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Abstract: Evidence has emerged across the past few decades that the lifetime risk of developing 

morbidities like type 2 diabetes, obesity, and cardiovascular disease may be influenced by expo-

sures that occur in utero and in childhood. Developmental abnormalities are known to occur at 

various stages in fetal growth. Epidemiological and mechanistic studies have sought to delineate 

developmental processes and plausible risk factors influencing pregnancy outcomes and later 

health. Whether these observations reflect causal processes or are confounded by genetic and 

social factors remains unclear, although animal (and some human) studies suggest that epige-

netic programming events may be involved. Regardless of the causal basis to observations of 

early-life risk factors and later disease risk, the fact that such associations exist and that they are 

of a fairly large magnitude justifies further research around this topic. Furthermore, additional 

information is needed to substantiate public health guidelines on lifestyle behaviors during 

pregnancy to improve infant health outcomes. Indeed, lifestyle intervention clinical trials in 

pregnancy are now coming online, where materials and data are being collected that should 

facilitate understanding of the causal nature of intrauterine exposures related with gestational 

weight gain, such as elevated maternal blood glucose concentrations. In this review, we provide 

an overview of these concepts.

Keywords: early-life, epigenetic, programming, pregnancy, cardiometabolic, obesity, cardio-

vascular disease, type 2 diabetes

Background
The global obesity epidemic has occurred in the wake of major recent social, demo-

graphic, behavioral, and economic adaptations; of particular relevance are the wide-

spread adoption of sedentary behaviors, reduced physical activity, and ready access 

to energy-dense, micronutrient-deficient (eg, low iodine, iron, zinc, and vitamin A 

content) foods.

Adipocyte biogenesis and storage within adipocytes of energy-dense fatty acids 

(predominantly triglycerides) are natural processes that have enabled humans and 

other species to survive prolonged periods of food deprivation throughout evolution. 

Indeed, starvation1,2 and rare diseases associated with very low levels of adipose tissue 

(eg, partial lipodystrophies, anorexia nervosa, and cachexia) are life-threatening and 

can render affected women infertile owing to insufficient levels of hormones such as 

leptin.3,4 Hence, fat accumulation and retention are natural processes that have strong 

biologic drivers, many encoded by genes. However, energy-dense, nutrient-deficient 

foods are often easily accessible in most modern industrialized societies. Thus, an 

unhealthy lifestyle and environment that promote chronic positive energy balance 
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set against a backdrop of genetic susceptibility to protect 

against leanness likely underlie the high rates of obesity and 

related cardiometabolic disorders seen in most developed and 

developing societies today.

Importantly, there is considerable variability in suscepti-

bility to obesity, given exposure to obesogenic environmental 

factors, with studies in twins5 and family pedigrees6 clearly 

showing that heritable factors (including genes) contribute 

to these differences (see Bar-Or et al7 for review of evidence 

in childhood). Studies designed to identify the specific loci 

responsible for modifying the effects of environmental 

exposures on obesity predisposition have been underway 

for more than 2 decades, yet very little reliable evidence 

has emerged.8 Nevertheless, there is an emerging body of 

evidence documenting the molecular changes that underlie 

these interactions, including those that focus on differences in 

gene expression and deoxyribonucleic acid (DNA) methyla-

tion (epigenetics).

Whilst many of these studies have focused on adult 

cohorts, risk trajectories for dysmetabolic outcomes, 

including obesity, type 2 diabetes (T2D), and cardiovascu-

lar disease (CVD), are thought to be shaped early in life. 

The accrual of data in recent years exploring risk factors 

arising in pregnancy and childhood provides compelling 

evidence that the risk trajectory for metabolic disease 

originates in childhood or perhaps even earlier in utero (see 

Table 1 for a summary of key studies cited in this review). 

We hypothesize that dysmetabolic programming events 

occurring within critical windows in development pre-

dispose the offspring to CVD and T2D as adults, and that 

these processes may be mediated by epigenetic processes 

that give rise to transgenerational inheritance.

Table 1 Summary of key studies and their major findings

Key studies Key findings Model

Huang et al,30 Li et al,28,102 Association between intrauterine famine exposure and cardiometabolic  
disease susceptibility

Human

Ravelli et al103 Association between exposure to prenatal nutritional stress during the  
Dutch famine, especially in late gestation, and adult glucose intolerance

Human

Dabelea et al,36 Lauren et al,41 Pettitt and Jovanovic,35 
Savona-Ventura and Chircop,34 Wei et al104

Association between under- and overnourished pregnancies and a higher risk  
of metabolic disease in adulthood; the relationship appears to be U-shaped

Human

Franks et al39 Much higher risk of developing diabetes among American Indian offspring of  
diabetic pregnancies

Human

Bygren et al105 Exposure in paternal grandmothers to drastic changes in food supply appear  
to confer transgenerational responses in the grandchildren

Human

Heijmans et al47 Association between prenatal exposure to the Dutch famine and reduced  
DNA methylation of the imprinted IGF2 gene

Human

Ng et al49 Paternal exposure to a high-fat diet is associated with altered expression  
of pancreatic islet genes and β-cell dysfunction in female offspring, despite  
normal adiposity

Animal

Poulsen et al106 Association between low birth weight and later noninsulin-dependent  
diabetes in monozygotic twins is only partly due to genotype and may  
be largely explained by the intrauterine environment

Human

Sullivan et al54 Diabetes-associated GRS predicts GDM in women from the Diabetes  
Prevention Program but not progression to diabetes

Human

Andersson et al,107 Freathy et al,57 Zhao et al108 Association between type 2 diabetes risk alleles and fetal growth and birth  
weight in individuals from the Danish Inter99 study

Human

Dina et al,64 Horikoshi et al,109 Frayling et al110 Genetic links between fetal and early childhood growth and adult obesity  
and metabolism

Human

Cecil et al,66 Church et al,68  
Tung et al,69 Wardle et al71

FTO plays a role in appetite regulation and energy balance Human and 
animal

Sovio et al111 Association between FTO variant and growth and development in infancy  
and late childhood

Human

Whitaker et al,112 Williams and Goulding74 Association between early adiposity rebound and later adiposity Human
Eriksson et al88 Association between catch-up growth during childhood and death from  

coronary heart disease
Human

Barker et al,83 Calderon et al,82 Lappas et al113 Placenta acts as a fetal organ capable of expressing cytokines and may play  
role in glycemic control, insulin resistance, and GDM

Human

Fraser et al87 Association between gestational weight gain and later adiposity Human

Note: An accrual of data in recent years has provided compelling evidence supporting the link between the intrauterine programming events and later metabolic outcomes.
Abbreviations: DNA, deoxyribonucleic acid; GRS, genetic risk score; GDM, gestational diabetes mellitus.
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The childhood obesity epidemic
Childhood malnutrition has taken on a startling new identity 

during the past decade, with caloric excess now more common 

than undernutrition.9–12 The International Association for the 

Study of Obesity and International Obesity Task Force estimate 

that at least 200 million school-age children are overweight 

or obese worldwide.13 Obesity has a long list of comorbidi-

ties, including CVD, T2D,14 hypertension, and sleep apnea, as 

well as emotional/psychological consequences such as social 

stigmatization, discrimination, and low self-esteem.15,16 Indeed, 

the emerging epidemic of pediatric T2D is likely to be a direct 

result of the high prevalence of childhood obesity.17 Together, 

obesity and its sequelae impose an immense burden at a per-

sonal and societal level; thus, childhood obesity represents one 

of the major threats to global health.

Obesity in childhood, particularly in prepubescent chil-

dren, is highly predictive of obesity in adulthood, especially 

when one (or both) parents is obese.18 Childhood body mass 

index (BMI), a strong correlate of adiposity in children, 

predicts premature death from endogenous causes, as do a 

number of other cardiometabolic risk factors (eg, glucose 

tolerance and hypertension).19–23 In a study of American Indian 

children, extreme BMI (the highest quartile compared with 

the lowest quartile) doubled the hazards of premature death.19 

The relationship between childhood obesity and mortality may 

be mediated, in part at least, by dysregulated glucose and by 

hypertension, with abdominal obesity as one of the earliest 

manifestations of metabolic dysregulation. Notably, abdomi-

nal obesity occurring early in childhood (age ,10 years) is 

a very strong risk factor for T2D later in life relative to other 

clinical risk factors, and appears to precede the development 

of glucose intolerance (an important precursor to diabetes) and 

dyslipidemia (a driver of insulin resistance);24 indeed, elevated 

BMI, glucose intolerance, and hypertension, when present in 

childhood, all raise the hazards of premature death.19

Given that childhood obesity is a major determinant of 

cardiometabolic risk later in life, understanding the modifi-

able risk factors for childhood obesity is well justified from 

a public health perspective. Defining early-life risk factors is 

a necessary step for designing interventions that tackle adult 

metabolic disease at its roots.

Metabolic and fetal programming
Pregnancy represents a critical period of development for 

fetal organs involved in maintaining energy homeostasis, 

not least for the pancreas and adipocytes.25 The fetal insulin 

hypothesis describes a scenario where poor fetal nutrition 

induces adaptations that are advantageous to the short-term 

survival of the fetus but have lasting detrimental effects on 

the offspring’s metabolic function that, in later life, cause 

metabolic disease.26 Both under- and overnutrition appear 

to convey similar effects on disease risk, although the pro-

posed mechanisms differ. In undernourished pregnancies, the 

offspring’s metabolism is hypothesized to be optimized for 

extrauterine environments that mirror the intrauterine experi-

ence; accordingly, the obesogenic environments that offspring 

of undernourished pregnancies experience often appear to 

trigger cardiometabolic disease in these individuals. 

In one of the earliest studies documenting the link between 

impaired fetal growth and CVD, investigators sought to 

explain observable differences in CVD risk seen across social 

gradients in England.27 Data recorded in 5,654 boys born in 

1911 in the county of Hertfordshire showed a 3-fold differ-

ence in death rates from ischemic heart disease in adulthood 

between those with the lowest and highest birth weights. Data 

from epidemiologic studies of cohorts born during or soon 

after more recent manmade famines in the People’s Republic 

of China28–30 and Europe31 have provided some of the most 

striking examples of intrauterine malnutrition and cardiometa-

bolic disease susceptibility later in life. Those studies indicate 

that the intrauterine growth of these children is restricted, as 

indicated by low birth weights for gestational age, smaller 

placentas, and shorter stature than are seen in children born 

outside the periods of famine; correspondingly, susceptibility 

to cardiometabolic diseases is generally higher in the former 

than in the latter. One of the most famous examples of such 

is the Dutch winter famine, which occurred toward the end 

of World War II (1944 and 1945) as a consequence of an 

embargo imposed by German forces on food supplies to the 

western parts of the Netherlands. Although the embargo was 

lifted in November of 1944, extreme winter conditions made 

it impossible for food supplies to reach urban areas to the west 

of the country.31 With food supplies dangerously low, ration-

ing was enforced such that daily caloric intake was typically 

around 1,000 calories/day, dropping to 400 calories/day at 

the height of the famine. Thus, the many children born at or 

around this time were severely malnourished during critical 

periods of growth and development. The tragedy of the Dutch 

famine has since been used by epidemiologists to shed light 

on the role of early-life malnutrition on metabolic program-

ming. Those studies have shown that individuals exposed to 

prenatal undernutrition, especially in late gestation, developed 

glucose intolerance as adults.32

Whilst undernourished pregnancies have been the 

model for much of the seminal work on the developmental 

origins of adult disease, a more widespread problem in 
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contemporary societies is that of gestational obesity and fetal 

overnourishment. Offspring of both under- and overnourished 

pregnancies are at higher risk of metabolic disease in adult-

hood compared with moderately nourished offspring; thus, 

the relationship between birth weight and these diseases is 

U-shaped.33–37

Although maternal obesity in pregnancy is strongly 

associated with an adverse metabolic profile in the progeny, 

obesity per se may not cause deleterious programming events 

in the offspring; rather, factors that coalesce with maternal 

obesity, such as hyperglycemia, dyslipidemia, hypertension, 

or inflammation, are likely to be the causal factors.38 High 

intrauterine glucose concentrations, for example, drive the 

pancreatic β-cells to secrete excessive quantities of insulin. 

This process stresses the developing pancreas and, because 

insulin is a growth hormone, stimulates growth, as reflected 

in the heavier birth weights of the offspring.

Extensive epidemiological data demonstrate that the 

offspring of diabetic pregnancies are at much higher risk of 

developing diabetes themselves later in life; in a study of 

911 nondiabetic mothers and 1,436 of their children, we 

showed that the relationship between a mother’s third tri-

mester glucose tolerance (for every standard deviation [SD] 

higher glucose [∼1.3 mmol/L]) equates to a 1.6-fold (95% 

confidence interval 1.3–2.0, P,0.0001) higher risk of dia-

betes in her offspring. This relationship was approximately 

dose dependent and was reflected by a 56 g higher offspring 

birth weight per SD unit maternal glucose (P=0.0002).39 In 

offspring of mothers with manifest diabetes before preg-

nancy, the risk of diabetes was higher still, with roughly half 

of the children born to these women having developed T2D 

themselves by the age of 25 years.39

Elsewhere, in a subcohort of pregnant women with 

and without gestational diabetes mellitus (GDM) from the 

National Collaborative Perinatal Project and their offspring, 

offspring of diabetic mothers had heavier birth weights 

compared with the offspring of mothers without GDM.40 

Furthermore, at age 7 years, the same offspring born to 

GDM mothers had more adipose tissue compared with 

their unexposed counterparts, even after adjusting for birth 

weight, thereby indicating that the relationship between GDM 

exposure and excessive growth of the offspring extends 

beyond the perinatal period. Consequently, the diabetic 

pregnancy is viewed by many to be pivotal in adversely 

impacting the trajectory for T2D later in life, independently 

of genetic factors.41 It may also be that exposure to diabetes 

in utero has wider impacts on health, such that offspring of 

diabetic pregnancies are more predisposed to CVD42 and 

tend to die younger.19 The mechanisms for how intrauterine 

exposures influence the fetus’s cardiometabolic risk trajec-

tories are not well understood in humans, as almost all data 

are observational, but in animals suggest that alterations 

in the transcriptional capacity of genes occur, which may 

involve “epigenetic” processes such as DNA methylation, 

histone modification, chromatin unraveling, and the actions 

of small (micro)ribonucleic acids (RNAs).43

Epigenetics
Unlike germline genetic variation that remains unchanging in 

all cells of the body, epigenetic variation is dynamic and varies 

across tissues in response to a wide spectrum of environmental 

stimuli, including those guiding tissue differentiation dur-

ing growth and development, as well as harmful exposures 

that elicit an adaptive response from cells. Epigenetic pro-

cesses are hypothesized to modulate the effects of almost 

all environmental exposures on the phenotypes of health 

and disease via transcriptional regulation brought about by, 

for example, methylation of CpG islands in nuclear DNA; 

post-translational modification of histone proteins such as 

acetylation, methylation, phosphorylation, and ubiquitination; 

and RNA interference. Epigenetic modifications are an impor-

tant aspect of biology, as they impart to cells the capacity for 

cellular plasticity and may also act, in response to intrauterine 

triggers, to program cells in preparation for the extrauterine 

environment, essentially priming the genome of the develop-

ing fetus for the world outside the womb. In this way, epige-

netic alterations might potentiate a survival advantage through 

differential regulation of the genes encoding proteins involved 

in energy metabolism and adipogenesis. The conservation 

across generations of cellular memory through epigenetic 

processes has been widely speculated on, with a number of 

intriguing transgenerational observational studies suggesting 

this to be true,44–46 but with no compelling evidence to back 

this up in humans. Thus, the impact of environmental factors 

on cellular programming and the extent to which these are 

conserved across generations represents an intriguing concept 

but requires further investigation.

One study by Heijmans et al47 examined patterns of DNA 

methylation at IGF2, an imprinted locus, in people who 

endured exposure to famine in utero during the Dutch Hunger 

Winter. The study indicated that there are critical periods of 

fetal development when the IGF2 promoter is susceptible to 

hypomethylation. The IGF2 locus was hypomethylated in the 

offspring who were conceived during the famine, whereas 

there were no changes in DNA methylation in the offspring 

exposed to famine in late gestation.47
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The impact of genomic imprinting (the parental origin of 

specific effects of inherited alleles) on disease has been well 

studied in mouse models and some human studies (see Peters48 

for a review of evidence on genomic imprinting); evidence 

from these studies shows that parent-specific imprinted genes 

have a significant range of effects on biological processes 

extending into adulthood. Until recently, transgenerational 

effects of paternal exposures on subsequent generation(s) were 

rarely considered within the context of the transgenerational 

cycle of disease. Ng et al49 investigated the effects of paternal 

diet on adult rat offspring. The authors observed that glucose 

tolerance was significantly impaired in the female but not the 

male offspring.49 In a subsequent study, the authors sought 

to investigate further the effects of paternal exposure on the 

female offspring. They found that paternal exposure to a high-

fat diet induced impaired glucose tolerance and diminished 

insulin secretion early in life, despite normal adiposity and 

growth rates in the female offspring. The mechanisms that 

underlie these observations appear to involve impaired β-cell 

replication and epigenetic modification at Il13ra2.49 Another 

murine study showed that in utero caloric restriction is associ-

ated with loci-specific hypomethylation in the male germline 

at differentially methylated regions that can partially survive 

reprogramming processes in early embryo development, with 

altered gene expression at discrete sites.

Epigenetic programming and gene–environment inter-

actions appear to be important factors to consider when 

unraveling the dynamic (epi)genetic architecture of complex 

diseases across lineages. Although it seems highly plausible 

that transgenerational epigenetic processes may affect disease 

predisposition, it is difficult to exclude cultural and societal 

factors serving concurrently, or alternatively, as a vehicle 

for disease transmission across generations. The integration 

of nonbiological (socioeconomic, cultural, and lifestyle) 

and biological (genetic and epigenetic) information into 

disease prediction models is an increasingly important area 

of research that may have relevance when considering early 

interventions against adult cardiometabolic diseases.50

Genetics
A major challenge in examining the impact of environmental 

components in pregnancy and early life on later disease risk 

is that these relationships are often confounded by genetic 

factors, which are also shared by the mother and her offspring. 

Most complex metabolic traits are probably the consequence 

of interactions between genetic and environmental (especially 

lifestyle) factors. Studying such interactions is challenging, 

owing to the relatively small magnitude of the anticipated 

interaction effects and the difficulty in accurately and pre-

cisely quantifying lifestyle behaviors. Early attempts to 

address this challenge have involved the use of discordant 

monozygotic twins to disentangle the effects of the intrauter-

ine milieu from those primarily attributable to the offspring’s 

genotype.51

There is increasing information regarding the genetic 

basis of T2D and obesity, two metabolic disorders long since 

determined to be heritable.52 Genome-wide association stud-

ies have been the mainstay of population genetics research 

for much of the past decade and have been used to uncover a 

plethora of novel loci associated with complex traits. To date, 

more than 50 established genomic regions harboring variants 

associated with T2D have been discovered and confirmed.53 

However, heritability studies that seek to partition the genetic 

from nongenetic sources of variance in a trait indicate that 

whilst T2D has a large genetic component, the role of envi-

ronmental risk factors is likely to be larger still.51

The role of genetic factors in gestational diabetes is less 

well studied. However, in a recent analysis of the Diabetes 

Prevention Program (DPP), a randomized controlled trial 

(RCT) of more than 3,000 adults randomized to receive a pro-

gram of intensive lifestyle modification, metformin treatment, 

or placebo control intervention, we examined the association 

of 34 established T2D loci with history of GDM, response to 

intervention, and indices of β-cell function.54 We modeled the 

genetic loci in aggregate using a genetic risk score. Women 

with a history of GDM had diminished β-cell function, and 

the genetic risk score was associated with GDM history but 

not with response to the DPP interventions. These data suggest 

that the genetic defects that lead to T2D are likely to overlap 

with those involved in the pathogenesis of GDM.

Owing to the role of fetal growth and development in T2D, 

genes that encode these phenotypes may be plausible candi-

dates for T2D. This hypothesis has been tested in a number of 

candidate gene and genome-wide association studies analyses, 

with several birth weight-associated loci also being implicated 

in T2D and other metabolic traits:55–57 eg, common variants at 

the ADCY5 and CDKAL1 with T2D, fasting glucose, and fast-

ing insulin concentrations, with the allele associated with lower 

birth weight also being associated with high diabetes risk55–57 

and levels of glucose and insulin.58–60 Similarly, the birth 

weight-associated allele at ADRB1 has been associated with 

adult blood pressure.61 Moreover, when 47 established T2D-

associated variants were tested in unison for association with 

birth weight, the diabetes risk-raising alleles were statistically 

associated with lower birth weight than would be expected by 

chance.62 Although these data support a causal relationship 
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between fetal growth and later risk of cardiometabolic disease, 

some genes will have pleiotropic effects on growth, develop-

ment, and adult disease, which may confound associations 

between birth weight and later disease.

As indicated, interactions between genetic variants and 

environmental risk factors may also determine the risk of 

obesity and diabetes in childhood and adult life. One such 

locus is proximal to the FTO gene, which harbors the strongest 

single nucleotide variant (rs9960939) for polygenic obesity 

in children and adults.63–65 FTO may play a role in appetite 

regulation and energy balance.66–69 For example, in a study of 

Scottish school children, Cecil et al66 reported a higher ratio of 

energy intake and energy expenditure in carriers of the minor 

(A) allele compared with those carrying the lower-risk T allele; 

interestingly, energy expenditure, albeit insufficient to offset 

energy intake, was higher than in the T allele carriers, a finding 

that was subsequently confirmed in adults.70 As well, Wardle 

et al71 showed that the T allele was associated with lower food 

intake, suggesting that the T allele promotes sensitivity to 

satiety. Elsewhere, Church et al68 reported an interaction of the 

rs9960939 variant with age on children’s weight gain trajecto-

ries, and found that the A allele was associated with lower BMI 

in infancy but a higher BMI in later childhood. Furthermore, 

adiposity rebound occurred earlier in developmental age in 

children carrying the minor A allele compared with noncar-

riers.72 This observation may be important, as early onset of 

adiposity rebound has been shown to predict later overweight 

and obesity.73,74 Hence, it is possible that FTO influences 

developmental processes in distinct ways throughout infancy 

and later childhood, although underlying mechanisms remain 

unknown. A prospective population-based study of children 

residing in the Brazilian Amazon examined the effects of the 

FTO rs9939609 minor risk allele on weight gain in childhood 

of predominantly mixed race/ethnicity and observed that those 

associations were modified by vitamin D levels, which have 

been shown to be negatively correlated with measures of child 

adiposity.75 Common FTO variants also appear to be associated 

with rate of childhood weight gain, which may be augmented 

in children with lower levels of vitamin D.76

The role of the placenta
Maternal nutrition and placental insufficiency77 are especially 

relevant in fetal growth and development, as these factors 

have a direct effect on determining the amount and quality of 

nutrient supply to the embryo and fetus. A mother’s lifestyle 

behaviors in pregnancy regulate energy input and output 

(ie, diet/nutrition and physical activity) and may position the 

fetus’s energy set point to affect obesity predisposition later 

in life. The placenta not only acts as a buffer to regulate the 

transfer of small molecules such as fatty acids to the fetal 

compartment but also acts as a sink for excess fetal glucose. 

However, when the placenta’s capacity to do so is exceeded, 

and the fetus is exposed to high glucose and protein levels, 

fetal macrosomia can ensue.78 Together, maternal behaviors 

and the ability of the placenta to function appropriately deter-

mine the availability of necessary nutrients to the fetus and 

also the ability to maintain a homeostatic environment and to 

avoid exposure to excessive levels of glucose and proteins, 

some of which are harmful to the fetus.

The placenta is a fetal organ capable of expressing cytok-

ines that may play a role in glycemic control, insulin resistance, 

and GDM.79 Placenta tissues, for example, secrete leptin during 

hyperglycemia.80 Leptin and insulin are hormones that play 

a coordinated role in sympathetic nerve activity38 and in the 

programming of hypothalamic circuitry involved in appetite 

regulation.81 Additionally, placenta may undergo morphologi-

cal adaptations in response to intrauterine exposures, such as 

levels of glycemia,82 which may result in long-term deleterious 

effects on metabolic programming. For example, high placenta 

weight, particularly in lower birth weight infants, is associated 

with elevated blood pressure in adulthood.83

Obesity and weight gain trajectories
In 2009, the Institute of Medicine (IOM) established new 

guidelines for limiting maternal weight gain during pregnancy 

by trimester based on the mother’s prepregnancy BMI. With 

the release of these new recommendations, the IOM also high-

lighted the need for more research investigating the impact 

of these new guidelines on pediatric health outcomes.84 In 

response to this solicitation, the association of weight gain in 

pregnancy and childhood overweight/obesity at age 2–5 years 

was assessed.85 The study showed that children of mothers 

who exceeded the recommended weight gain were larger at 

birth and had a greater odds of overweight/obesity in child-

hood, after adjusting for potential confounders, compared with 

the offspring of mothers whose weight gain was within the 

recommended range; the study also showed that prepregnancy 

BMI may modify the association of gestational weight gain 

and infant risk. Elsewhere, relationships between maternal 

prepregnancy BMI, gestational weight gain, and maternal and 

child health outcomes at birth were assessed in 33,973 Chinese 

mother–infant dyads.86 The study showed that mothers who 

were overweight or obese prior to pregnancy, compared with 

those who were normal weight, were at higher risk of GDM 

despite gestational weight gain being within the range defined 

as adequate by the IOM.
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In a subsample of the Avon Longitudinal Study of Parents 

and Children, a prospective cohort study of pregnant women 

and their offspring, investigators examined the impact of 

gestational weight gain by trimesters and found a positive 

association between gestational weight gain in early preg-

nancy and infant adiposity at age 9 years; the magnitude of 

this relationship was even greater in mothers who gained more 

than 500 g/wk. The same relationship persisted in midpreg-

nancy only in mothers who gained more than 500 g/wk.87

Eriksson et  al88 found correlations between growth 

trajectories in childhood and coronary heart disease. 

Most affected were children who experienced compensatory 

“catch-up growth” or accelerated weight gain in childhood. 

These children exhibited a 5-fold elevated risk of death from 

coronary heart disease.

High-risk populations
Indigenous populations such as Alaskan Natives, American 

Indians, Inuits, and Australian Aborigines are perceived by 

many to be genetically prone to obesity and diabetes, largely 

because of their high degree of susceptibility to these diseases 

following abrupt unhealthful shifts in lifestyle over the past 

few decades, yet the specific risk loci are largely unknown. 

Analysis of data from Pima Indians residing in southern 

Arizona has contributed to a number of landmark studies 

focused on intrauterine exposure to diabetes and later T2D 

risk. Those studies have shown, for example, that Pima Indian 

children tend to be overweight and hyperinsulinemic.89 In 

this population, a diabetic intrauterine environment conveys 

increased risk for childhood hyperglycemia and systolic 

hypertension, independently of adiposity.90 As adults, 

Pimas born to diabetic pregnancies are at far higher risk of 

developing early onset T2D due to lower insulin secretory 

rates.91 With hyperglycemia and overt T2D occurring at even 

younger ages (ie, within reproductive age) than in most other 

populations, the intrauterine risks associated with gestational 

diabetes are readily transmitted from one generation to the 

next, thus perpetuating the transgenerational cycle of T2D 

and obesity within these populations (Figure 1).

Although mainland indigenous minority populations are 

often at high risk of obesity and diabetes, indigenous island 

populations appear even more so, with seven out of the 

Adult cardiometabolic
disease

Maternal lifestyle factors

Intrauterine
exposures

Genetic propensity

Epigenetic
modifications

Overweight/obesity
Dyslipidemia
Early-onset T2D

GDM/hyperglycemia
Excessive weight gain
Obesity

Stress
Poor diet/nutrition
Low levels of physical activity

Overweight/obesity
Type 2 diabetes
Cardiovascular disease

Childhood metabolic
dysregulation

Figure 1 The vicious cycle of cardiometabolic disease. 
Notes: Risk trajectories of cardiometabolic disease may be shaped by maternal lifestyle factors that influence the intrauterine milieu. When these obesogenic signals 
effectively elicit adverse epigenetic programming events in the developing fetus, then cardiometabolic dysregulation may ensue in early childhood and progress more rapidly 
toward overt disease outcomes in later adulthood.
Abbreviations: GDM, gestational diabetes mellitus; T2D, type 2 diabetes.
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top ten countries/territories with the highest prevalence of 

age-adjusted diabetes worldwide being those that reside on 

small islands.92 Populations of small islands are especially 

susceptible to this phenomenon, probably as a result of strong 

genetic founder effects that interact with the recent transition 

from subsistence farming to Westernized lifestyles, where 

island food supplies now often depend heavily on imported 

foods that are energy dense and nutritionally deficient. This 

process is thought to have created a “mismatch” between the 

fetus’s epigenome, which has been programmed to expect a 

thrifty extrauterine environment, and the extrauterine reality 

of caloric excess.93

Evidence from RCTs
While substantial observational evidence appears to support 

hypotheses that cardiometabolic risk trajectories are estab-

lished as a result of events in early life, far fewer supportive 

data are available from RCTs. To date, there is relatively limited 

information examining whether interventions to prevent and/or 

reduce harmful intrauterine exposures are effective in improv-

ing health outcomes in both the mother and child.94 Large-

scale, consortium-wide pregnancy RCTs as well as smaller 

regional RCTs have been implemented in the past several 

years to investigate the impact of lifestyle interventions during 

pregnancy and early life. However, intervention strategies and 

the IOM recommendations84 are careful to focus on weight gain 

in pregnancy rather than weight loss, as safety considerations 

surrounding weight loss in pregnancy have yet to be adequately 

addressed.95 The Treatment of Obese Pregnant Women (TOP) 

study was an RCT in Denmark that recruited obese (BMI $30 

kg/m2) pregnant women from 2009 to 2012.96 Four hundred and 

twenty-five women were randomly allocated to one of three 

treatment groups: 1) physical activity and diet, 2) physical 

activity only, or 3) no intervention, standard care. The authors 

of the study concluded that physical activity measured using a 

pedometer, regardless of treatment group, resulted in a reduc-

tion in gestational weight gain in these women. As with similar 

pregnancy intervention trials, the relatively small sample size 

may have yielded insufficient statistical power to detect dif-

ferences in infant health outcomes. Currently, larger RCTs are 

being implemented to assess lifestyle effects on pregnancy 

outcomes. The LIMIT study,97 a more recent RCT in Aus-

tralia, is designed to investigate whether limiting gestational 

weight gain in overweight and obese pregnant women through 

comprehensive dietary and lifestyle recommendations will 

reduce the number of infants who are excessive birth weight 

and associated maternal and infant morbidities. Similarly, in 

2012, the US National Institutes of Health (NIH) established 

the Lifestyle Interventions for Expectant Moms (LIFE-Moms) 

Consortium consisting of seven sites across the US.98 The aim 

of the consortium is to identify effective lifestyle interven-

tions that favorably impact gestational weight gain and other 

measures of cardiometabolic health in the mother and infant. 

An additional ongoing RCT from the UK (UPBEAT99) is 

recruiting 1,546 obese pregnant women, who are subsequently 

randomized to receive a program of lifestyle intervention or 

control. The primary outcomes of the trial are GDM and large 

for gestational age infants. The findings of these studies are 

expected to resolve some of the ambiguity surrounding preg-

nancy and early lifestyle interventions and their effectiveness 

as public health strategies for improving maternal, neonatal, 

and infant cardiometabolic health.

Future clinical and public health 
implications based on current 
evidence
The majority of today’s guidelines and intervention strategies 

against obesity-related diseases often do not account for the 

possibility that cardiometabolic risk trajectories may be set 

in the very early stages of life, when system-wide injuries 

affecting energy homeostasis begin to occur. However, 

guidelines for improving cardiometabolic health in the US 

population have been issued by the NIH Heart, Lung, and 

Blood Institute,84 which focus on screening of childhood 

obesity and limiting weight gain in pregnancy, respectively. 

Targeting children within the population who are at great-

est risk for cardiometabolic complications in adulthood 

requires being able to accurately identify those with adverse 

lipid profiles, excess body fat, glucose dysregulation, high 

blood pressure, and other indicators. The National Heart, 

Lung, and Blood Institute calls for universal lipid screening 

between the ages of 9 and 11 years;84 however, the feasibility 

and economic implications of these recommendations are 

not known. In addition, lifestyle interventions in childhood 

may be perceived as extreme, and general screening may be 

unable to detect underlying pathophysiological mechanisms 

that may not fully manifest until later in life.

Although lifestyle interventions (physical activity and diet) 

are important public health strategies against obesity-related 

diseases because they beneficially affect multiple systems in 

the body, this approach alone is unlikely to curb the global 

obesity epidemic. Optimizing detection and preventative strat-

egies will entail exploration in early life, from preconception 

to early childhood, to identify novel biomarkers that indicate 

aberrant metabolic programming events early on. More tar-

geted strategies for reducing T2D and CVD may require risk 
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stratification approaches based on intermediate risk factors 

such as molecular (eg, micro-RNA and [epi]genetic), anthro-

pometric, and biological (eg, microbiota) markers, rather than 

overt phenotypes, like diabetes status, coronary heart disease, 

stroke, or metabolic syndrome, that are detectable in early stages 

of development. For example, altered or impaired epigenetic 

dynamics in preadipocyte differentiation may lead to perma-

nent morphological and functional changes in fat tissue100 – a 

major player in the endocrine system orchestrating a cascade 

of transcription factors, including the peroxisome proliferator-

activated receptor γ involved in signaling networks of glucose 

regulation and energy balance.101 Furthermore, assessing the 

validity of epigenetic inheritance, in other words the transmis-

sion of epigenetic regulatory features acquired as an adaptive 

response to an environmental signal affecting one generation to 

subsequent generation(s) that has not been exposed directly to 

the environmental “trigger(s)”, will have major implications in 

forecasting the societal burden of chronic disease. In this way, 

investigating the primordial defects associated with the cluster 

of traits defining metabolic syndrome may provide important 

insight into potential targets for future preventative strategies.

Conclusion
Maximizing strategies for preventing or modifying exces-

sive morbidity and mortality associated with complex dis-

eases requires a more complete understanding of its earliest 

modifiable risk factors and consideration of this knowledge 

in public health recommendations. Epidemiological studies 

have already made major contributions to our understand-

ing of how adverse exposures in utero and during childhood 

impact disease risk trajectories, which now require experi-

mental validation. Numerous clinical trials are now underway 

or completed to assess the effects of intervening during 

pregnancy and childhood to improve prognosis in those 

considered at high risk, usually determined on the basis of 

the mother’s early pregnancy weight or glucose tolerance. As 

the body of evidence from clinical trials grows, the extent to 

which the hypotheses set forth through observational studies 

are valid will become clear, and solid evidence-based guide-

lines designed to prevent obesity, T2D, and CVD, which 

account for early-life exposures, will likely take form.
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