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Abstract

Due to ethical and logistical concerns it is common for data monitoring committees to periodically 

monitor accruing clinical trial data to assess the safety, and possibly efficacy, of a new 

experimental treatment. When formalized, monitoring is typically implemented using group 

sequential methods. In some cases regulatory agencies have required that primary trial analyses 

should be based solely on the judgment of an independent review committee (IRC). The IRC 

assessments can produce difficulties for trial monitoring given the time lag typically associated 

with receiving assessments from the IRC. This results in a missing data problem wherein a 

surrogate measure of response may provide useful information for interim decisions and future 

monitoring strategies. In this paper, we present statistical tools that are helpful for monitoring a 

group sequential clinical trial with missing IRC data. We illustrate the proposed methodology in 

the case of binary endpoints under various missingness mechanisms including missing completely 

at random assessments and when missingness depends on the IRC’s measurement.
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1. Introduction

When conducting a clinical trial that utilizes a subclinical and/or subjective primary 

endpoint it may be necessary to verify the local investigator assignment of the outcome 

variable. Sometimes this verification is mandated by a regulatory agency or it may be 

preferred by a study sponsor. The advantage to verify the outcome is that it may decrease 

misclassification of the outcome in studies performed at multiple sites. As a recent example, 

consider a phase II clinical trial to investigate the efficacy of an experimental monoclonal 

antibody in combination with chemotherapy in patients with relapsed chronic lymphocytic 

leukemia (CLL). A common endpoint in trials targeting CLL is a binary indicator of 
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complete response (CR) of disease following the completion of the therapeutic regime. To 

standardize the assessment of CR in CLL trials, most studies now use the NCI revised 

guidelines for determining CR [1], as shown in Figure 1. It is clear that the CR criteria in 

Figure 1 are subclinical and subjective in nature, requiring radiographic assessment of 

lymph node size. In this case, the trial’s primary endpoint may be validated by an 

independent review committee (IRC). A recent a paper by Dodd et al. [2] reports an 

additional seven trials that used an IRC to review the cancer progression measurements of a 

local investigator: two renal cell carcinoma studies, one colorectal cancer study, and four 

breast cancer studies.

In the setting of the CLL trial described above, it would not be unusual for an independent 

data monitoring committee (IDMC) to periodically assess the futility, and possible efficacy, 

of the experimental intervention through formal hypothesis testing. In this case a group 

sequential framework would be natural for maintaining frequentist error rates after 

conducting multiple interim analyses of accruing data. A great deal of research has been 

conducted in the area of group sequential methods and it is well known that the operating 

characteristics of a group sequential design depend on, among other things, the exact timing 

of interim analyses. The timing of sequential analyses is measured by the proportion of 

statistical information obtained at an interim analysis relative to the maximal information 

that is anticipated at the final analysis of the trial [3]. Thus it is important to reliably estimate 

statistical information at each interim analysis in order to properly implement and 

potentially re-power a chosen group sequential design [4,5]. However, when an IRC is used 

to adjudicate a trial endpoint there may be a subset of individuals who do not have verified 

IRC measurements at the time of an interim analysis because the final assessment of their 

outcome has yet to be returned by the IRC. This results in a portion of trial patients whose 

primary response from the IRC is missing but whose assessment from the local site (which 

is typically much quicker to obtain) is known. Relying solely upon validated responses at the 

time of an interim analysis can result in misleading estimates of statistical information (at 

best) and opens the possibility of biased estimates of treatment effect (at worst) [2,6]. While 

the local investigator measurements only serve as a surrogate for the IRC outcome 

measurements, use of this information on observations that are missing validated outcomes 

may be helpful in estimating statistical information for sample-size recalculations (also 

known as sample size reestimation) and for timing future analyses.

In the current manuscript we consider the use of information from local assessments when 

monitoring an IRC validated binary endpoint such as that encountered in the CLL trial 

described above. This setting allows us to assess the proposed utility of local assessments in 

estimating statistical information in clinical trials where a mean-variance relationship exists, 

and serves as a case study for the importance of information estimation when monitoring a 

clinical trial with group sequential stopping boundaries. In Section 2 we discuss the 

importance of accurately estimating statistical information when implementing group 

sequential stopping rules. This section concludes with an example to illustrate the impact 

that missing IRC data can have on the operating characteristics of a group sequential design. 

In Section 3, we propose missing data techniques to aid in estimating statistical information 

and show how these methods can be used for implementing group sequential tests. In 
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Section 4 we present a simulation study to illustrate the utility of the proposed approach and 

conclude with a discussion of the challenges of monitoring group sequential clinical trials 

with IRC validated endpoints.

2. The Role of Statistical Information in Implementing Group Sequential 

Trial Designs

Consider the CLL trial where interest lies in estimating the effect of intervention on the 

probability of CR (a binary endpoint). Further, suppose that the ratio of the odds of CR 

comparing intervention to control is used to assess efficacy. Let Yki denote the response of 

individual i in treatment arm k (k = 1 for control, k = 2 for intervention) with associated 

response probabilities given by pk = Pr[Yki = 1]. The odds of CR for group k is then given by 

Oddsk = pk/(1−pk), k = 1, 2, and the log-odds ratio is given by ψ ≡ log (Odds2/Odds1). 

Finally, suppose that the null hypothesis to be tested is H0:ψ = 0 against the one-sided 

alternative Ha:ψ < 0.

Now consider a group sequential test of the above hypothesis. For testing a one-sided 

alternative, many commonly used group sequential stopping rules consider continuation sets 

of the form Cj = (aj, bj] such that −∞ ≤aj ≤bj ≤ ∞ for j = 1,⋯, J analyses. These boundaries 

may be interpreted as the critical values for a decision rule. For instance, in the CLL trial a 

test statistic less than aj would correspond to a decision in favor of superiority of the 

intervention while a test statistic exceeding bj would correspond to a decision of futility 

regarding the intervention. Particular families of group sequential designs correspond to 

parameterized boundary functions that relate the stopping boundaries at successive analyses 

according to the proportion of statistical information accrued. For instance, in the context of 

the CLL trial, if we calculate a normalized statistic  where ψ̂
j is the 

maximum likelihood estimate of the log-odds ratio computed at analysis j with 

corresponding variance Var[ψ̂
j], the proportion of statistical information accrued at analysis 

j can be calculated as Пj ≡ Var[ψ̂
J]/Var[ψ̂

j] where Var[ψ̂
j] is the variance of the maximum 

likelihood estimate of the log-odds ratio computed at the final analysis of the trial under a 

presumed maximal sample size. That is, Пj represents the fraction of total statistical 

information, defined as the inverse of the variance of the final odds ratio estimate, available 

from all patients at the time of interim analysis j. It then follows that for some specified 

parametric functions f* (·), the critical values for a decision rule at analysis j can be given by 

aj = fa (Пj) and bj = fb (Пj). For critical values on the normalized Z-statistic scale, popular 

examples of f* (·) include a one-sided version of the Pocock [7] stopping rule that takes fa 

(Пj) = −G, fb (Пj) = ∞ and a one-sided version of the O’Brien-Fleming [8] stopping rule that 

takes , where in both cases the value of G is chosen to 

maintain a pre-specified type I error rate.

The choice of a stopping rule is generally based upon the assessment of a wide range of 

statistical operating characteristics across multiple candidate designs [3]. In addition to type 

I error, commonly considered frequentist operating characteristics include power, stopping 

probabilities at each analysis, and average sample size. These characteristics depend on the 
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sampling distribution of the test statistic under a given group sequential sampling design. 

Unlike a fixed sample design where a single hypothesis test is performed after the accrual of 

all trial data, the sampling density of a test statistic in a group sequential framework not only 

depends upon the total amount of statistical information accrued over the entire trial but also 

on the timing of interim analyses as measured by the proportion of the trial’s maximal 

statistical information, Пj, attained at each interim analysis [3]. Because of this, there are 

usually at least two complicating factors that must be dealt with during the monitoring of a 

clinical trial. First, the schedule of interim analyses may not follow the schedule assumed 

during the design of the trial. Often, meetings of an IDMC are scheduled according to 

calendar time, and thus the sample size available for analysis at any given meeting is a 

random variable. Similarly, accrual may be slower or faster than planned, thereby resulting 

in a different number of interim analyses than was originally planned. Because the exact 

stopping boundaries are dependent upon the number and timing of analyses, either of these 

scenarios will necessitate modifications of the stopping rule. Second, the estimate for 

response variability that was assumed at the design phase is typically incorrect. As the trial 

progresses, more accurate estimates may be obtained using available data at each interim 

analysis. In this case, if one wishes to maintain the originally specified power of the trial 

then updates to the maximal sample size may be necessary due to changes in variance 

estimates. Of course, changes in maximal sample size will result in changes to the 

proportion of information at all previously conducted analyses.

Two ways to adjust for deviations in the timing of planned analyses in order to maintain 

some of the trial’s original operating characteristics include the error spending approach [9] 

and the constrained boundaries algorithm [5]. First and foremost, these methods are 

primarily used to maintain the size of the trial (type I error). A choice must then be made as 

to whether the maximal sample size or the power to detect a clinically relevant alternative 

should be maintained. Briefly, the constrained boundaries algorithm for maintaining the 

power of a one-sided group sequential hypothesis test is implemented as follows: At the 

design stage, boundary shape functions are specified as fa (Пj) and fb (Пj), where Пj denotes 

the planned proportion of maximal statistical information attained at interim analysis j, j = 

1,⋯, J with ПJ = 1. At the first analysis П1 is determined, and stopping boundaries a1 and 

b1 are computed. A schedule of future analyses, П2,⋯, ПJ, which may differ from the 

originally assumed schedule of analyses is then assumed and a stopping rule using the 

design parametric family f* (·) (constraining the first boundaries to be a1 and b1) is found 

which has the desired power. This consists of searching for a new maximal sample size that 

has the correct type I error and power to detect the alternative for the parametric design 

family for the assumed schedule of interim analyses. At later analyses, the exact stopping 

boundaries used at previously conducted interim analyses are used as exact constraints at 

those analysis times, and the stopping boundaries at the current and all future analyses as 

well as the new maximal sample size needed to maintain statistical power are re-computed 

using the parametric family of designs specified at the design stage and an assumed schedule 

of future analysis times. Reference [5] notes that when fa (Пj) and fb (Пj) are defined on the 

type I and II error spending scales, this procedure is equivalent to the error spending 

approach given in reference [10].
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As noted above, in cases where power is to be maintained the current best estimate of the 

variance of the response variable at each interim analysis is typically used in place of the 

variance assumed at the design stage. Use of a more accurate estimate of the response 

variability, and hence statistical information, at earlier analyses provides more accurate 

estimates of the maximal sample size, NJ, at earlier analyses. This will in turn lead to less 

variation in the relative timing of analyses as the trial proceeds and NJ is updated. In the 

context of the motivating CLL trial the variability associated with a single sampling unit's 

response is dependent upon the unit’s IRC response probability. Specifically, if Yki denotes 

the response of individual i in treatment arm k (k = 1 for control, k = 2 for antibody) then 

Var[Yki] = pk (1 −pk), where pk is the response probability for group k. The result is that 

biased estimates of response probabilities at an interim analysis will lead to biased estimates 

of the variability associated with the response variable. To see the implication of this, 

consider the case where the constrained boundaries algorithm described above is used to 

maintain statistical power by updating the trial’s maximal sample size using a biased 

estimate of response variability and statistical information. At the time of an interim 

analysis, missing IRC validated outcomes may be more or less likely to be positive when 

compared to observed IRC outcomes. This may occur because positive outcomes often 

require an additional radiologic reading for confirmation, thus leading to a lagged reporting 

time. In this case, using only data on the available IRC outcomes would lead to downward 

bias in the event rate, and hence bias in the estimate of statistical information. The end result 

may be a tremendously (under-) overpowered study depending on the magnitude and 

direction of the bias.

3. Example of the Impact of Missing Data

In this section we demonstrate the impact on group design operating characteristics when the 

timing of implemented interim analyses deviates from the originally planned analysis 

schedule. Using parameters similar to those that we have encountered in a previously 

conducted CLL trial, we consider a level 0.05 test of the null hypothesis H0:ψ = 0 against a 

lesser alternative Ha:ψ < 0, where ψ denotes the log-odds ratio comparing intervention to 

control. We consider a study design with 95% power for detecting a true odds ratio of 0.65 

(ψ = −0.43) under an assumed event rate of 0.2 in the control arm. We further consider 

implementing 4 analyses that are equally spaced in information time. That is, the desired 

analysis schedule at the design phase is specified by П = {0.25, 0.5, 0.75, 1}.

To illustrate the impact of changing the timing of analyses we consider a shift parameter l so 

that П = {0.25 + l, 0.5 + l, 0.75 + l, 1}. Under the alternative hypothesis, Figure 2 depicts the 

maximal sample size and the average sample number (ASN) for the symmetric O'Brien-

Fleming and Pocock designs as the timing of analyses shifts away from the originally 

desired equally spaced setting (l = 0). Figure 2(a) shows that the minimum ASN attained by 

the O’Brien-Fleming design occurs at values of l between −0.1 and 0.1, while the minimum 

ASN for the Pocock design occurs at approximately l = −0.06. In addition, Figure 2(b) 

shows that the maximal sample size for the O’Brien-Fleming design is fairly robust to the 

timing of analyses. It is clear that the ASN and maximal sample size for the Pocock design 

is more sensitive to shifts in the analysis timing when compared to the O’Brien-Fleming 
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design. This is because the Pocock is far less conservative at early analyses when compared 

to the O’Brien-Fleming design.

From Figure 2 it is clear that changes in the timing of analyses will affect the operating 

characteristics of a statistical design.

We now consider a single simulated example to demonstrate the implementation of the 

constrained boundaries approach for trial monitoring and how the stopping boundaries of a 

planned design and an implemented design can differ due to the estimation of information at 

interim analyses when this approach is utilized. For this example, a shift in the total 

information schedule from analysis to analysis will be due to an underestimation of a 

success probability for a binary endpoint, resulting from missing data. When monitoring a 

clinical trial with an IRC adjudicated endpoint missing data is likely due to lagged IRC 

response data. As such, IRC outcomes would be more frequently missing at early analyses, 

with complete data at the final analysis. In this case higher bias in the estimated probabilities 

would be seen at earlier analyses. For illustration purposes the example assumes that only 

those who would have been classified as having an event by the IRC will have the 

possibility of being missing. The result is that the event probabilities will be underestimated 

at each analysis and these estimates will trend upward from analysis to analysis until the 

final analysis where complete data will be available on all subjects. Specifically we assume 

that 39%, 16%, and 3% of IRC endpoints are missing at the first, second, and third interim 

analyses; and no IRC endpoints are missing at the final analysis. This setting reflects a 

similar scenario to trials we have previously monitored.

We focus on a symmetric O’Brien-Fleming stopping rule with 4 equally spaced analyses, 

allowing early stopping for efficacy and futility, and 95% power for detecting an odds ratio 

of 0.65. This design specification results in a maximal sample size of 1819 patients. In 

monitoring the trial we consider re-powering the study at each interim analysis using the 

constrained boundaries approach of [5] as described in Section 2. For this example, at the 

first interim analysis the estimated event rates are  and  with a sample 

size of 436. With these observed estimates the study is then re-powered with a new maximal 

sample size of 2705 in order to maintain 95% power for detecting an odds ratio of 0.65. This 

results in a smaller proportion of information at the first analysis than originally planned 

(25% to 16%). Using this estimate of information along with the current best estimate of 

variability, the efficacy and futility boundaries at the first interim analysis are recomputed to 

be 0.26 and 2.47, respectively, under the pre-specified symmetric O’Brien-Fleming 

parametric stopping rule. The observed odds ratio at the first analysis, , is 0.86 and this 

value lies within the continuation region of the stopping rule. At the second analysis, with 

data now available on 1145 subjects, the observed success probabilities are  and 

. These probabilities are higher than those observed at the first analysis, resulting 

in a reduction in the re-computed maximal sample size needed to maintain 95% power for 

detecting an odds ratio of 0.65. The newly re-computed maximum sample size is reduced to 

2176, and the percentage of information for the first two interim analyses shifts to 20% for 

the first analysis and 53% for the second. Constraining on the first decision boundaries 

(shown in Table 1), the efficacy and futility boundaries at the second analysis are now 
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computed to be 0.66 and 0.98, respectively. The observed odds ratio at this analysis is 0.81, 

again implying continuation of the trial. As before, the study is re-powered at the third 

analysis and then continues to the final analysis where the final sample size is ultimately 

1945 subjects. The final sample size is larger than what was assumed at the design stage due 

to the shifts in the timing of analyses that resulted from underestimation of the response 

probabilities at early analyses.

Had unbiased estimates of the success probabilities at early analyses been available, the total 

sample size for the trial presented in Table 1 would have been much closer to that of the 

original design specification. Figure 3 shows the estimated information growth curve at each 

analysis for the trial. As can be seen in this plot, at the first analysis, the information growth 

has substantially changed from the planned portioning of information. The change in 

information growth is due to a recalculated maximal sample size, but this recalculation was 

only necessary because of the underestimated probabilities of success. Specifically, the 

recalculated maximal sample size at analysis one is much larger than the maximal sample 

size from the original design. This change in the maximal sample size is due to the 

dependence of the vaiance of the log-odds ratio on the underlying probabilities of success. 

However, at the third analysis, the information growth is approximately equal to the original 

design. Ultimately, both the original and observed design have similar maximal sample 

sizes, but the ASN, as seen in Figure 3 differs substantially. Specifically, the changes in 

ASN are due to the observed design not following the original intent of having four analyses 

that are spaced evenly with respect to information time. In turn, the changes in information 

alter the decision boundaries, as previously discussed. Ultimately, trials with different 

boundaries and information levels will have different probabilities of stopping at a given 

analysis, resulting in different operating characteristics.

4. Using Local Investigator Assessment to Monitor Study Data with Missing 

IRC Assessments

Had unbiased estimates of the underlying success probabilities been available at early 

analyses in the previous example the resulting changes to the maximal sample size would 

have been unnecessary. This would have resulted in decision boundaries similar to those 

originally specified at the design stage. In this section we discuss methods to improve the 

estimation of information using all of the observed local investigator assessments.

When monitoring an IRC-validated primary endpoint, a reasonable approach might perform 

hypothesis testing using only complete IRC measurements but would use a missing data 

model that incorporates local investigator assessments in order to estimate response 

probabilities and hence statistical information. Provided that local assessment is predictive 

of the IRC-validated outcome, incorporation of local investigator assessment into the 

estimation of statistical information will result in improved estimates of statistical 

information, potentially minimizing changes to the trial design’s original operating 

characteristics. Further, by only using the investigator assessment testing is based solely on 

observed IRC-validated data.
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For ease of exposition we consider the use of local investigator assessments when an IRC 

response is missing at a specific interim analysis and drop the analysis subscript. Assume 

that at a given interim analysis local investigator assessments are available for nk subjects in 

group k, and without loss of generality assume that complete data are available for the first 

rk subjects while the remaining nk − rk subjects are missing an IRC assessment, k = 1,2. For 

complete pairs let yki = (yki1, yki2) denote the vector of binary local response (yki1) and 

binary IRC response (yki2) for subject i in group k, i = 1, ⋯, rk, k = 1,2. For subjects with 

only a local assessment and no IRC response, let zki = (zki1, yki2), where zki1 is the 

unobserved IRC response, i = rk + 1, ⋯, nk, k = 1,2. The total data available for group k can 

then be summarized in the contingency tables provided in Table 2, where for complete cases

The unobserved cell counts for the incomplete cases are defined analogously as

In the context of the current problem, the common success probabilities

must be estimated for study monitoring. Of course we do not observe Mkab. However, since 

the local assessments are observed, the marginal totals mk·0 and m k·1 are known, and 

conditional on nkab and mk·b, , a,b = 0,1.

For the remainder of this section we consider three of many possible procedures to estimate 

pk = (pk00, pk01, pk10, pk11) when missing IRC data are present at an interim analysis. Once 

estimated, p̂k can then be used to estimate the sampling variability of a response and hence 

the available statistical information for sample size adjustment and planning of future 

analyses.

4.1. Expectation Maximization Algorithm (EM)

The EM algorithm [11] is a well-known approach for finding maximum likelihood estimates 

in the presence of missing data. Briefly, the EM algorithm augments the observed data 

likelihood with missing data so that maximum likelihood estimates are easily found. That is, 

we assume an augmented likelihood L(pk|Y, Z). We then compute the expected value (E-

step) of the log-augmented likelihood with respect to the missing IRC data, conditional on 

the observed data and the current iteration value for pk. In the M-Step, the log-augmented 

likelihood is maximized as if the conditional expectations were observed data. The E- and 

M-steps are repeated until convergence to get our estimate p̂k for pk.
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Symbolically, for an initial estimate for pk, , the estimate of pk is updated using the 

following algorithm,

where Y and Z denote all observed and unobserved data on local and IRC responses. The 

algorithm is repeated until a distance metric between  and  is small, and the final 

estimate for pk is given by . Appendix 7.1 provides more detailed steps of the EM 

algorithm to maximize a multinomial likelihood to obtain estimates pk of when there are 

missing IRC data.

4.2. Multiple Imputation

Multiple imputation is another natural approach to account for missing data. To perform 

multiple imputation in the case of missing IRC assessments we can first model the 

conditional distribution Zki1|Y, pk and impute the missing data from this distribution D times 

to obtain D estimates of pk. In this manuscript we find the conditional distribution by using 

regression estimates from regressing the IRC data on the local investigator data. The 

estimator for pk is calculated from , where  is the dth imputation estimate 

of pk.

Multiple imputation can be carried out in the multinomial example above by imputing the 

missing zkij values using a binomial distribution. One possibility is to use logistic regression 

for the imputation model. In this case we fit a logistic model using the complete data with 

the IRC data as the outcome and the local investigator data as a predictor. Letting α̂
k and β̂

k 

denote the estimated intercept and slope of the fitted logistic regression model for group k, 

the missing data can be imputed at the individual level as

4.3. Complete Case Analysis

The last method that we consider is the complete case analysis. This method is the simplest, 

as it only analyzes the complete data. While this method represents current practice, it 

assumes that missingness is missing completely at random (MCAR, [12]) and ignores 

potentially useful information in local response data. In this case, p̂kab is simply given by 

nkab/rk.

5. Simulation Study

In Section 3 we demonstrated that the operating characteristics of a group sequential design 

depend on the timing of interim analyses and showed how changes from planned 
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information can occur when estimates of response probabilities are biased. In this section we 

present a simulation study to illustrate the type one error rate, power, ASN, and 75th 

percentile of the sample size distribution using the three approaches for incorporating local 

investigator assessments that were described in Section 4.

Following from the previous sections, focus is on testing the IRC validated log-odds ratio 

comparing control to antibody in the context of the CLL trial. Specifically, we consider 

testing a one sided lower alternative with a type one error rate of 5% and 95% power for the 

design alternative of −0.43. The stopping rule is taken to be a symmetric O’Brien-Fleming 

design with four equally spaced interim analyses that allow for early stopping in favor of 

futility or efficacy. The simulations are set so that the true odds ratio is 0.65, comparing 

antibody to control, regardless of whether outcomes are based on the local investigator or 

the IRC. However, the control arm event rate was assumed to be 0.20 for the IRC and 0.25 

for the Local investigator. The missing data was defined differently to illustrate three 

missing data mechanisms: MCAR, missing at random (MAR), and not missing at random 

(NMAR). Under MAR the probability of missing an IRC outcome depends on the assigned 

event assessment of the local investigator. Under NMAR only positive IRC outcomes have 

the potential to be missing. In the MCAR simulation, at the first analysis, the probability of a 

missing IRC response was taken to be 17.5%. In the MAR simulations, at the first analysis, 

the probability that a positive IRC response was missing was taken to be 35% if the local 

investigator response was positive. Lastly, under NMAR, at the first analysis, the probability 

that a positive IRC response was missing was taken to be 35%, regardless of the local 

investigator response. Since interim tests are on accumulating data, the proportion of 

missing responses decreases with each analysis as all of the patients reach the time for 

evaluation.

For the log-odds ratio, in contrast to the binomial variance, the variance of the estimator 

increases as the success probability moves away from 0.5. Given that the probability of a 

response was taken to be less than 0.5 in the simulation study, and because observed IRC 

response rates are biased downwards under the MAR and NMAR setups, the variance of the 

odds ratio will decrease as the trial continues. Thus a re-powering of the trial will result in 

an increase in the maximal sample size. However, because an unbounded maximal sample 

size is unrealistic in practice (a study sponsor is sure to have logistical and financial 

constraints), the maximal sample size was constrained so that it would not be larger than 

1.25 times the originally planned maximal sample size (Nmax = 1812, ASNnull = ASNalt = 

1172). If this restriction is removed, the observed differences between the missing data 

models would be more extreme.

The simulations reflect a scenario where the investigators are not expecting any missing 

information at the design stage of the trial. Thus, at the first analysis, all of the scenarios 

analyze the data at 0.25 × Nmax. However, due to missingness less than 25% of the 

originally planned maximal information is observed at the first analysis. The action is then 

taken to test the data at the current amount of information then recalculate maximal sample 

size to maintain power and plan for future analyses. Results are based upon 10,000 for each 

scenario.

Brummel and Gillen Page 10

Open J Stat. Author manuscript; available in PMC 2014 December 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Table 3 depicts the results from the simulation study. Along the rows we consider the three 

missing data mechanisms (MCAR, MAR and NMAR). Under the column Future Timing in 

Table 3, we consider two ways to select the next interim analysis sample size: oversampling 

in anticipation of missing data (“Predict Info”), and ignoring the possibility of future 

missing data (“Info ∝ N”). The later scenario is included to illustrate that the primary 

advantage of incorporating local investigator assessments is in the sample size computation 

at the first analysis time.

The three considered monitoring strategies are tabulated along the columns of Table 3. As 

can be seen, all of the approaches exhibit the desired type one error rates. However, when 

the data are NMAR the simulations show that the power is higher than the specified 95%, 

ranging from 96% to 97%.

Next we discuss the efficiency of the EM algorithm and multiple imputation approaches 

relative to available case analysis. Under the MCAR setting, the sample size statistics are 

roughly equal across each of the strategies for estimating statistical information (Null: 

ASNComplete = 1102, ASNMI = 1101, ASNEM = 1102). This is to be expected since the 

estimates of variability are valid under MCAR for all of the missing data models. In the 

MAR simulations, the sample size statistics show a larger savings in ASN when local 

investigator assessments are used to estimate statistical information (Alt: ASNComplete = 

1265, ASNMI = 1212, ASNEM = 1211). These differences are due to the fact that the available 

case statistic tends to overestimate the variability associated with the final test statistic and 

project future analyses much too far into the future. Similar patterns are observed for the 

NMAR scenarios. We note that the lower sample size estimates relative to the “Predict Info” 

scenario is due to an overall shift in the originally proposed analysis times.

6. Discussion

It is becoming increasingly common for regulatory agencies to demand independent 

verification of study response in clinical trials that utilize a subclinical and/or subjective 

primary endpoint. Attaining IRC validation in these cases can result in significantly lagged 

data. The result is that during the monitoring of a trial, IRC-validated data may only be 

available on a subset of patients which local investigator assessment of the primary outcome 

is known at the time of an interim analysis. A further complicating issue is that the observed 

IRC lag time may be dependent upon the response. For example, positive responses for 

disease progression in cancer studies may require an additional radiologic reading. This 

scenario can result in biased estimates of the overall response probability at the time of 

interim analysis, resulting in erroneous changes to the study’s maximal sample size if the 

study is to be repowered. In the current manuscript, we illustrated issues with the use of 

local investigator assessments to re-estimate maximal sample size at the time of an interim 

analysis. Specifically, we considered three different methods for dealing with missing data 

that can arise when an IRC is used to validate local investigator response measurements. We 

have shown that using local investigator assignment of an outcome variable can be helpful 

when monitoring a group sequential trial by obtaining more precise estimates of 

information. When testing is based upon only complete cases and local assessments are used 

to improve information estimates, the proposed methods do not affect type one error rates, 
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ASN, or power when missing IRC-validated outcomes are MCAR. However, when missing 

data are MAR or NMAR, use of local investigator assessments to estimate study response 

rates for the purposes of recomputing maximal sample size can be helpful in maintaining the 

planned operating characteristics of the design. In addition, since the true information will 

be known at the final analysis, type one error rates will be robust when using a miss-

specified missing data model.

Relative to the complete case analysis, use of local assessments for recomputing maximal 

sample size resulted in generally lower sample sizes (summarized by ASN and the 75th 

percentile of the sample size distribution) with little observed change in type I and II error 

rates. This is a result of lower observed event rates due to the missingness mechanism that 

was considered. In this case, early analyses that only use complete cases would tend to 

compute large sample size re-estimates to maintain study power while accounting for the 

low event rate. This, in turn, pushes future analyses back in information time resulting in 

generally higher sample sizes. In our experience this is a realistic scenario because missing 

IRC-validated outcomes tend to have a higher probability of being a positive response since 

these cases generally require more time and additional radiologic readings.

The methods presented in this manuscript are easily implemented using any group 

sequential package that implements the constrained boundaries approach of [5]. One 

example is the RCTdesign package for the R statistical programming language or S
+SeqTrial. Example code for computing decision boundaries at the first analysis while 

updating information using multiple imputation is presented in the Appendix. The 

RCTdesign package is freely available by request from the authors of http://

www.rctdesign.org.

We have only advocated using local assessments to predict study response probabilities in 

order to obtain more precise estimates of statistical information. Another potential strategy 

when monitoring a test statistic with missing data is to test the imputed statistic; however, 

such an approach would be controversial for primary hypothesis testing since final inference 

would then be dependent upon a correctly specified missing data model. Further 

investigation of the use of local investigator assessments for estimating treatment effect 

remains area of open research. In addition, priors for the discordance between the local 

investigator and IRC measurements could be used at the design stage if available to help 

correct for the issues discussed in this text. This also remains an area of open research.
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Appendix

A1. Steps for the EM Algorithm

In the context of using local assessments to estimate IRC response probabilities it is 

straightforward to compute the conditional expectation of Z given Y. Using the notation of 

Section 4 and omitting the group indicator, the augmented likelihood is given by, 

, And log-augmented likelihood is then

The log-augmented likelihood is linear with respect to Mab, a,b = 0,1, so the expected value 

is straightforward to compute. Thus, the conditional expectation of the log-likelihood (E-

Step) results in

with .

For the M-step, maximizing Q(p, pl) yields,
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A2. R 2.14 Code Example
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Figure 1. 
Required criteria for determining a complete response (CR) in chronic lymphocytic 

leukemia (CLL).
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Figure 2. 
Effects of shifting information time for the first three of four analyses on information time 

on ASN and maximal sample size evaluated under the alternative hypothesis ψ = −0.43. The 

x-axis is the l value in Π = {0.25 + l, 0.5 + l, 0.75 + l, 1}. (a) Effect on ASN; (b) Effect on 

maximal sample size.
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Figure 3. 
(a) Estimates of information growth at each analysis. Differences are due to changes 

estimates of event rates and recalculating maximal sample size. (b) Deviations in ASN due 

to changes in the proportion of maximal information as a function of the log-odds.
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Table 1

Example of planned and implemented stopping boundaries when statistical information is biased due to 

missing data. The planned design is a one-sided symmetric O’Brien-Fleming design with 95% power for an 

odds ratio of 0.65. The observed design is the implemented design. Π is the (biased) estimated proportion of 

information. p̂1 and p̂2 denote the probability estimates for the control and antibody arms, respectively.

Analysis (j) 1 2 3 4

Planned Design

p1 = 0.20, p2 = 0.14, OR = 0.65

Sample Size 454.8 909.61 1364.41 1816.22

Information Fraction (Πj) 0.25 0.50 0.75 1.00

Decision Boundary Efficacy (Odds-scale) 0.42 0.65 0.075 0.81

Decision Boundary Futility (Odds-scale) 1.54 1.00 0.86 0.81

Implemented Design

Analysis 1

p̂1 = 0.110, p̂2 = 0.096, , Z = −0.49

Sample Size 436 1192 1949 2705

Information Fraction (Πj) 0.16 0.44 0.72 1.00

Decision Boundary Efficacy (Odds-scale) 0.26 0.61 0.74 0.81

Decision Boundary Futility (Odds-scale) 2.47 1.06 0.88 0.81

Analysis 2

p̂1 = 0.146, p̂2 = 0.122, , Z = −1.19

Sample Size 436 1145 1660 2176

Information Fraction (Πj) 0.20 0.53 0.76 1.00

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.75 0.81

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.86 0.81

Analysis 3

p̂1 = 0.165, p̂2 = 0.136, , Z = −1.63

Sample Size 436 1145 1631 1945

Information Fraction (Πj) 0.22 0.59 0.84 1.00

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.77 0.81

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.84 0.81

Analysis 4

p̂1 = 0.170, p̂2 = 0.140, , Z = −1.83

Sample Size 436 1145 1631 1945

Information Fraction (Πj) 0.23 0.59 0.84 1.00

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.77 0.81

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.84 0.81
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