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The intrauterine environment allows the fetus to begin hearing low-frequency sounds in
a protected fashion, ensuring initial optimal development of the peripheral and central
auditory system. However, the auditory nursery provided by the womb vanishes once
the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal
intensive care unit (NICU). The present article draws a concerning line between auditory
system development and HF noise in the NICU, which we argue is not necessarily
conducive to fostering this development. Overexposure to HF noise during critical periods
disrupts the functional organization of auditory cortical circuits. As a result, we theorize
that the ability to tune out noise and extract acoustic information in a noisy environment
may be impaired, leading to increased risks for a variety of auditory, language, and
attention disorders. Additionally, HF noise in the NICU often masks human speech sounds,
further limiting quality exposure to linguistic stimuli. Understanding the impact of the
sound environment on the developing auditory system is an important first step in meeting
the developmental demands of preterm newborns undergoing intensive care.
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AN ACOUSTIC GAP BETWEEN THE NICU AND THE WOMB
Surrounded by amniotic fluid, the first sounds the fetus expe-
riences are low-frequency digestive noises and maternal sounds
transmitted through the bones of the skull (Querleu et al.,
1988; Lecanuet and Schaal, 1996; Sohmer et al., 2001). However,
preterm infants (born <37 weeks of gestation) are no longer sur-
rounded by fluids or live underwater, and this new reality forces
them to hear primarily through air conduction despite their audi-
tory system being accustomed to bone conduction. This major
difference in the primary mode of hearing (bone vs. air con-
duction) and the medium of sound transmission (fluid vs. air),
presents an acoustic gap between the unnatural acoustic envi-
ronment of the hospital and the developmental demands of the
newborn’s auditory system. The developmental implications of
this acoustic gap remain largely unstudied. Differences between
the auditory environments in the neonatal intensive care unit
(NICU) vs. the womb are summarized in Table 1. Unlike the
womb, the primary auditory stimulation available to intensive
care neonates is environmental noise generated by ventilators,
infusion pumps, fans, telephones, pagers, monitors, and alarms.
Such excessive exposure to high-frequency noise, and recurrent
electronic beeps that would not otherwise be present had the
baby remained protected by the intrauterine environment and
not been born prematurely, constitutes a trauma to the auditory
system of a preterm infant. This acoustic trauma, we argue, may

be potentially harmful, increasing the risk for auditory, language,
and attention disorders. Although cases of hearing disorders in
newborns are typically associated with congenital malformations,
prenatal infections, and drug exposure (for review see Resendes
et al., 2001; Beswick et al., 2012), this article is specifically focused
on auditory impairments induced by environmental noise.

While exposure to loud noise is intuitively understood to be
distracting and harmful, the shortage of biological and periodic
auditory stimuli in the NICU environment is less acknowledged
to be of concern. For example, the sensory perception of the
maternal heartbeat in the womb provides the fetus with an
important rhythmic experience that likely explains the natural
tendency of the newborn to seek auditory entrainment soon after
birth (Ingersoll and Thoman, 1994; Ullal-Gupta et al., 2013).
In contrast, the more random, aperiodic nature of NICU noise
suppresses opportunities for rhythmic entrainment known to
facilitate arousal regulation (Smith and Steinschneider, 1975)
and social interactions (Phillips-Silver et al., 2010) in early
infancy.

THE FREQUENCY SPECTRA IN THE NICU vs. THE WOMB:
IMPLICATIONS FOR THE TONOTOPIC DEVELOPMENT OF THE
AUDITORY SYSTEM
Auditory development is a slow process that begins in utero.
Critical aspects of this development take place before full
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Table 1 | An acoustic gap between the NICU and the womb environments.

Womb NICU

Primary mode of hearing Bone conduction Air conduction

Sound transmission medium Fluid Air

Sound attenuation Attenuation provided by maternal tissue and
fluids

Direct exposure to sound source

Frequency range of sound exposure Primarily low frequency (<500 Hz) Broad spectrum

Ambient noise dosage Restricted daily exposure to noise Excessive daily exposure to noise (e.g., alarms,
white noise, and multi-talker babble)

Most prevalent sounds in environment Maternal vocalizations, biological sounds (e.g.,
heartbeat, digestive noises)

Electronic, unnatural, non-biological sounds

Exposure to language High-quality stimuli, primarily from mother Poor quality stimuli during non-visiting hours,
primarily from multi-talker babble

Complexity of prevalent sounds in environment Rhythmic, periodic, organized, predictable
(e.g., heartbeat)

Aperiodic (e.g., white noise), unorganized,
unpredictable (e.g., alarms)

gestation and are therefore vulnerable to disruption by the NICU
environment especially given that the frequency spectrum of the
NICU environment is quite different from what is experienced
in the womb. Previous studies have shown that the acoustic
environment of the NICU contains a significant amount of HF
noise (>500 Hz), emanating from a wide variety of medical
equipment and human activity that are unlikely to be heard
in the womb (Kellam and Bhatia, 2008; Livera et al., 2008).
A recent study using sound spectral analysis over a five-day
period showed that NICU infants were exposed to frequen-
cies between 500 and 16,000 Hz 57% of the time, with the
majority of exposure being during daytime falling in the range
of 501–3150 Hz (Lahav, 2014). The potential risk of HF noise
exposure in the NICU is further increased by the fact that the
frequency spectra of NICU noise is rarely monitored, with major-
ity of studies in the field solely focused on measuring loudness
levels.

High-frequency frequency noise exposure in the NICU is a
concern because the auditory system is still functionally under-
developed at birth, with critical stages of development occurring
during the final weeks of gestation (for review, see Graven and
Browne, 2008). While the structural components of the inner ear
(bony labyrinth of the cochlea) are already formed by 15 weeks
gestational age (GA), the onset of cochlear function does not
occur until 24 weeks GA or later (Pujol et al., 1991; Moore and
Linthicum, 2007). As evidence of the functional onset of hearing,
electrophysiological data from preterm neonates demonstrates
that brainstem auditory evoked potentials are first recordable
between 25 and 32 weeks GA (Starr et al., 1977; Amin et al.,
2003; Yin et al., 2008; Coenraad et al., 2011; Jiang and Chen,
2014). After 34 weeks GA once the spiral ganglion neurons in
the cochlea have formed sufficient neural connections with the
auditory brainstem and have begun to extend those connections
toward the auditory cortex, evoked potentials to sound become
more robust (Pujol and Lavigne-Rebillard, 1992; Hepper and
Shahidullah, 1994; Hall, 2000).

Development of the cochlea and central auditory system is
complex. Within the cochlea, reside tens of thousands of inner
hair cells, sensory receptors, that each respond maximally to a

specific frequency (Pujol et al., 1991; Pujol and Lavigne-Rebillard,
1992; Morlet et al., 1993). These hair cells are arranged tono-
topically with high-frequency hair cells located basally (closer to
the middle ear) and low-frequency ones located apically (Kandler
et al., 2009) (see Figure 1). This cochlear tonotopy is preserved
along the auditory neuroaxis as a consequence of spiral gan-
glion neurons establishing precise connections between cochlear
hair cells and target neurons in the auditory brainstem that code
for different sound frequencies (Pujol and Lavigne-Rebillard,
1992; Appler and Goodrich, 2011). Gradual development of these
tonotopic frequency maps occurs with low-frequency regions
maturing before high-frequency ones, a process often referred to
as “frequency-dependent plasticity” (Talavage et al., 2000). This
low-to-high developmental gradient is promoted by the acous-
tic makeup of the womb in which frequencies above 500 Hz are
attenuated by maternal tissues and fluids within the intrauterine
cavity. Toward the end of pregnancy, as the walls of the uterine lin-
ing begin to thin, gradually more HF energy (>500 Hz) is passed
through the womb (Bench, 1968; Gerhardt, 1989; Gerhardt et al.,
1990; Hepper and Shahidullah, 1994; Abrams and Gerhardt,
2000). Thus, while the womb provides an optimal medium for
the initial phases of hearing development by limiting exposure
to HF sounds (Hall, 2000), the sound frequencies present in the
NICU are not necessarily conducive to furthering this develop-
ment (Graven, 2000) (see Figure 1). Increased exposure to HF
stimulation in the NICU while a majority of cochlear neurons are
still migrating (Battin et al., 1998; Bystron et al., 2008) and corti-
cal folding is still in flux, may disrupt the normal tonotopic tuning
of cochlear hair cells, and hinder auditory development subcor-
tically and cortically (Walker et al., 1971). Thus, owing to the
experience-dependent nature of auditory development (Zhang
et al., 2001; Chang and Merzenich, 2003; Oliver et al., 2011; Zhou
et al., 2011), the statistical properties of the acoustic environment
in the NICU may potentially misguide the topographic assembly
of the auditory brain system (Pujol and Lavigne-Rebillard, 1992),
resulting in poorer frequency resolution. It is therefore likely that
overexposure to HF noise during this critical period may impede
the developing auditory system with effects seen well-beyond the
postnatal period.
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FIGURE 1 | An illustration of the cochlea and its tonotopic development

across the frequency spectrum. High-frequency sounds maximally
stimulate the base of the cochlea, whereas low-frequency sounds maximally
stimulate the apex. Whereas the fetus is primarily exposed to sound
frequencies below 500 Hz (green shade), preterm newborns are exposed to
the entire frequency spectrum (green, orange, and red shades), coming from
various electronic sounds in the NICU environment.

CAN THE FETUS HEAR HF SOUNDS ORIGINATING OUTSIDE
OF THE WOMB?
As a consequence of the acoustic properties of the womb, the fetus
receives, for the most part, a low-pass filtered version of the audi-
tory environment in the world. Given the low-to-high frequency
development of the cochlea, this raises the question of whether
the fetus can in fact hear HF sounds that are loud enough to
penetrate the womb and, if yes, when does this responsivity to
HF sounds emerge? These questions have been addressed directly
and indirectly by several studies using a variety of techniques.
Hepper and Shahidullah (1994) examined the responsiveness of
the human fetus to external auditory stimuli (pure tones) pre-
sented by a loudspeaker placed on the maternal abdomen at dif-
ferent frequencies (100, 250, 500, 1000, and 3000 Hz). Recording
of fetal movements via ultrasound revealed a preferential sensi-
tivity of the fetus to external sounds in the low-frequency range
(<500 Hz) as early as 19 weeks of gestation. At 27 weeks GA,
the vast majority of fetuses responded to sounds below 500 Hz
but none responded to the higher frequency sounds at 1000 Hz
or 3000 Hz. Responsiveness to sounds above 1000 Hz was not
observed until 33 weeks gestation. For all frequencies presented,
there was a significant decrease in the intensity required to elicit
a response with increased GA, likely due to the maturation of the
auditory system and the thinning of the intrauterine walls in the
last trimester of the pregnancy (Querleu et al., 1988). A follow-
up study by Kisilevsky et al. (2000) using high volume high-pass
filtered white noise (800–20,000 Hz) presented to the mother’s
abdomen showed that sound-evoked responses (in the form of
cardiac acceleration and body movement) emerged at 30 weeks

for both low-risk and high-risk fetuses, and required less intense
stimulation to evoke responses later in development. While both
studies indicate that sensitivity to HF sound emerges during the
7–8th month of gestation, neither study examined auditory sys-
tem function directly but instead used fetal movements as an
indirect measurement of hearing sensitivity.

Studies using MEG- and fMRI-based techniques in fetuses
provide more direct measurement of auditory cortical function
to HF sounds presented at high intensity. This body of research
has provided modest evidence that the auditory cortex is activated
by frequencies above 500 Hz by 33 weeks (Draganova et al., 2005;
Jardri et al., 2008), that by 33–36 weeks that the fetus can differ-
entiate a 500 Hz sound from a higher frequency one (Draganova
et al., 2005), and that later in gestation (37–41 weeks) the audi-
tory cortex is activated by naturalistic sounds containing a broad
spectrum of frequencies (Moore et al., 2001). Thus, the likelihood
exists that by ∼33 weeks, there is a degree of HF penetration of
external sounds through the abdomen, allowing the fetal auditory
system to be activated by the high-frequency aspects of speech
and other complex, naturalistic stimulation. This prenatal expo-
sure to HF naturalistic sounds has been argued to prime the
fetus for voice recognition, vowel discrimination, melody dis-
crimination, among other complex auditory skills (reviewed in
Granier-Deferre et al., 2011).

Based on the studies reviewed in this section, it appears that
fetuses can respond to HF sounds transmitted through the mater-
nal abdomen after ∼33 weeks, and that responsiveness increases
with GA. However, the mere fact that fetuses are capable of
responding to HF noise does not necessarily imply they should be
exposed to such sounds, especially in high doses. The existing lit-
erature does not rule out the possibility that the intense exposure
to HF sounds used in these specific experiments, especially dur-
ing early stages of development, was in fact harmful. Therefore,
the potential harm of intense, direct, and repeated exposure to HF
noise without the protection of the maternal abdomen, as experi-
enced by extremely preterm infants in the NICU, should be given
a more carefully evaluation. However, unlike HF noise, exposure
to potentially positive HF sounds (e.g., speech, music) during the
last stages of gestation may in fact help set the stage for hearing
and language skills.

NOISE-INDUCED PLASTICITY IN THE AUDITORY SYSTEM
FUNCTION
Our concern regarding the adverse effects of HF noise exposure
is supported by evidence from animal studies. Animal models
have revealed that sensory impoverishment during critical peri-
ods of development, in the form of acoustic noise or reduced
complexity of auditory input, can lead to malformed tonotopic
cortical maps, reduced neural synchrony, and broader tuning
curves, which reflect decreased frequency-sensitivity of the audi-
tory system (Zhang et al., 2001, 2002; Oliver et al., 2011). For
example, young rats repeatedly exposed to HF tone pips showed
distorted auditory function later in life (Oliver et al., 2011). The
residual effects of that early augmented environment included
altered brainstem auditory evoked potentials to the frequency of
overstimulation, in addition to expanded neural frequency maps
(Oliver et al., 2011). As a consequence of this early unnatural
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sound experience, the rat’s auditory system became tuned to the
frequency of the tone pips at the expense of processing other
sound frequencies. Modification of tonotopic maps in deaf indi-
viduals (Guiraud et al., 2007) and musicians (Pantev et al., 1998),
suggests that similar experience-dependent developmental prin-
ciples operate in humans. It is therefore likely that the abrupt
transition from the womb to the NICU changes the typical pat-
terns of auditory development, specifically altering how frequency
information is processed and coded.

In addition to compromising tonotopy, increased HF noise
exposure during the neonatal period may have other long-term
consequences for the functional integrity of the auditory sys-
tem. In recent years, there has been growing concern about
environmental noise in individuals of all ages. Indeed, sound
intensities once thought to be safe for the auditory system are
now considered less safe, especially for more extended expo-
sures (Maison et al., 2013; Basner et al., 2014; Gourevitch
et al., 2014). In laboratory animals, prolonged noise exposure
has been shown to impede auditory development (Chang and
Merzenich, 2003), accelerate age-related hearing losses (Kujawa
and Liberman, 2006), increase neural loss (Salthouse and Lichty,
1985; Maison et al., 2013), and reduce neural efficiency by increas-
ing the spontaneous firing of auditory neurons in the absence of
sound stimulation (Costalupes et al., 1984; Seki and Eggermont,
2003). Moreover, in children, excessive noise exposure can mani-
fest in decreased reading and cognitive performance (Cohen et al.,
1973; Bronzaft and McCarthy, 1975; Hygge et al., 2003), and may
change how children discriminate and attend to auditory stim-
uli (Cohen et al., 1973; Evans and Kantrowitz, 2002; Evans et al.,
2009), even when tested in quiet environments.

Considering the acoustic gap between the NICU environment
and the womb, it is not surprising that auditory development
is compromised in preterm compared to full-term newborns.
Studies using brainstem auditory evoked potentials suggest that
preterm infants have delayed myelination of the central audi-
tory pathway (Pasman et al., 1996; Roopakala et al., 2011; Hasani
and Jafari, 2013) in addition to atypical neural pathways when
processing, discriminating, and memorizing auditory informa-
tion (Fellman et al., 2004; Therien et al., 2004). Thus, exposing
preterm infants to HF noise too early, while the auditory system
is still immature, may hinder the normal development of hearing
and subsequent language acquisition.

INCREASED BEHAVIORAL RELEVANCE OF HF NOISE AS A
CONSEQUENCE OF NICU EXPERIENCE
In addition to the presumably harmful effects of HF noise expo-
sure to auditory system development, the collection of electronic
noises in the NICU environment (coming from ventilators, tele-
phones, pagers, and alarms) can often produce sufficient acoustic
energy to mask natural human speech sounds potentially impor-
tant to the preterm infant, whose exposure to linguistic stim-
uli is already restricted. This impoverished linguistic experience
increases the behavioral relevance of noise, by shifting attentional
focus away from speech sounds toward the noise in the environ-
ment. Behavioral and neurophysiological data from fetuses and
healthy newborns, have revealed that fetuses become sensitive
to sounds in the environment that are transmitted through the

amniotic fluid including the sound of the mother’s and father’s
voices (Fifer and Moon, 1994; Kisilevsky et al., 2003; Beauchemin
et al., 2011; Voegtline et al., 2013; Lee and Kisilevsky, 2014)
(reviewed in, Fava et al., 2011), with evidence of experience-
dependent auditory learning emerging before birth (Kujala et al.,
2003; Partanen et al., 2013; Krueger and Garvan, 2014). Given the
importance of early experience in molding the auditory system
(Skoe and Chandrasekaran, 2014), increased exposure to noise
may over sensitize infants to noise, and, as a consequence, neural
circuits may be formed to make noise the primary target of atten-
tion rather than treating it as a background stimulus that should
be ignored. While this is an intriguing possibility, further research
is needed to confirm or dispute this hypothesis.

Another factor that may impede the preterm infant’s abil-
ity to tune out noise, is the immaturity of auditory feedback
mechanisms (Morlet et al., 1993; Graven and Browne, 2008). In
addition to inner hair cells, the cochlea contains outer hair cells
that receive feedback from the central auditory system that buffer
noise-induced damage and improve speech intelligibility in noise
(Guinan, 2006). Background noise leads to a decrease in speech
intelligibility that poses a perceptual challenge even for healthy
adults with normal hearing. In addition to masking the signal due
to physical overlap between the acoustics of noise and the acous-
tics of speech, noise acts as a competing signal that interferes with
the ability to attend to a concurrent speech stream (Assmann and
Summerfield, 1999). If greater behavioral relevance (i.e., uncon-
scious attention) is placed on noise in the environment, or if
biological feedback mechanisms are not fully intact, this could
create further challenges for processing speech in noise for the
preterm infant both in the immediate and also later in life. In sup-
port of this possibility, studies using brainstem auditory evoked
potentials suggest that preterm infants have delayed myelination
of the central auditory pathways (Pasman et al., 1996; Roopakala
et al., 2011), which is associated with a variety auditory pro-
cessing disorders (APD). Whether or not the high prevalence of
APD in preterm population is attributed to the presence of high-
frequency noise in the NICU is undetermined. However, one of
the hallmarks of APD is difficulty processing target signals within
a background of noise (Keith, 1999), further supporting the pos-
sibility that exposure to HF noise of the NICU environment may
impede the preterm infant’s ability to pull out signals from noise.

OPTIMAL FREQUENCY EXPOSURE FOR INTENSIVE CARE
NEONATES: LACK OF RECOMMENDED STANDARDS
Current guidelines set by the American Academy of Pediatrics
(AAP) are primarily focused on loudness levels, leaving the poten-
tial risks of HF noise exposure in the NICU infants largely
unaddressed. According to AAP standards (White et al., 2013),
the combination of continuous background sound and opera-
tional sound shall not exceed an hourly Leq of 45 dB and an
hourly L10 of 50 dB, while transient sounds (Lmax) shall not
exceed 65 dB, all A-weighted slow response measurements (White
et al., 2013). However, in practice, previous studies examining
noise in the NICU have reported extremely high noise levels,
exceeding the AAP recommended standards more than 70% of
the time (Williams et al., 2007). Sound measurements within the
NICU environment have been measured between 62 and 70 dBA
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(Philbin and Gray, 2002), with peak impulses exceeding 90 dBA
(Williams et al., 2007) and 120 dBA (Kent et al., 2002). In another
study, sound measurements yielded an overall average hourly
level (Leq) of approximately 60 dBA with peak levels (Lmax) of
78.39 dBA (Krueger et al., 2005).

The problem of loud noise in the NICU has been diminished
by modifications to NICU architectural designs, as more hospitals
transition toward the single-room model in which newborns are
housed in private rooms vs. the open-bay model where multiple
babies are co-cared in a large room (White, 2011). Studies have
shown that private-room NICUs are generally quieter than open-
bay NICUs (Szymczak and Shellhaas, 2014), except when high–
frequency ventilation is used (Liu, 2012). However, while private
rooms may have more favorable acoustics than open-bay designs,
care should still be taken to ensure that the peak intensity and
frequency characteristics in the NICU environment, even within a
private room, are still optimal for preterm newborns. Thus, in the
absence of clear guidelines and recommendations regarding the
acoustic makeup of optimal sound exposure at birth, the NICU
may present an acoustic danger zone for preterm newborns.

LIFELONG AUDITORY PLASTICITY: RECOVERY OPTIONS FOR
PRETERM INFANTS
While experience-dependent plasticity is greatest in the early
years, the auditory system maintains the potential for malleability
throughout life (Sanes and Woolley, 2011). For example, auditory
brain plasticity has been demonstrated in older adults follow-
ing short-term sound-based training (Tremblay et al., 2001; Song
et al., 2008; Anderson et al., 2013). Similarly, musical training has
been shown improve linguistic and cognitive abilities (Moreno
et al., 2009; Strait et al., 2014) and speech intelligibility in noise
(Strait et al., 2012) in young children, leading to neural enhance-
ments of brain structure and function (Hyde et al., 2009; Halwani
et al., 2011; Ellis et al., 2012; Strait and Kraus, 2014), and buffer-
ing against auditory aging in older adults (Parbery-Clark et al.,
2009, 2012). In addition, cochlear implants can induce functional
plasticity in the auditory brainstem even after many years of deaf-
ness in childhood, demonstrating the high degree of modifiability
in brain mechanisms that support hearing abilities (Gordon et al.,
2011; Cardon et al., 2012). Thus, our auditory histories—whether
in the form of excessive noise, acoustic deprivation, or aug-
mented sound training—can influence auditory processes across
the lifespan (Skoe and Chandrasekaran, 2014).

What are the implications of this lifelong plasticity for preterm
infants following NICU discharge? While the NICU environ-
ment may initially compromise the auditory development, it
is encouraging that the post-NICU environment may help to
close the developmental gap by allowing for near normal to
normal auditory functionality later in life. Enriched home liter-
acy environment and quality exposure to auditory and linguistic
stimuli in the post-NICU environment are considered fundamen-
tal building blocks for this auditory neuroplasticity, laying the
foundation for speech and language development (Burgess et al.,
2002; Roberts et al., 2005; Rowe and Goldin-Meadow, 2009; Hart
and Risley, 2010; Hammer et al., 2010; Skoe et al., 2013; Ramirez-
Esparza et al., 2014). Although hearing, language, and attention
deficits are common among preterm infants (Vohr, 2014), the fact

that some children born prematurely manage to catch up to their
peers suggests that despite the initial auditory trauma induced by
the NICU environment, the window of opportunities for further
plasticity and recovery remains open.

CONCLUSIONS
The acoustic gap between the NICU and the womb, although
somewhat unescapable, poses a hazard that may disrupt auditory
development in intensive care neonates. As a consequence of the
NICU environment, preterm infants receive a heavier dose of HF
noise than what would be normally possible in the womb. The
long-term effects of HF noise exposure on the development of
preterm newborns prior to full gestation development is a grow-
ing area of research of particular clinical importance. The negative
plasticity of the auditory brain system in response to HF noise
exposure is concerning and highlights the importance of the new-
born’s sensory experience during postnatal hospitalization. It is
tempting to theorize that excessive exposure to high-frequency
noise during critical periods may be a contributing factor to
the language, attention, and cognitive deficits often seen in the
preterm population. Despite these evident concerns regarding HF
noise exposure, current guidelines set by the AAP (White et al.,
2013) are primarily focused on loudness levels, leaving the poten-
tial risks of HF noise exposure in the NICU largely overlooked.
More knowledge of the spectral content of NICU noise would
help in evaluating the auditory developmental consequences in
NICU graduates. Intensive care neonates deserve to have a better
protection plan against toxic sounds.
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