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Introduction
Computational simulation of biology, and of cancer, is an 
active and increasingly rich area of research.1–3 In in silico 
environments, simulation-based studies and experiments 
can be relatively inexpensive in cost, time, and risk, where 
simulations can be used as tools for hypothesis testing and 
predictive treatments. The trend in cancer modeling in recent 
years has been toward the development of multiscale models. 

Such models allow us to capture the interdependence of bio-
logical phenomena that occur at different biological scales, 
for example combining models of subcellular processes with 
cell–cell interactions, as opposed to single-scale models that 
might operate at one of these scales in isolation. They offer a 
natural framework for studying phenomena, such as cancer, 
which are inherently multiscale in nature, and thus appear 
to offer the cutting edge with regard to potential predictive 

Semantically Linking In Silico Cancer Models

David Johnson1,2, anthony J. Connor3, steve mcKeever4,5, Zhihui Wang6, thomas s. Deisboeck7,  
tom Quaiser8 and eliezer shochat9
1Department of Computing, Imperial College London, London, UK. 2Data Science Institute, Imperial College London, London, UK. 3Department 
of Computer Science, University of Oxford, Oxford, UK. 4Department of Informatics and Media, Uppsala University, Uppsala, Sweden.  
5St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg, Russian Federation. 
6Department of Pathology, University of New Mexico, Albuquerque, NM, USA. 7Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical 
Imaging, Massachusetts General Hospital, Charlestown, MA, USA. 8Roche Pharmaceutical Research and Early Development (pRED), Roche 
Innovation Center, Penzberg, Germany. 9Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland.

AbstrAct: Multiscale models are commonplace in cancer modeling, where individual models acting on different biological scales are combined within 
a single, cohesive modeling framework. However, model composition gives rise to challenges in understanding interfaces and interactions between them. 
Based on specific domain expertise, typically these computational models are developed by separate research groups using different methodologies, pro-
gramming languages, and parameters. This paper introduces a graph-based model for semantically linking computational cancer models via domain graphs 
that can help us better understand and explore combinations of models spanning multiple biological scales. We take the data model encoded by TumorML, 
an XML-based markup language for storing cancer models in online repositories, and transpose its model description elements into a graph-based repre-
sentation. By taking such an approach, we can link domain models, such as controlled vocabularies, taxonomic schemes, and ontologies, with cancer model 
descriptions to better understand and explore relationships between models. The union of these graphs creates a connected property graph that links cancer 
models by categorizations, by computational compatibility, and by semantic interoperability, yielding a framework in which opportunities for exploration 
and discovery of combinations of models become possible.

keywords: tumor modeling, in silico oncology, model exploration, property graphs, neo4j

SUPPLEMENT: Computational advances in Cancer Informatics (a)

CITATIoN: Johnson et al. semantically Linking in silico Cancer models. Cancer Informatics 2014:13(s1) 133–143 doi: 10.4137/CIn.s13895.

RECEIvEd: august 7, 2014. RESUbMITTEd: october 15, 2014. ACCEPTEd foR PUbLICATIoN: october 16, 2014.

ACAdEMIC EdIToR: JT Efird, Editor in Chief

TYPE: methodology

fUNdINg: Contributions by DJ, sm, ZW, and tsD toward the development of tumormL were initially supported by the european Commission under the transatlantic tumor model 
Repositories (TUMOR) project (Contract # FP7-ICT−2009.5.4–247754). Contributions by AJC are supported in part by the UK Engineering and Physical Sciences Research Council 
(EPSRC) and F. Hoffman la-Roche Ltd. Contributions by SM are supported in part by the Government of the Russian Federation (Grant 074-U01). The authors confirm that the funders 
had no influence over the study design, content of the article, or selection of this journal.

CoMPETINg INTERESTS: AJC discloses grants and non-financial support from Hoffman-La Roche, and grants from the Engineering and Physical Sciences Research Council, during 
the conduct of the study, and grants and non-financial support from Hoffman-La Roche outside the work presented here. All of the aforementioned disclosures were in support of AJC’s 
PhD research. other authors disclose no competing interests.

CoPYRIghT: © the authors, publisher and licensee Libertas academica Limited. this is an open-access article distributed under the terms of the Creative Commons CC-BY-nC 3.0 
License.

CoRRESPoNdENCE: david.johnson@imperial.ac.uk

Paper subject to independent expert blind peer review by minimum of two reviewers. all editorial decisions made by independent academic editor. Upon submission manuscript was 
subject to anti-plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and 
legal requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating to 
human and animal study participants, and compliance with any copyright requirements of third parties. this journal is a member of the Committee on Publication ethics (CoPe).

http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com/journal-cancer-informatics-j10
http://dx.doi.org/10.4137/CIN.S13895
mailto:david.johnson@imperial.ac.uk


Johnson et al

134 CanCer InformatICs 2014:13(s1)

power and clinical applicability. There are generally two 
kinds of modeling approaches4: a bottom-up approach 
that looks at simulation from a functional and reduction-
ist point of view, integrating multiple functional models of 
low-level processes; and a top-down approach that is formu-
lated from holistic observations of biological phenomena to 
develop models that fit observed behaviors and outcomes.  
In cancer modeling, both of these approaches are used to 
investigate and simulate different aspects of cancer, and 
there is an increasing interest in combining mathematical 
modeling techniques in a hybrid fashion. Alas, as these 
models are typically created in isolation, interoperability is 
very rarely designed into the system.

One of the best hopes for developing novel models of 
cancer that span multiple biological scales is to reuse and 
extend existing models. However, the integration or exten-
sion of existing models of cancer (or elements of those models) 
currently represents a substantial technical challenge in the 
field.5 Composition of models or model components typically 
relies on specialist domain knowledge about model constructs, 
intended interactions, computational interfaces, as well as 
application domain knowledge, for example, the underly-
ing biochemistry. Thus, a prerequisite for composing models 
is being able to reason semantically about commonalities or 
links between different models.

Efforts to relate data and models to domain knowledge 
are common in biology as the amount and diversity of data 
requires standards and structures in order to effectively manage 
it. Mature examples of open standards and ontologies include 
MicroArray and Gene Expression - Tabular format (MAGE-
TAB),6 Biological Pathway Exchange (BioPAX),7 and the Gene 
Ontology (GO)8,9 to name but a few. Computational models 
can also be thought of as a kind of data, where the plethora of 
published models also need standards and structures. Mature 
standards for functional descriptions of computational models 
include markup languages such as CellML10,11 and the Sys-
tems Biology Markup Language (SBML).12,13 Dealing with 
the diversity of cancer models available has been discussed 
previously14 and is a continuing challenge in the wider context 
of biological modeling when considering numerous interoper-
ability efforts ongoing in biology, where at the time of writing 
there are over 545 published standards.15

The de facto technologies for linking knowledge to data lie 
within the Semantic Web stack, which includes a set of speci-
fications and languages including the Resource Description 
Framework (RDF),16 the Web Ontology Language (OWL),17 
SPARQL Protocol and RDF Query Language (SPARQL),18 
and the Semantic Web Rule Language (SWRL).19 These 
standards have been developed based on the philosophy of 
open data over the World Wide Web, and properties yielded 
by developing computational engines on data structures for 
logical inference. Advanced software has been developed for 
logical reasoning over linked data using these standards, such 
as HermiT20 and Pellet.21

While the Semantic Web technology stack is mature and 
its standards fully supported by the World Wide Web Consor-
tium (W3C), the primary aim of such a technology is to facil-
itate machine processing and interoperation in a distributed 
fashion across the Web. The approach presented in this paper 
makes the assumption that all of the data, both domain-spe-
cific knowledge and model descriptions, lie within the scope 
of a single database, where in silico cancer models are semanti-
cally linked within this context. The overheads levied by the 
Semantic Web technology stack no longer restrict perfor-
mance for querying data and for within-database analytics.

Our work in this paper builds on TumorML, a domain-
specific XML-based markup language for computational 
cancer model description22 based on our experiences and 
requirements23 from the European Commission’s Transatlan-
tic Tumor Model Repositories (TUMOR) project.24 The aim 
of the project was to develop a European-based digital cancer 
model repository to link and interoperate with a similar estab-
lished digital model repository (DMR) based in the United 
States, and developed by the Center for the Development of a 
Virtual Tumor (CViT).25 TumorML was developed to act as 
the standard communication format between elements of the 
TUMOR infrastructure, and to facilitate model exportation. 
Its schema was designed to allow marked-up cancer model 
descriptions to hold essential metadata for search and retrieval 
of models from online repositories, as well as the linking of 
models via their computational interfaces. We extend and 
apply TumorML in this work with a property graph-based 
data model 26 and corresponding database implementation 
that semantically links model descriptions to each other via 
domain knowledge stored in a graph database.

A property graph is a simple graph that consists of nodes 
and edges (representing relationships), where each node and 
edge can possess properties that store specific values. A tra-
versal is how you query a property graph, navigating from 
starting nodes to related nodes according to an underlying 
algorithm. In contrast to traditional relational databases, que-
ries can be run on graph data that map more conventionally to 
real-world questions, as many queries deal with how entities 
are related rather than finding or filtering on individual prop-
erties of entities. For example, social networks are commonly 
expressed as graphs, where typical queries might map to ques-
tions such as “Who are Alice’s friends?” or “Does Alice have 
any friends within 2-degrees of separation from Bob?”. While 
directed graphs have been used in data management in biol-
ogy, graph models are typically used in describing biological 
data, such as metabolic and signaling pathways, taxonomies 
of terms, and structural and sequence data.27–29 Our approach 
is to combine metadata sets with representations of computa-
tional models, rather than with biological data itself.

Implementation
We store our graphs and queries in Neo4j, an open-source graph 
database written in the Java programming language.30 Neo4j 
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was chosen as the graph database as it is a mature, open source, 
general-purpose NoSQL database system that implements 
the property graph data model. Neo4j uses its own query 
language called Cypher, which was designed to be expres-
sive of the domain at hand rather than of the data structures. 
Cypher queries are declarative statements that allow querying 
and updating of graphs. They can be formulated to create and 
delete nodes and relationships, update properties in the graph, 
as well as traverse the graph and match certain sub-graph pat-
terns. For example, given a graph consisting of nodes repre-
senting people, and relationships linking people as ‘friend of ’, 
the Cypher query to ask the above question, “Who are Alice’s 
friends?”, may look like that shown in Listing 1.

In Listing 1, line 1 specifies to iterate through all nodes 
in the graph. Line 2 adds a constraint as only nodes that are 
connected to nodes containing the property name equating to 
the value “Alice” connected by the relationship FRIEND_OF. 
Line 3 returns each matching node based on lines 1 and 2. 
For brevity’s sake, we will not describe Cypher’s syntax and 
functionality here; a full introduction to the Cypher query 
language can be found in a book on Neo4j.31

Before loading any in silico cancer models into our graph 
database, we define how our models should link together via 
some domain-specific knowledge. This provides the con-
text for our investigation, where our semantic queries utilize 
domain knowledge in order to return relevant information. 
For example, given a model, A, we may formulate a query 
to ask the question, “What other models are classified in the 
same categories as A?” In a relational model, this query would 
match values in a particular column to the category value, 
whereas in a property graph model, this query traverses the 
database graphs to look for models that are connected to A via 
a node representing the category of A. In other words, from A 
we traverse to a node representing the category of that cancer 
model, then return the set of all other model nodes connected 
to that category node.

As a starting point, we took the data model used 
in the TumorML XML schema produced out of the 
TUMOR project.24 The schema allows the recording of 
metadata relating to cancer model descriptions on a num-
ber of levels. Firstly, TumorML stores metadata relat-
ing to the model description documents themselves. This 
enables basic curation using Dublin Core,32 linking with 
relevant people and organizations using xCard,33 as well as 
referencing/citation metadata using BibTeXML.34 Also,  
a TUMOR-specific taxonomy of cancer models was devel-
oped allowing for categorization of cancer models stored 
within the project’s infrastructure.22 Secondly, abstract model 
descriptions are used to describe the functional interfaces 
to modularized cancer models in a black box fashion where 
information flows through parameter descriptors. The markup 
is inspired by xMML.35 Within the model descriptions, 
implementation metadata such as hardware and software 
environment requirements to run associated code or binary 

implementations are included in TumorML model descrip-
tions. This allows computational engines to interpret and exe-
cute stored models, where appropriate. The entity-relationship 
diagram in Figure 1 illustrates this data model. Meanwhile, 
Tables 1 and 2 summarize our mappings from the concepts 
outlined in Figure 1 to property graph concepts.

We initially loaded in three different domain- 
specific property graphs taken from within the TumorML 
schema: a Tumor Model Metadata model; a data model 
of computational types (eg, Strings, Integers, etc.); and a 
data model representing units (SI units and additional rel-
evant units). Figure 2 shows a visualization of our Tumor 
Model Metadata model that is based on the TUMOR 
model taxonomy. What we can see here is a hierarchy 
where the endpoints of the graph represent taxa relating 
to each classifier. For example, the mathematical tech-
nique utilized, labeled Math, can take one of three values –  
Continuous, Discrete, or Hybrid, and SingleScale models 
may be representative of phenomena acting on specific scales, 
such as Organ or Subcellular. When new model descriptions 
are added to the graph database, they are categorized by 
connecting them to the relevant taxon. The edges connecting 
models to this domain-specific portion of the graph allow us 
to group related models together.

Listing 1. An example Cypher query to find friends of Alice.

is

is

has metadata

has outputhas input

in

has metadata

contains

Parameter

Unit

Term

CLI data type

Reference

Model

Category

Organization Person

figure 1. entity-relationship diagram showing the tumormL data 
model. Here, we can see that a model has input and output Parameters. 
Parameters are classified by Unit and Command Line Interface (CLI) data 
types, and also have metadata terms attached to them. other metadata 
includes bibliographic references, People, and organizations, as well as 
Categories to classify the model. models can also be compositions and 
contain other models.
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We also load into the database domain property graphs to 
represent model parameter types and their units. The purpose 
of these is particularly relevant in the context of componen-
tized cancer models, where linking model parameters to type 
and unit metadata allows us to describe how components may 
communicate with each other based on their computational 
interfaces and semantic compatibility. For example, the 
output of one component model may be a double-precision 

floating-point number, where its value represents a chemical 
concentration level of the phosphorolase-53 growth factor, 
expressed as molar concentration in µM (M = moles/liter). 
Therefore, it should only be able to connect to another model 
via an input with the same parameter profile (type = double-
precision floating-point number; unit = µM). Where types 
and units are imprecise, for example, if the unit were in nM 
rather than µM, a computational execution environment, such 
as a workflow engine or simulation software, might still allow 
these parameters to be connected by identifying and normal-
izing these differences in scales. Likewise, type conversions 
and other unit conversions could also take place. With our 
graph database populated with three kinds of domain prop-
erty graphs (model categorizations, computational types, 
units), we can load in our cancer model descriptions. Where 
in TumorML, metadata fields are used to annotate portions of 
models with domain-specific ontology or controlled vocabu-
lary terms, in our graph database, we now create direct links 
to nodes that exist in our domain property graphs to annotate 
the models.

Our approach described so far relies on the graph data-
base being pre-loaded with relevant domain information in 
order to link our cancer models. However, we can also add 
domain information to our domain-specific graphs on the 
fly by making use of external services to semantically enrich 
the graph database, without having to convert and load entire 
controlled vocabularies or ontologies into our graph database. 
As an example, we use NCBO’s BioPortal,36 an open reposi-
tory of biomedical ontologies that provides access via Web 
services and Web browsers to ontologies developed in OWL, 
RDF, OBO format,37 and Protégé38 frames. Instead of load-
ing an entire ontology or vocabulary downloaded from Bio-
Portal, we query BioPortal for one particular term to annotate 
a model. In our case, we may seek to annotate a model input 
or output parameter. An appropriate BioPortal query allows us 
to retrieve a relevant term along with its synonyms and then 
store these as new property graphs in Neo4j. For this work, 
we have limited our scope to the NCI thesaurus39 (NCIt), as it 
is a rich and established collection of terms with good cover-
age for cancer research domains, which includes community 
standards, such as CDISC.40 This way, models are linked via 
NCIt codes, or by terms deemed synonymous with each other 
(including abbreviations), allowing property graph queries to 
traverse between models linked by common terminology. This 
could be easily extended to also relate coded terms together via 
BioPortal’s user-submitted mappings that would allow graph 
traversals between terms taken from a variety of different 
vocabularies and ontologies.

results
To illustrate how we apply our property graph model, and also 
how to link together models expressed as graphs, we present 
two examples: one for describing a single model translated 
from TumorML and the other for mapping a domain-specific 

Table 1. Details of relationships in our property graph model that 
map to the entity-relationship representation shown in figure 1. 
these relationships roughly translate to those shown in the entity-
relationship diagram of the tumormL data model shown in figure 1. 
for example, the relationship Has_InPUt links a model to an input 
Parameter. We have extended the tumormL data model slightly, for 
example introducing the sYnonYm_of_term relationship that 
links synonymous terms together.

RELATIoNShIP TYPE dESCRIPTIoN

Has_InPUt Connects a model with its input  
parameters

Has_oUtPUt Connects a model with its output  
parameters

Has_metaData Connects models and parameters to  
metadata

Has_CateGorY Connects categories with other  
categories (ie, subcategories)

ContaIns Connects a model with other sub- 
models (to show model composition)

sYnonYm_of_term Connects terms with synonymous terms

CreateD_BY Connects a model with a creator  
(or author) of the model

ContrIBUteD_BY Connects a model with a publisher  
of the model description (ie, the  
database record)

 

Table 2. Details of node types in our property graph model that 
map to the entity-relationship representation of the tumormL data 
model shown in figure 1. the node types in our graphs map directly 
to the entities in the tumormL data model. note, we have not 
included CLI data types as the aim is not to enable the discovery 
of computational compatibilities, but rather for compatible models 
beyond implementation.

NodE TYPE dESCRIPTIoN

moDeL represents an abstract model description

Parameter represents a model interface parameter

CateGorY metadata representing a categorization of  
a cancer model

term metadata representing a controlled  
vocabulary term

UnIt metadata representing a unit of measurement

Person represents a person

orGanIsatIon represents an organization

referenCe represents a bibliographic reference linked  
to the model
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modeling framework ’s modules into individual property 
graphs that are linked via domain-specific semantics.

example 1: eGFr-erk pathway module. For our first 
example, we took an EGFR-ERK pathway module,41 which 
describes the Ras/Raf/mitogen-activated protein kinase 
(MEK)/extracellular-signal-regulated kinase (ERK) pathway 
that is a key signaling network, governing proliferation, dif-
ferentiation, and cell survival.42 Briefly, binding of epidermal 
growth factor (EGF) to EGF receptor (EGFR) produces a 
series of downstream effects through the activation of cell 
decision-making components.43 Pathway dynamics are regu-
lated by material balance and kinetic equations as well as by 
reaction rates that are dependent on the changes in concentra-
tions of pathway components over time, as done in many other 
modeling studies.44–46 Readers are encouraged to refer to the 
original article to have a further understanding of the model.

Here, the pathway module was modeled using TumorML, 
as set out in previous work,22 and we transformed the 
TumorML description into our graph-based representation. In 
Listing 2, we show the TumorML description of the EGFR 
module. In Listing 3, we show the same description expressed 

in a Cypher query that creates relevant nodes and edges to 
form a sub graph. Lines 19–24 of the Cypher query shown in 
Listing 3 create direct links to domain-specific graph nodes, 
in particular to those nodes in our TUMOR model taxonomy 
depicted in Figure 2. The EGFR-ERK module loaded into 
Neo4j using the Cypher query in Listing 3 yields the graph 
shown in Figure 3.

When we have multiple models stored in the same data-
base, we gradually build up connected property graphs of 
models clustered around metadata nodes that are part of the 
domain graphs. This enables us to formulate Cypher queries 
that ask questions about the connectedness of nodes. For exam-
ple, a query that returns the EGFR-ERK Pathway depicted in 
Figure 3 might ask the question, “What models use continu-
ous mathematics?”, where the graph database query would be 
“What model nodes are connected to the continuous node in 
our database?”. We express this query in Cypher in Listing 4.

Line 1 of this query seeks to set the context for the pat-
tern machine, iterating through all nodes. Line 2 attempts to 
match sub-graphs that consist of any node, n, connected by a 
relationship HAS_METADATA to a Continuous node. The 
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figure 2. tUmor taxonomy transposed to a property graph model and visualized in the neo4j browser application. In this graph, we can see a hierarchy 
of categorizations. for example, the node Cancer has subcategories corresponding to Glioma, nephroblastoma, Breast, Lung, and Generic.
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1. <tumorml xmlns=http://www.tumor-project.eu/tumorml/1.2
      xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
      id="urn:miriam:tumor:000001">

2.    <header>
3.       <title>EGFR-ERK Pathway</title>
4.       <description>
5.           This is a multiscale agent-based model for investigating 

expansion dynamics of epithelial cancers (e.g., glioma, NSCLC)... 
6.       </description>
7.       <creator>
8.          <person id="urn:tumorml.org:user:000001">
9.              <fullname>Zhihui Wang</fullname>
10.          </person>
11.       </creator>
12.       <publisher>
13.          <person id="urn:tumorml.org:organisation:000001">
14.             <fullname>Complex Biosystems Modeling Laboratory (CBML) 

Massachusetts General Hospital</fullname>
15.          </person>
16.       </publisher>
17.       <contributor>
18.           <person id="urn:orcid:tumor:0000-0003-2850-3614">
19.               <fullname>Thomas S. Deisboeck, M.D.</fullname>
20.           </person>
21.       </contributor>
22.       <date>2012-06-22T00:00:00+00:00</date>
23.       <math>continuous</math>
24.       <scale>subcellular</scale>
25.       <biocomplexityDirection>bottomUp</biocomplexityDirection>
26.       <cancer>Lung Cancer</cancer>
27.       <homogeneity>homogeneous</homogeneity>
28.       <treatmentIncluded>false</treatmentIncluded>
29.    </header>
30.    <model>
31.        <parameters>
32.           <in name="egf" optional="0">
33.               <value type="double"/>
34.           </in>
35.           <out name="cell cycle time" optional="0">
36.               <value type="double"/>
37.           </out>
38.           <out name="PLC_g" optional="0">
39.               <value type="double"/>
40.           </out>
41.        </parameters>
42.    </model>
43. </tumorml> 

Listing 2. tumormL description of the eGfr-erK pathway module.

query then specifies to return the ID and Title properties of 
any matching nodes as a list. A selection of matching nodes is 
shown in Table 3 (this is not exhaustive for brevity).

example 2: Vascular tumor growth models. Our sec-
ond example deals with angiogenesis, an essential process in 
normal tissue evolution and maintenance. This physiological 
process provides blood, which brings with it oxygen and nutri-
ents, to many tumors allowing them to grow and spread. For 
many years angiogenesis has been a focus of intensive research, 
with several effective angiogenesis-related antitumor therapies 
developed by the pharmaceutical industry.47 Here, we focus 
on a family of models developed by Thomas Alarcón and col-
laborators that has been developed into an object-oriented 
(OO) modeling framework for implementing hybrid and mul-
tiscale models of vascular tumor growth by the University of 
Oxford’s Department of Computer Science, in conjunction 
with the Wolfson Centre for Mathematical Biology. The focus 
of the framework development has been to apply software 
engineering techniques that allow its elements to be highly 

reusable and extensible. Models published by Alarcón et al, 
in particular the family of models discussed and extended 
in Ref. 48, have been reverse-engineered in order to extract 
and abstract the common methodologies and data structures 
involved in the development of vascular tumor growth mod-
els. The OO framework has been developed based on these 
abstractions, and a functioning implementation of the frame-
work has been developed in C++. The framework is presented 
fully by Connor et al in Ref. 49.

To demonstrate the use of our graph representation for 
exploring model composition, we loaded into our graph data-
base model descriptions of components of the tumor growth 
modeling framework described above. The reason for using 
such a framework for our exemplar is that it contains a coher-
ent, modular set of models that interoperate with each other in 
a predictable way. Thus, we are able to show how single-scale 
models can be linked together semantically to form multiscale 
models within the context of existing multiscale models. 
Moreover, through the use of our graph-based data schema, 
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Listing 3. Create: a Cypher query for creating the eGfr-erK pathway module in neo4j.
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figure 3. the eGfr-erK pathway module as a property graph and visualized in the neo4j browser application.

model developers may explore the modeling framework with 
different kinds of queries that would not normally be straight-
forward without metadata and a means to compute over it.

In Figure 4 we have illustrated a portion of the vascular 
tumor growth framework, highlighting a simple case of inter-

facing with a model, using the Unified Modeling Language 
(UML) where the diagram was produced using Visual Para-
digm for UML,50 a computer-aided software engineering 
tool. In this case, objects of type Alarcon2005SubCel-
lularModel interact with Cell objects that are collectively 
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contained in a CellPopulation object. The parameters that 
are passed between the objects include chemical concentra-
tions, and information such as cell state, mass, and cycle 
times. Listing 5 shows the corresponding Cypher query 
to create the property graph describing the Alarcón 2005 
subcellular model given in Ref. 51. After loading all of the 
framework’s model descriptions into the graph database, we 
can begin to explore our semantically linked models with 
Cypher queries.

We demonstrated earlier how we could link models by 
categorizations of cancer models. Now, using the example of 
the vascular tumor growth modeling framework, we can show 
how models can be linked less trivially through annotated 
model inputs and outputs. For example, queries involving 
cancer model parameters might ask, “What cancer models have 

input parameters that are compatible with another model’s  
output parameters?”. Based on how we have linked our model 
parameters and variables to domain-specific data, such as 
using our controlled vocabulary terms, standard units, and 
command-line data types, we can determine the most com-
patible single-scale models that could be used to compose a 
multiscale compound model. This can be expressed in Cypher 
as shown in Listing 6.

Line 1 seeks to iterate through all patterns of nodes, where 
the pattern consists of a model node n connected to an input 
parameter p, which is in turn connected to a metadata term 
meta that is shared with an output parameter q of a model 
m. Next, line 2 specifies that node n should not be the same 
as node m (to omit finding itself as a compatible model in the 
query). Finally, line 3 specifies to return all matches as a list 
of pairs of model titles under two headings, where ModelA  
has outputs that match inputs for ModelB, along with what 
terms are matched as NCIt codes. An example output to the 
query is shown in Table 4.

In this example, we can see that, based on the metadata terms 
with which model inputs and outputs are annotated, the outputs 
of the subcellular models are compatible with the inputs of the 
VEGF calculator models. Although the model para meters have 
different labels (under table headings Output A and Input B),  
the annotated NCI terms ensure specific and identical meaning. 
C1272 corresponds to the NCIt code for Recombinant Vascu-
lar Endothelial Growth Factor (VEGF), and C28217 to the 
term for Intracellular. Explicitly, then, the combination of these 
terms indicates that the VEGF calculator components can be 
connected via intracellular VEGF to the Alarcón 2005 sub-
cellular model. Here, importantly, by capturing compositional 
relationships such as those that we know to exist between the 

Listing 4. Pattern matching: a Cypher query to find model nodes 
connected to both Imageable and continuous nodes.

Table 3. List of model node properties output from the example 
query in Listing 4.

Id TITLE

urn:miriam:tumor:000001 eGfr-erK Pathway model

urn:miriam:tumor:000004 alarcón 2005 subcellular model

urn:miriam:tumor:000005 owen 2011 subcellular model

urn:miriam:tumor:000007 alarcón 2005 VeGf calculator

urn:miriam:tumor:000008 alarcón 2006 VeGf calculator

 

SubCellularModel

ODEBasedSubCellularModel

Owen2011SubCellularModel

Alarcon2005SubCellularModel

RuleBasedSubCellularModel

Alarcon2003SubCellularModel

Cell state, cell mass, cell cycle time,
intracellular p53 concentration,

intracellular VEGF concentration,
intracellular oxygen concentration,

intracellular p27 concentration,
intracellular cyc-CDK complex

concentration, intracellular Cdh1
concentration, intracellular

non-phosphorylated RB concentration

Cell mass, cell cycle time, intracellular
p53 concentration, intracellular VEGF

concentration, intracellular oxygen
concentration, intracellular p27

concentration, intracellular cyc-CDK
complex concentration, intracellular

Cdh1 concentration, intracellular
non-phosphorylated RB concentration

Cell distribution

CellPopulation

Cell

figure 4. UmL class diagram illustrating parameters passed between subcellular models and cell objects.
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subcellular models and VEGF calculators in an existing family 
of multiscale models, we validate our approach.

Finally, another kind of query we may ask involves reason-
ing on compositional relationships between existing multiscale 
models. While the previous example uses Cypher to recom-
mend a composition, we may have stored models that we know 
are already composed of sub-models. Such compositions are 
denoted in our database by the CONTAINS relationship, as 
shown in Figure 5. This property graph expresses the fact that 
the Alarcón 2003 model is composed of a subcellular model, 
a cell proliferation model, a vascular structural adaptation 

model, and an oxygen calculator. Each of these sub-models is 
associated with a specific single scale via appropriate metadata 
nodes. Questions such as “Over what biological scales does 
the Alarcon 2003 model extend?” are now possible. Clearly, 
an appropriately phrased query would return a list containing 
the Cell, Tissue, and Subcellular scales.

discussion
To date, many computational models of cancer have been 
developed to account for phenomena occurring at individual 
biological scales. One of the major challenges we now face is 

Listing 5. Create: a Cypher query to describe the alarcón 2005 sub cellular model shown in figure 4.
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figure 5. the alarcón 2003 model and its component models and 
biological scale metadata, represented as a property graph and 
visualized in the neo4j browser application.

Listing 6. Recommend compatible models: a Cypher query to find model 
nodes that have parameters that are compatible using metadata terms. 

Table 4. output of query on matching model outputs to inputs.

TERMS ModELA ModELb oUTPUT A INPUT b

C1272, 
C28217

alarcón 2005 
subcellular 
model

alarcón  
2005 VeGf  
calculator

vegf cellular_vegf

C1272, 
C28217

alarcón 2005 
subcellular 
model

alarcón  
2006 VeGf  
calculator

vegf cellular_vegf

to integrate and extend these models into a fully multiscale 
computational framework. However, model composition and 
extension is non-trivial, requiring specialist domain know-
ledge. Our approach intends to facilitate both the integration 
of single-scale models across multiple scales and the extension 
of existing multiscale models. We achieve this by enabling 
the annotation of cancer models and the formation of seman-
tic links between them through the use of a property graph 
database. Our approach, by making in silico models of can-
cer more understandable, also has the potential to close the 
gap between experimentalists and modelers and to encourage 
greater collaboration between them.

We believe that graph databases have a very relevant place 
in informatics systems for cancer study, and also more broadly 
in biomedical informatics. While semantic technologies are 
mature and well supported by organizations such as the W3C, 
much of the philosophy behind their development is based 
on interoperating systems for linked data across the Internet. 
With our tumor model graphs, we have taken the approach 
where metadata is stored alongside model descriptions, remov-
ing much of the overhead that comes with systems built on 
RDF and OWL. We, however, should make it clear that we 
do believe that the Semantic Web stack has its place and its 
uses. For importing and exporting data and metadata from a 
tumor model repository, we would certainly expect to leverage 
some or all of these technologies, and this is why the XML 
markup in TumorML was originally developed – to transmit 
such data in a standardized and interoperable format, which 
could be combined with the Semantic Web’s XML-based tools 
and formats.

In summary, we have presented a property graph model for 
representing tumor models so that combinations of models can 
be explored, based on semantic compatibility. A single graph 
database can be used to store domain data, such as taxono-
mies, controlled terminologies, and ontologies alongside model 
descriptions. By annotating parameters with command-line 
interface data types, we can validate what might computationally 
fit together. Linking model descriptions to unit metadata allows 

us to reason about relative scalings between parameters, and by 
annotating with biological terms, as in the previous example 
using NCI codes, we can check the semantic compatibility 
of parameters based on biological knowledge (terms). We can 
then build relatively simple queries that propose links between 
models. In the future, we aim to build recommendation queries 
that could be quantified with compatibility metrics based on 
the proportions of common annotations, and also the distance 
of the metadata paths where terms might not match directly, 
but have common ancestry within ontologies or other relations 
between annotated terms.

To date, we have demonstrated the possibilities for 
exploration of model composition using Cypher queries and 
a number of existing multiscale cancer model descriptions as 
test data. Efforts are underway to use this work as the basis for 
developing a set of usable software tools for exploring cancer 
models. In particular, we believe that the effective utilization 
of several modeling approaches: continuum models, discrete 
models as well as fitting of model parameters via biological 
and clinical data may be optimized using this methodology. 
The work described in this paper is fully available as an inter-
active demo and can be downloaded as a Neo4j GraphGist at 
http://gist.neo4j.org/?6038a7b526bfa48da2c0.
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