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Abstract

The down-regulation of pain through beliefs is commonly discussed as a form of

emotion regulation. In line with this interpretation, the analgesic effect has been

shown to co-occur with reduced anxiety and increased activity in the ventrolateral

prefrontal cortex (VLPFC), which is a key region of emotion regulation. This link

between pain and anxiety modulation raises the question whether the two effects

are rooted in the same neural mechanism. In this pilot fMRI study, we compared the

neural basis of the analgesic and anxiolytic effect of two types of threat modulation:

a ‘‘behavioral control’’ paradigm, which involves the ability to terminate a noxious

stimulus, and a ‘‘safety signaling’’ paradigm, which involves visual cues that signal

the threat (or absence of threat) that a subsequent noxious stimulus might be of

unusually high intensity. Analgesia was paralleled by VLPFC activity during

behavioral control. Safety signaling engaged elements of the descending pain

control system, including the rostral anterior cingulate cortex that showed increased

functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction,

in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral

control but had no distinct neural signature during safety signaling. Our pilot data

therefore suggest that analgesic and anxiolytic effects are instantiated in

distinguishable neural mechanisms and differ between distinct stress- and pain-

modulatory approaches, supporting the recent notion of multiple pathways
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subserving top-down modulation of the pain experience. Additional studies in larger

cohorts are needed to follow up on these preliminary findings.

Introduction

Understanding how the brain modulates pain has become a major focus of basic

and clinical pain research. In particular, the observation that cognitive processes

such as beliefs can attenuate responses to noxious stimulation (e.g., [1, 2]) has

buttressed the biopsychosocial model of pain, and lent empirical support to

strategies that target altered cognitions as a way to reduce pain [3, 4]. Functional

neuroimaging studies have highlighted the role of the ventrolateral prefrontal

cortex (VLPFC) in belief-related modulation of pain. Perceived control over pain

[5–7], religious beliefs [8] and placebo-induced expectancy of reduced pain [9] all

result in pain reduction that correlates with increased VLPFC activation [6].

Behavioral data suggest that the analgesic effect of beliefs is achieved via a re-

interpretation of aversive events (e.g., pain) as less threatening [10]. Although this

process might occur rather unconsciously, it resembles reappraisal (i.e., the

volitional change in affective meaning) that has been associated with reduction in

anxiety and increased VLPFC activation also in other contexts not related to pain

[11].

The close interrelation between the modulation of anxiety and pain raises

several questions. First, it is unclear whether the reduction in pain is based on a

distinct analgesic mechanism or is simply the ‘‘after-effect’’ of reduced anxiety.

Given that anxiety is known to amplify pain [12–14], a reduction in anxiety could

result in less pain because it revokes the basis for amplified pain processing [15].

In a similar vein, the reduction of pain could reduce anxiety without engaging an

active anxiolytic mechanism.

Second, anxiety reduction can be accomplished using a variety of behavioral

approaches; whether different forms of anxiety-reducing interventions operate via

common or distinct neural mechanisms is an open question [16, 17]. For example,

perceived control over pain reduces pain as well as anxiety [6]. However, lower

anxiety (and pain) levels might also result from the relative absence of threat,

brought about by external signals [12, 18–20]. The expectation of low-intensity

compared to high-intensity stimulation, for instance, is accompanied by lower

anxiety and pain ratings for physically identical stimuli [12, 20]. To date, differing

types of modulation have only been studied separately, rendering it difficult to

directly relate their efficacy and underlying neural mechanisms. A study in rats

revealed that providing either behavioral control over a stressful shock (i.e., rats

could prevent shock administration by performing certain actions) or a safety cue

indicating that no shock was forthcoming reduced anxiety behaviors, but they did

so via distinct neural pathways [16].
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Here, we used functional magnetic resonance imaging (fMRI) to compare the

neural basis of the modulatory effects of ‘‘behavioral control’’ and ‘‘safety

signaling’’ (we adopt these terms from [16], and utilize them throughout the

manuscript) in the same sample of healthy volunteers. To allow for the

investigation of interactive effects between both types of modulation, we

employed a repeated measures full-factorial design, combining behavioral control

and safety signaling within subjects. We hypothesize that both, control over the

noxious stimulation and safety signaling lead to lower ratings of the intensity of

pain, perceived threat and helplessness but that their underlying neural

mechanisms will be different. Based on previous studies, we hypothesize that the

analgesic effect of perceived control involves the ventrolateral prefrontal cortex

(VLPFC), whereas external threat engages top-down pathways including the

rostral anterior cingulate cortex (rACC) and PAG.

Materials and Methods

Subjects

Twelve healthy right-handed individuals (seven females, mean age, 29.9¡4.4)

participated in the experiment. The subjects were pre-assessed to exclude those

with a previous history of neurological or psychiatric illness including chronic

pain.

Ethics statement

All subjects gave written informed consent and the study was approved by the

Oxfordshire Clinical Research Ethics Committee.

Experimental design and protocol

In this study, we used a 262 factorial design with the two within-subject factors

BEHAVIORAL CONTROL modulation (‘control’ vs. ‘no control’) and SAFETY

SIGNALING modulation (‘expect low pain’ vs. ‘expect high pain’; Fig. 1)

resulting in four conditions. In the two ‘control’ conditions, subjects were able to

stop a repetitive electrical stimulation that was applied to the back of their left

hand (see below for details of the stimulation) by pressing a button. In the ‘no

control’ conditions the number of stimuli that were applied was predefined and

the subjects were told that they had no influence on the stimulation. In fact, using

a stimulus-matching paradigm described previously [6], see also below),

participants received the same number of stimuli in the ‘control’ and ‘no control’

trials. For the two safety signaling conditions, electrical stimuli delivered to the

hand were either all of the same moderately painful intensity (‘expect low pain’)

or varied in intensity with rare, single, high intensity stimulus occurring within a

train of moderately painful stimuli (‘expect high pain’). In order to differentiate

between anxiolytic and analgesic effects of the two forms of cognitive modulation,

Modulation of Pain and Anxiety
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participants rated the subjective level of both pain and anxiety responses

(differentiated into ‘threat’ and ‘helplessness’) after each trial.

The experiment was divided into four runs with thirteen trials per run (six

‘expect low pain’ trials, seven ‘expect high pain trials’). The factor BEHAVIORAL

CONTROL was presented in a blocked fashion. Half of the participants started

with a ‘control’ run, followed by a ‘no control’ run, the second ‘control’ and the

second ‘no control’ run (order: ABAB). The other half of the subjects followed an

inverted order (i.e., BABA). The order was alternated between subjects. Subjects

were informed via the intercom whether the following run would be controllable

or uncontrollable.

During both ‘control’ and ‘no control’ runs, ‘expect low pain’ and ‘expect high

pain’ trials were presented in a randomized order. Six seconds prior to the onset

of stimulation, subjects were presented with a visual cue. For half of the subjects, a

yellow circle signaled an ‘expect low pain’ trial and a blue square signaled an

‘expect high pain’ trial. For the other half of the subjects, these cues were reversed.

The cues were randomly assigned to one of the two levels of threat (i.e., yellow

circle signaled ‘expect low pain’ in half of the subjects and ‘expect high pain’ in the

other half), but remained the same throughout the experiment. The cues were

presented in the center of the screen until the end of the subsequent noxious

stimulation. During the application of the stimuli, subjects were instructed to

Fig. 1. Study design. We used a 262 factorial design with the factors BEHAVIORAL CONTROL modulation
(i.e., ‘control’ vs. ‘no control’ over the noxious stimulation) and SAFETY SIGNALING modulation (i.e., ‘expect
low pain’ vs. ‘expect high pain’ noxious stimulation). During two of the four runs, the noxious stimulation could
be stopped by the participant (‘control’). In the other two runs, participants had no control over the stimulation
(‘no control’). Prior to each trial, participants were informed by a visual cue whether the upcoming stimulation
would only consist of moderately painful stimuli (‘expect low pain’) or could also include high-intensity pain
stimuli (‘expect high pain’; arrows pointing downwards). Trials during which high-intensity stimulation was
delivered were excluded from the analysis (shown in white). Each trial was followed by ratings of pain
intensity, helplessness and threat and a baseline period (not shown). Note that the same number of stimuli
was applied in the ‘control’ and the ‘no control’ runs. Arrows pointing upwards indicate button presses that
stopped the noxious stimulation in the ‘control’ runs and were performed after the stimulation had stopped in
the ‘no control’ runs.

doi:10.1371/journal.pone.0110654.g001
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visually fixate on the cue, which was replaced by a white cross when the electrical

stimulation stopped. In order to control for motor responses that occurred in the

‘control’ runs subjects also had to press a button at the end of the ‘no control’

stimulus trains. They were cued by an enlargement of the fixation cross to press

the button as quickly as possible. The white cross enlarged immediately after the

noxious stimulation had stopped.

Stimulation

Prior to the first run, individual current levels were determined and were adjusted

between runs if necessary (see Experimental protocol). The mean stimulation

intensity across runs was 1.35 mA (SD50.05; run 1: M51.21, SD50.52; run 2:

M51.31, SD50.53; M51.41, SD50.52; run 4: 1.48, SD50.53). The increase in

stimulation intensity from run 1 to run 4 that was required to induce comparable

intensity levels of pain did not reach statistical significance (as revealed by a

repeated measures ANOVA testing one within-subject factor STIMULATION

INTENSITY with four levels (run 1–4): F(3,33)53.85; p50.069). The stimuli were

applied to the same site on the back of the left hand throughout the experiment

using a commercial electric stimulation device (Digitimer, Constant Current

Stimulator, Model DS7A), which delivered trains of 200 ms monopolar square

waveform pulses via a silver chloride electrode. For the ‘expect low pain’ trials the

interstimulus interval was 500 ms. In three of the ‘expect high pain’ trials, series of

ten stimuli with an interstimulus interval of 20 ms occurred intermixed with the

regular 500 ms interval stimulation. This high-frequency stimulation induced a

strong but tolerable pain, which was confirmed as such for each subject at the end

of the calibration procedure. Because we aimed to apply the identical stimulation

during ‘control’ and ‘no control’ runs, the number of stimuli per trial delivered in

the ‘no control’ runs per trial was determined by the number of stimuli

participants had chosen during the previous ‘control’ run [6]. For instance, if a

subject had stopped the stimulation after the tenth stimulus in the first trial and

after the thirteenth stimulus in the second trial of a ‘control’ run he received ten

and thirteen stimuli during the following ‘no control’ run. Note that the order of

stimuli was randomized (e.g., the ten stimuli could be applied before or after the

thirteen stimuli) to ensure that the subjects did not become aware of the matching

procedure. If the first run was uncontrollable, the number of stimuli to apply was

matched to the practice run that was performed prior to the four experimental

runs. During the second ‘no control’ run, the number of stimuli was matched to

the preceding ‘control’ run as described. On average, participants stopped the

stimulation after 15 stimuli in both the ‘expect low pain’ and ‘expect high pain’

condition (‘expect low pain’: SD59.86; min./max.: 5/37 stimuli; ‘expect high

pain’: SD510.35; min./max.: 6/39 stimuli). Critically, the number of stimuli

applied in the ‘expect low pain’ and ‘expect high pain’ conditions did not differ

significantly (t(11)50.37, p50.722).

Modulation of Pain and Anxiety
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Subjective ratings of pain, threat and helplessness

At the end of each trial subjects rated (i) the mean pain intensity, (ii) the mean

threat and (iii) the mean helplessness during the previous trial. Reviews of the

broader literature on emotion and stress highlight the centrality of internal

perceptions of one’s capacities (e.g., ability to control a stressor) and external

perceptions of the degree of threat posed by the stimulus or stressor in question

[21]. Our factor ‘behavioral control’ was intended to address the former whereas

the factor ‘safety signaling’ was introduced to investigate the latter. In order to be

able to differentiate the perception of the two aspects, participants were instructed

to rate threat and helplessness separately. All ratings were given via a pointer that

could be moved in both directions along a Numerical Rating Scale (NRS), which

was displayed on the screen. The pain NRS was anchored at left with ‘‘0’’ ‘‘not

painful at all’’ and at right with ‘‘100’’, ‘‘strongest imaginable pain’’. The threat

NRS was anchored with ‘‘not threatening at all’’ and ‘‘highly threatening’’ and the

helplessness NRS was anchored with ‘‘not helpless at all’’ and ‘‘very helpless’’.

Participants were given seven seconds for each of the three ratings.

Experimental protocol

Upon arrival, subjects were provided with written task instructions and gave their

informed consent. Subjects were then brought to the MR control room where they

were familiarized with the instructions that would be displayed on the computer

screen during the experiment, and with the rating procedure.

Before the subjects were positioned in the MR scanner the individual

stimulation levels were determined within the scanner room. In order to find an

individual level for electrical stimulation, trains of ten 200 ms stimuli of increasing

intensities were applied. After each train the subject gave a verbal intensity rating

between 0 and 100 using the same NRS they would subsequently complete

manually in the scanner. The calibration procedure stopped when participants

rated the intensity as 70 or higher. The intensity of the last electrical stimulus was

used for the moderately painful stimuli during the experiment. To account for

sensitization or habituation to the stimulus, the stimulus intensity was readjusted

prior to each run using the same procedure. Prior to the four experimental runs

and after the subject had been positioned in the scanner a short practice run was

performed to ensure that the participants had learned the association between the

visual cue and the subsequent stimulation.

Image acquisition

MR scanning was performed on a 3T MRI system (Oxford Magnet Technology,

Oxford, UK) with the use of a Nova Medical quadrature birdcage coil (Nova

Medical, Wilmington, USA). For the functional measurement, 33 axial slices (slice

thickness 3 mm, 1 mm gap) were acquired using a gradient echo echo-planar

(EPI) T2*-sensitive sequence (repetition time, 2.38 s; echo time, 30 ms; flip angle,

Modulation of Pain and Anxiety
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90 ;̊ matrix, 64664; field of view, 1926192 mm2). The first four images were

discarded to compensate for T1 saturation effects.

Data analysis

For the trial-by-trial ratings of pain intensity, threat and helplessness an average

score for each of the four conditions was calculated for each subject. Mean scores

for the three ratings were subjected to repeated measures ANOVAs with the

within-subject factors BEHAVIORAL CONTROL (‘control’ vs. ‘no control’) and

SAFETY SIGNALING (‘expect low pain’ vs. ‘expect high pain’). Significant

ANOVA results were followed-up by post-hoc t-tests (2-tailed). In order to test

whether the effect of the two types of modulation on pain was related to the effect

on threat and helplessness, bivariate Pearson correlation coefficients (2-tailed test)

were calculated for the difference scores (i.e., ‘control’ minus ‘no control’) in pain

intensity and threat or helplessness, separately for the behavioral control and

safety signaling modulations. Likewise, we tested for similarities between the effect

on threat and helplessness by correlating their difference scores between the

‘control’ and the ‘no control’ conditions (Pearsson correlation coefficient; 2-tailed

test). Results of these correlation analyses were corrected for multiple

comparisons. As explained in the Results section, ratings for threat and

helplessness were highly correlated. We therefore decided to use a composite score

(i.e., the average of both ratings) as a general measure of anxiety in the regression

analyses of the neuroimaging data (see below).

Image processing and statistical analyses were performed using SPM5 (http://

www.fil.ion.ucl.ac.uk/spm). Volumes from all runs were realigned to the first

volume, unwarped, spatially normalized to a standard echo-planar imaging

template included in the SPM software package [22], and smoothed with an

isotropic 8mm full-width-at-half-maximum Gaussian filter to account for

anatomical differences between subjects and to allow for statistical inference at the

group level.

We estimated subject-specific (first-level) general linear models that included

regressors for the combination of the two experimental factors (i.e., ‘expect low

pain, control’; ‘expect high pain, control’; ‘expect low pain, no control’; ‘expect

high pain, no control’; onset at time-point of stimulus delivery) and for the six-

seconds time period in which the visual cue was presented. Trials in which a high

intensity stimulus was applied were excluded from the analysis to ensure that

potential condition differences could not be explained by a difference in noxious

input (resulting in twelve trials per run). The four stimulation conditions were

modeled according to the duration of the stimulation, which varied depending on

the time-point at which the stimuli were stopped, either by the program (‘no

control’) or by the participant (‘control’). Serial autocorrelation was modeled as a

first-order autoregressive model, and the data were high-pass filtered at a cutoff of

128 s. Statistical inferences were made at the second (between-subject) level by

entering the appropriate contrast into an ANOVA.

Modulation of Pain and Anxiety
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In a first step, main effects of both factors (i.e., BEHAVIORAL CONTROL

modulation: (‘control’–‘no control’) and (‘no control’–‘control’) and SAFETY

SIGNALING modulation: (‘expect low pain’–‘ expect high pain’) and (‘expect

high pain’–‘ expect low pain’)) and their interactions ([(‘control’–‘no con-

trol’)‘expect high pain’ – (‘control’–‘no control’)‘expect low pain’] and [(‘control’–‘no

control’)‘expect low pain’ – (‘control’–‘no control’)‘expect high pain’] were calculated.

Next, we performed a series of second-level simple regression analyses to

identify brain regions whose activation scaled with the reduction of (i) pain or (ii)

anxiety (as a composite of ‘helplessness’ and ‘threat’) within the behavioral

control modulation and those in which activation scaled with the reduction of

(iii) pain or (iv) anxiety (as a composite of ‘helplessness’ and ‘threat’) within the

safety signaling modulation. To this end, differential contrasts (e.g., (‘control’ –

‘no control’)) for each participant were regressed against the mean individual

behavioral effect (e.g., pain intensity‘no control’ – pain intensity‘control’). In the

following, the difference in pain intensity between the ‘no control’ and the

‘control’ condition or the ‘expect low pain’ and ‘expect high pain’ condition will

be referred to as the analgesic effect of the behavioral control or safety signalling

modulation. Likewise, the difference in the composite score on anxiety will be

referred to as the anxiolytic effect. We tested for a positive correlation between

activation in the right VLPFC and pain reduction through perceived control, as

has previously been shown [6]. To this end, a small volume correction (SVC) was

applied to the VLPFC using a sphere with 4 mm radius, centred around the

reported coordinate of the peak voxel (x,y,z: 36,48,15). Parameter estimates were

extracted from the contrast ‘control – no control’ from the same region of interest

(peak x,y,z: 39,48,15; 4 mm sphere) and regressed against the difference in pain

intensity between ‘control’ and ‘no control’ trials (i.e., pain‘no control’ –

pain‘control’).

Finally, we investigated the functional connectivity of those brain regions

showing a positive correlation in one of the simple regression analyses using

psychophysiological interaction analyses (PPI; [23]). These PPI analyses were

limited to brain regions that have previously been discussed as potential sources of

pain and anxiety modulation, namely the prefrontal cortex and rostral anterior

cingulate cortex. Our analyses therefore focused on (i) the right VLPFC (x,y,z:

36,48,15), scaling with the analgesic effect of the behavioral control modulation,

(ii) the left DLPFC (x,y,z: -24,54,15), scaling with the anxiolytic effect of the

behavioral control modulation and (iii) the rostral anterior cingulate cortex

(rACC; x,y,z: 15,45,6) and (iv) left DMPFC/DLPFC (x,y,z: -15,27,45), both scaling

with the analgesic effect of the safety signaling modulation. In each of the four

analyses, a new statistical model was created for each subject in which the PPI

regressor was computed as the element-by-element product of the mean-corrected

activity in the region of interest given above (defined as a 4 mm sphere around the

peak voxel) and a vector coding for the relevant differential effect (i.e., ‘control’ –

‘no control’ for effects of behavioral control modulation and ‘expect low pain –

expect high pain’ for effects of safety signaling modulation). The individual

contrast images reflecting the interaction between the psychological variable (i.e,

Modulation of Pain and Anxiety
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‘control’ – ‘no control’ or ‘expect low pain – expect high pain’) and the activation

time course of the region of interest were subsequently entered into a second-level

one-sample t-test.

A global threshold was set at p,0.001 uncorrected with a minimum cluster

extent of five contiguous voxels. Due to the relatively small size of the brainstem,

activations in this structure are reported without a minimum cluster extent. All

reported coordinates are given in MNI space.

Results

Behavioral data

We first investigated whether the two modulatory approaches had an effect on the

intensity of pain as well as on perceived threat and helplessness. As shown in

Fig. 2A, participants reported slightly higher pain levels in the ‘expect high pain’

than the ‘expect low pain’ trials (main effect of SAFETY SIGNALING:

(F(1,11)55.82, p50.034). Note that trials in which high-level pain stimuli were

applied were excluded from the analysis to ensure that the comparison between

conditions was based on physically identical stimuli. Controllability, in contrast,

had no effect on pain (no main effect of BEHAVIORAL CONTROL:

(F(1,11)50.20, p50.661) and showed no significant interaction with SAFETY

SIGNALING (F(1,11),0.001, p50.997). The analysis of individual data, however,

showed that half of the subjects reported less pain when they were able to stop the

noxious stimulation whereas the other half reported less pain when the

stimulation was uncontrollable (Fig. 2B). Because of these individual differences

in the behavioral effects of controllability, no overall difference was observed

between pain ratings of controllable stimuli and pain ratings of uncontrollable

stimuli.

As expected, participants felt more helpless during the ‘no control’ than the

‘control’ trials (main effect of BEHAVIORAL CONTROL: F(1,11)558.48,

p,0.001; Fig. 2C), but also during ‘expect high pain’ compared to ‘expect low

pain’ trials (main effect of SAFETY SIGNALING: (F(1,11)538.80, p,0.001).

Furthermore, both factors had an interactive effect on perceived helplessness

(F(1,11)56.86, p50.02). Post-hoc tests revealed that the difference in helplessness

between ‘no control’ and ‘control’ trials was more pronounced during the ‘expect

high pain’ compared to the ‘expect low pain’ conditions (t(11)522.62, p50.024).

The analysis of the threat ratings revealed a significant result for both main

effects with higher ratings for the ‘expect high pain’ and the ‘no control’ trials

(SAFETY SIGNALING main effect: F(1,11)542.81, p,0.001; BEHAVIORAL

CONTROL main effect: F(1,11)534.83, p,0.001; Fig. 2D), but no significant

interaction (F(1,11)53.34, p50.10).

A direct comparison of the two modulatory strategies revealed no significant

difference in the reduction of pain (BEHAVIORAL CONTROL: M51.38,

SD510.63; SAFETY SIGNALING: M54.45, SD56.39; t(11)50.94; p50.47) or

threat (BEHAVIORAL CONTROL: M532.94, SD519.33; SAFETY SIGNALING:

Modulation of Pain and Anxiety
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M536.92, SD519.55; t(11)50.68; p50.51), suggesting that both types of

modulation were equally effective with respect to changes in pain and perceived

threat. However, as expected, participants experienced a larger reduction of

helplessness as a function of actual control over the electrical stimulation than

when they expected low relative to high pain (BEHAVIORAL CONTROL

modulation: M549.53, SD522.44; SAFETY SIGNALING modulation: M524.19,

SD513.45; t(11)53.77; p50.003).

The correlation analyses revealed that the effect of BEHAVIORAL CONTROL

modulation (i.e., ‘control’ – ‘no control’) on threat and helplessness were

significantly positively correlated (r50.81, p50.003). Likewise, the effect of

SAFETY SIGNALING modulation (i.e., ‘expect low pain’ – ‘expect high pain’) on

threat and helplessness was similarly positively correlated (r50.78, p50.003),

suggesting that at the behavioral level, ratings of threat and helplessness captured a

similar experience. We therefore decided to pool across both ratings for a global

Fig. 2. Behavioral results. (A) On average, only the safety signaling modulation (i.e., ‘expect low pain’ relative to ‘expect high pain’ stimulation) showed an
analgesic effect. No significant difference in pain ratings was found between ‘control’ and ‘no control’ runs. (B) Individual pain intensity ratings, which show a
spread such that half of the participants rated the pain as less intense when they could control it and the other half reported the opposite effect, i.e.,
increased pain during the two ‘control’ runs. In contrast to the pain intensity ratings, participants felt more helpless (C) and threatened (D) during the ‘expect
high pain’ stimulation than they did during the ‘expect low pain’ stimulation and during ‘no control’ runs than they did during the ‘control’ runs. The interaction
between both factors only reached statistical significance for the helplessness ratings. Error bars indicate the standard error of the mean. *p,0.05,
***p,0.001.

doi:10.1371/journal.pone.0110654.g002
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measure of anxiety for the analysis of neuroimaging data (see Regression analyses

with behavioral effects).

Interestingly, no significant correlation was found between the effect of

BEHAVIORAL CONTROL modulation on threat or helplessness and its effect on

pain (pain and helplessness: r520.1, p50.76; pain and threat: r50.14, p50.66).

Similarly, the effect of SAFETY SIGNALING modulation on threat and

helplessness was unrelated to the effect on pain (pain and helplessness; r520.42;

p50.18; pain and threat: r520.51, p50.09). Taken together, these results indicate

that during both types of modulation, individual differences in anxiety reduction

are not necessarily related to individual differences in pain reduction.

Neuroimaging results

Main effect: behavioral control

At the group random effects level, we found a significantly greater increase in the

right VLPFC during ‘control’ than during ‘no control’ trials (x,y,z: 36,51,15,

z53.8, p,0.05, SVC corrected), confirming our previous finding [6]. Additional

activation was found in the primary motor cortex and premotor cortex

(x,y,z5233,221,57; cluster extent: 1408 voxels; z55.98), cerebellum (x,y,z518,

251, 227; cluster extent: 1929 voxels; z55.60), DLPFC (x,y,z527, 54, 30; cluster

extent: 347 voxels; z54.70) and inferior parietal lobe (x,y,z539, 248, 45; cluster

extent: 353 voxels; z54.67). The reverse contrast (i.e., ‘no control’ – ‘control’)

revealed significant activation in the right posterior insula (x,y,z539,218,21;

cluster extent: 13 voxels; z53.64) and contralateral primary somatosensory and

motor cortex (SI/MI; x,y,z539,224, 57; cluster extent: 7 voxels; z53.40),

confirming previous findings of an increased activation in sensory-discriminative

brain regions during uncontrollable pain [5].

Main effect: safety signaling

A comparison of ‘expect low pain’ versus ‘expect high pain’ trials (i.e., ‘safe –

dangerous’) revealed significant activation in bilateral caudate nucleus (right:

x,y,z, 12,24,6; cluster extent: 26 voxels; z54.02; left: x,y,z523,18,6; cluster extent:

6 voxels; z53.58). The reverse contrast testing for increased activation during

‘expect high pain’ relative to ‘expect low pain’ trials revealed a significant result

only for the cerebellum (x,y,z526, 245, 239; cluster extent: 6 voxels; z53.50).

Interaction between behavioral control and safety signaling

Both interaction analyses revealed no significant results.

In a series of regression analyses we identified brain regions that showed a

positive correlation either with the analgesic effect or the anxiolytic effect of either

modulation, suggesting that they might be a mediator or source of the effect.

Regression analysis on the analgesic effect of behavioral control

As described above, perceived control over the noxious stimulation led to

increased pain in some participants while it had an analgesic effect in others

(Fig. 2B). However, as expected, the degree of analgesia was accompanied by
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increased activation in the right VLPFC (x,y,z: 36,45,15; z53.01, p,0.05, SVC

corrected; Fig. 3), including negative difference scores for those who did not

benefit from control over the noxious stimulation. The whole brain analysis

revealed additional activation in the left cerebellum (x,y,z: 236,272,236; cluster

extent: 15 voxels; z53.90).

Regression analysis on the analgesic effect of safety signaling

Lower pain intensity ratings during ‘expect low pain’ trials than in ‘expect high

pain’ trials were paralleled by increased activation in the rostral anterior cingulate

cortex (right rACC x,y,z: 15,45,6; cluster extent: 10 voxels; z53.51; left rACC x,y,z:

215,48,6; cluster extent: 5 voxels; z53.29; Fig. 4), left DMPFC/DLPFC (x,y,z:

215,27,45; cluster extent: 5 voxels; z53.53) and left inferior parietal lobe (x,y,z:

251,260,36; cluster extent: 10 voxels; z53.24).

Regression analysis on the anxiolytic effect of behavioral control

Reduction in anxiety through perceived control was accompanied by increased

activation in the left DLPFC (x,y,z: 224, 51, 15; cluster extent: 72 voxels; z54.02;

Fig. 5) and right cuneus (x,y,z: 6,281,42; cluster extent: 5 voxels; z53.34).

Regression analysis on the anxiolytic effect of safety signaling

Regression analyses testing for activation that co-varied with the reduction of

anxiety during the ’expect low pain’ trials did not reveal any significant results.

In a next step we investigated the functional connectivity of the neural sources

of the analgesic and anxiolytic effects using PPI analyses.

Fig. 3. Right VLPFC correlated with the analgesic effect of the behavioral control modulation. The
signal level in the rVLPFC during ‘control’ trials as compared to ‘no control’ trials was positively correlated with
the difference in pain ratings between those conditions (for display purposes thresholded at p,0.005
uncorrected, minimum cluster extent: 5 voxels; shown on a glass brain on the left and overlaid on a standard
structural image (in MNI space) on the right).

doi:10.1371/journal.pone.0110654.g003
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Functional connectivity of brain regions involved in the analgesic effect of

behavioral control

Activity in the right VLPFC that was correlated with pain reduction during

’control’ trials did not show significantly increased functional coupling with any

other brain region.

Functional connectivity of brain regions involved in the analgesic effect of

safety signaling

As shown in Fig. 6, the right rACC correlating with the analgesic effect of safety

signaling showed increased functional coupling with the periaqueductal gray

(PAG; x,y,z: 26,233,218; cluster extent: 2 voxels; z53.51), and the right

Fig. 4. Bilateral rACC and left DMPFC/DLPFC correlated with the analgesic effect of the safety
signaling modulation. (A) Brain regions showing a positive correlation with lower pain during ‘expect low
pain’ trials than during ‘expect high pain’ trials, displayed on a glass brain (left: sagittal, mid: coronal, right:
axial plane; p,0.001 uncorrected, minimum cluster extent: 5 voxels). The bilateral rACC is highlighted in
orange. The left DMPFC/DLPFC is highlighted in red. (B) Bilateral rACC and (C) left DMPFC/DLPFC
activation overlaid on a standard structural image (in MNI space).

doi:10.1371/journal.pone.0110654.g004
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temporal lobe (x,y,z: 54,26,215; cluster extent: 3 voxels; z53.25) during ‘expect

low pain’ compared to ‘expect high pain’ trials. The left rACC, in contrast,

exhibited increased functional connectivity with the left VLPFC (x,y,z557,24,0;

cluster extent: 21 voxels; z53.60), extending into the OFC (x,y,z551,21,26;

z53.49) and with the left cerebellum (x,y,z5230,263,230; cluster extent: 14

voxels; z53.66). The left DMPFC/DLPFC as the second region correlating with

pain reduction showed increased functional connectivity with the left midbrain

reticular formation (x,y,z5212,227,221; cluster extent: 7 voxels; z53.83).

Functional connectivity of brain regions involved in anxiolytic effect of

behavioral control

The left DLPFC that showed a positive correlation in activation with the reduction

in anxiety during control trials did not significantly increase its connectivity to

other brain regions.

Fig. 5. Left DLPFC correlated with the anxiolytic effect of the behavioral control modulation. Activation
in the left DLPFC was related to relatively lower ratings of anxiety (i.e., the composite score of perceived threat
and helplessness) during the control modulation (p,0.001 uncorrected, minimum cluster extent: 5 voxels;
shown on a glass brain on the left and overlaid on a standard structural image (in MNI space) on the right).

doi:10.1371/journal.pone.0110654.g005

Fig. 6. PAG and VLPFC showing increased functional connectivity with the rACC during safety signaling modulation. The right rACC that was
correlated with the analgesic effect of the ’expect low pain’ modulation exhibited increased functional connectivity with the left PAG (x,y,z526,233,218),
shown on a glass brain (A), and overlaid on a standard structural image in MNI space (B) (for display purposes thresholded at p,0.005 uncorrected,
minimum cluster extent: 5 voxels). The left rACC showed increased connectivity with the right VLPFC (x,y,z557,24,0), displayed on a glass brain (C) and
overlaid on a standard structural image in MNI space (D) (p,0.001; minimum cluster extent: 5 contiguous voxels).

doi:10.1371/journal.pone.0110654.g006
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Discussion

The aim of the present study was to compare the neural mechanisms underlying

the analgesic and the anxiolytic effect of two types of modulation of pain

responses: One based on perceived personal control over pain and another based

on different expectations regarding the stimulus intensity. Our data show that the

analgesic and anxiolytic effect can occur independently and that their underlying

neural processes differ depending on the type of modulation. While activation

patterns found during the behavioral control modulation strongly resembled

those known from emotion regulation (i.e., increased activation in the VLPFC for

reduction of pain and in the DLPFC for reduction of anxiety), the analgesic effect

of the safety signaling modulation engaged the well-known descending pain

inhibitory system including the rACC and PAG as well as the VLPFC. Reduction

in anxiety during safety signaling had no distinct neural signature.

Analgesic effect of the two modulatory approaches

In contrast to previous studies [5, 6, 24], perceived control over pain had no effect

on the average pain rating of the sample (Fig. 2A), despite the fact that it reduced

feelings of threat and helplessness (Fig. 2C, D). As revealed by the analysis of the

individual data (Fig. 2B), half of the participants did benefit from control but the

reverse effect (i.e., an increase in pain intensity) was observed in the other half.

Although perceived control has been shown to be negatively correlated with pain

in the past [25–27], there is also evidence suggesting that the effects of

controllability on pain may vary as a function of subject characteristics [28]. In a

study by Rokke and colleagues (which is not perfectly analogous to the present

work, but which serves to outline a general principle), subjects were exposed to

painful stimuli under conditions in which they either had control, or had no

control over their use of pain-coping strategies during the application of noxious

stimulation. Decreases in pain in the ‘‘control’’ relative to the ‘‘no control’’

condition were only observed in subjects who scored highly on a measure of self-

efficacy for managing pain. That is, the pain-reducing effects of increasing the

controllability of a painful situation were selective, and specific to a particular

subgroup of participants. In line with this finding, the impact of the

controllability of impending pain on central nervous system processing has been

shown to vary considerably between individuals [29].

Our finding of greater right VLPFC activation during controllable stimuli than

during uncontrollable stimuli replicates previous observations on perceived

control [6, 7]. As in our previous study [6], the signal level in the right VLPFC was

positively correlated with the degree of pain reduction observed when participants

could control the painful stimuli (Fig. 3), which further supports a direct

relationship between VLPFC activation and pain reduction. In accordance with

our finding, it has recently been reported that patients suffering from functional

pain disorders such as Irritable Bowel Syndrome (IBS) or functional dyspepsia

show compromised engagement of the VLPFC [30–32] and reduced grey matter
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density in this brain region [33]. Interestingly, the present study did not reveal an

increased functional connectivity of the VLPFC during pain relief, suggesting that

the change in pain perception was primarily, if not solely driven by a prefrontal

mechanism.

The analgesic effect of the safety signaling modulation (i.e., ‘expect low pain’ as

compared to ‘expect high pain’ stimulation), in contrast, was related to activation

in the rACC (Fig. 4). The right rACC showed increased functional coupling with

the PAG (Fig. 6 A, B) – a pattern that is strikingly similar to findings on placebo

analgesia [13, 34, 35] and attentional modulation of pain [36–38]. rACC and PAG

are part of the descending pain control system that modulates spinal transmission

of nociceptive information predominantly via opioidergic transmission [39].

Interestingly, the left rACC exhibited increased functional connectivity with the

right VLPFC during ’expect low pain’ trials (Fig 6C, D), resembling findings in

the context of placebo analgesia [40]. Our findings therefore suggest that neural

underpinnings of the experience of pain as being relatively ‘‘safe’’, or low threat,

are not characterized purely by the absence of mechanisms that aggravate pain but

rather that this experience involves active down-regulation of pain perception,

either via an established cortical-brainstem-spinal circuit or via prefrontal cortex

involvement.

Anxiolytic effect of behavioral control and safety signaling

Similarly to the analgesic effect, the mechanisms that imparted reduced anxiety

were different between distinct modulatory approaches. During perceived control,

the decrease in anxiety was positively correlated with activation in the left DLPFC

(Fig. 5). The DLPFC has been associated with emotion regulation [41–46] as has

the VLPFC, although the nature of the association is slightly different. Ventral

aspects of the lateral prefrontal cortex have been involved in ‘‘first-order’’

executive processes, including the strategic regulation of information [47–49]. In

contrast, the DLPFC is thought to govern and direct top-down processes of

cognitive control including those of the VLPFC [11]. A recent transcranial

magnetic stimulation study that manipulated perceived controllability of noxious

stimulation yielded findings that strongly support the effects observed in this

study [50]. Providing subjects with apparent control over whether or not painful

stimuli were administered produced reductions in affective pain ratings.

Repetitive TMS of the left DLPFC interfered with the effect while having no

influence on the modulation of pain intensity.

Notably, as for the VLPFC, we found no increase in functional connectivity for

the left DLPFC during behavioral control. This observation deviates from

previous findings that showed an increased connectivity between lateral prefrontal

regions including the DLPFC and the amygdala during emotion regulation

[51, 52]. Although many reasons might account for this divergence, it should be

pointed out that emotion regulation studies commonly use external stimuli such

as pictures of fearful faces to induce an emotional state. Such external stimuli are

clearly less complex and of less personal relevance than perceived lack of control
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over an aversive stimulation. Furthermore, participants are often explicitly

instructed to employ a regulation strategy whereas in the present study, emotion

regulation was assumed to occur spontaneously, as a consequence of perceived

control.

Surprisingly, no specific neural correlate could be identified for the anxiolytic

effect associated with safety signaling. Although it cannot be ruled out that the

absence of evidence relates to a lack of sensitivity of our paradigm, this suggests

that the lower threat and helplessness ratings in the ‘expect low pain’ condition

are not based on an active down-regulatory neural process but might be the result

of a relative lack of threat.

Limitations of the study

Several aspects of this study might limit the conclusions drawn from it. First, the

relatively small sample size only allows for preliminary conclusions. As shown in

the glass brain inserts to each figure, activations reported here were, however, very

focal. We therefore believe that despite the relatively low number of participants

our results provide valuable first insight into the dissociation of pain and anxiety

modulation on the neural level, which could inspire follow-up studies in a larger

cohort. Second, although perceived control has been shown to modulate pain in

some studies, it did not yield a robust effect in the present study. Some

participants showed a slight analgesic effect, whereas others reported higher pain

intensities during the controllable condition. Because both effects were rather

small, it could be argued that perceived control did not lead to relevant levels of

analgesia. While the observation that perceived control might rather be a ‘‘double-

edged’’ sword that benefits some and while amplifying pain intensity for others

might pose a clinical problem (because encouraging perceived control might

inadvertently lead to more pain among particular individuals), it is of limited

relevance for the present study that did not aim at investigating the potential of

perceived control to reduce pain but rather was designed to identify brain regions

involved in the modulation of pain through perceived control as an example of

internally-based pain modulation. Third, the effects of our two modulatory

approaches might not necessarily be conceptually orthogonal. Participants may

have felt some control when expecting pain to be lower, and likewise when

controlling the length of the stimulation they may have expected pain to be less

aversive. It can, however, be stressed that despite this overlap in effect,

modulations were triggered by dissociable processes. While participants were

aware that the physical properties of the stimulation would be identical in the

‘control’ and the ‘no control’ condition, they expected (and received) different

nociceptive input in the two safety signaling (‘expect low pain’ vs. ‘expect high

pain’) conditions. We therefore believe that although effects of both manipula-

tions might overlap, the origins of the resulting modulation differ.
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Conclusions

In conclusion, the data of our pilot study suggest that on the neural level, pain

modulation is not simply a by-product of anxiety modulation, but that the two

are based on distinguishable neural mechanisms (Fig. 7). While the reduction of

pain was associated with activation in the right VLPFC during a control-based

form of pain modulation and the engagement of the descending pain inhibitory

pathway and right VLPFC during safety signaling, the reduction of anxiety was

related to left prefrontal activation. Our finding of a prefrontal pathway to

control-based pain modulation, that does not involve the classical descending

pain–inhibitory pathway is in line with recent findings [53]. Whether these are

indeed two distinct mechanisms or part of a continuum of mechanisms as has

been proposed for emotion regulation [54] has to be investigated in future

studies. The VLPFC engagement during safety signaling modulation and its

increased functional connectivity with the rACC (Fig. 6B, C) clearly point towards

a continuum. Moreover, additional research is needed to elucidate the

neurochemical processes underlying both types of modulation. In particular, it

has to be investigated whether reappraisal also depends on the endogenous opioid

system that plays a key role in placebo analgesia [35]. Finally, although the group

data showed that both types of modulation were equally effective in reducing pain

and anxiety, inter-individual differences exist in the ability to engage the

underlying mechanisms. Low ability might hamper successful modulation and

should therefore be the target of future studies. The small sample size of our study

Fig. 7. Schematic representation of the neural mechanisms underlying the analgesic and anxiolytic effects of both modulatory approaches. Pain
reduction following the ‘control’ modulation was associated with increased activation in the VLPFC. The safety signaling modulation, in contrast, led to pain
reduction through the engagement of the descending pain inhibitory system including the rACC, which showed increased functional connectivity with the
PAG and the VLPFC. Decreased anxiety during behavioral control was related to increased activity in the DLPFC. No distinct activation could be found for
the effect of safety signaling on anxiety.

doi:10.1371/journal.pone.0110654.g007
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warrants further investigations in larger cohorts to tease apart neural mechanisms

underlying the modulation of pain and anxiety.
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