hindering optimal lung cancer patient management. 4D

PET textures may have better prognostic value as they are less susceptible to

tumor motion.
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