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ABSTRACT

The DiseaseConnect (http://disease-connect.org) is
a web server for analysis and visualization of a com-
prehensive knowledge on mechanism-based disease
connectivity. The traditional disease classification
system groups diseases with similar clinical symp-
toms and phenotypic traits. Thus, diseases with
entirely different pathologies could be grouped to-
gether, leading to a similar treatment design. Such
problems could be avoided if diseases were classi-
fied based on their molecular mechanisms. Connect-
ing diseases with similar pathological mechanisms
could inspire novel strategies on the effective repo-
sitioning of existing drugs and therapies. Although
there have been several studies attempting to gen-
erate disease connectivity networks, they have not
yet utilized the enormous and rapidly growing pub-
lic repositories of disease-related omics data and
literature, two primary resources capable of provid-
ing insights into disease connections at an unprece-
dented level of detail. Our DiseaseConnect, the first
public web server, integrates comprehensive omics
and literature data, including a large amount of gene
expression data, Genome-Wide Association Stud-
ies catalog, and text-mined knowledge, to discover
disease–disease connectivity via common molecular

mechanisms. Moreover, the clinical comorbidity data
and a comprehensive compilation of known drug–
disease relationships are additionally utilized for ad-
vancing the understanding of the disease landscape
and for facilitating the mechanism-based develop-
ment of new drug treatments.

INTRODUCTION

Recent research reveals that human diseases form an inter-
related landscape. Multiple diseases, even those of different
organs or with distinct symptoms, can be caused by dys-
functions of the same genes, or more broadly, by dysfunc-
tion of the same pathways (1–9). For example, it is known
that both asthma and type II diabetes may be linked to obe-
sity through chronic systemic inflammation (10). In addi-
tion, many cardiovascular diseases and cancers share pro-
cesses involving the endothelin axis and angiogenesis (11).
However, traditional classification systems group diseases
based on the similarity of their clinical presentations and
phenotypic traits. Diseases with entirely different underly-
ing pathologies could, therefore, be grouped together, lead-
ing to similar treatment designs. This problem could be
avoided if diseases were classified based on their molecu-
lar mechanisms. Such a system would be a great step for-
ward inspiring novel and effective treatment strategies of
many diseases by repositioning existing drugs and therapies.
To achieve this goal, a web-hosted, comprehensive database
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and analysis suite server on molecular-based disease mech-
anisms would be a very useful tool.

Recently, we and other groups have attempted to cre-
ate disease connectivity networks based on clinical records
(1,2), OMIM records (3,4), Genome-Wide Association
Studies (GWAS) data (12), metabolic networks (5) and ag-
gregations of these datasets (13–15). However, these stud-
ies have not yet touched two enormous and rapidly grow-
ing repositories: functional genomic data (gene expression,
microRNA expression, etc.) and primary literature texts.
Both resources are capable of providing insights into dis-
ease mechanisms and disease connections at an unprece-
dented level of detail. Currently, only a few databases touch
on the concepts of disease connections (13,16). The Disease
and Gene Annotation (DGA) database uses the Gene Ref-
erence Into Function (GeneRIF) from the National Cen-
ter for Biotechnology Information (NCBI), Disease Ontol-
ogy (DO) and molecular interaction networks to construct
disease–gene, gene–gene and disease–disease relations (16).
The human disease database ‘MalaCards’ archives human
maladies and their annotations by integrating 44 disease-
and drug-related data sources (13). As a side product, the
human disease network was constructed based on shared
MalaCards annotations, embodying associations based on
etiology, clinical features and clinical conditions. However,
none of these databases utilizes both comprehensive omics
and literature data supporting shared molecular mecha-
nisms. In addition to the disease databases, there are a
number of disease–drug databases and prediction methods
(17–22). For example, Sanseau et al. reported that genes
with significant disease associations from GWAS studies are
more likely to involve common drug targets for their re-
spective diseases (19). Gottlieb et al. used drug–drug and
disease–disease similarity to infer novel drug indications
(20). The biological literature corpus has also been used to
infer disease–drug relations (21,22). But these disease–drug
association databases and prediction methods are indepen-
dent of disease network analysis. In summary, none of this
prior work focused on extensively combining and present-
ing a diverse range of heterogeneous resources, including
genomics data, OMIM, literature, clinical data and disease–
drug relations, for studying mechanism-based disease con-
nectivity.

To fill this gap, we have recently created DiseaseConnect,
a web server that focuses on the analysis of common molec-
ular mechanisms shared by diseases by integrating compre-
hensive omics and literature data. Our system is equipped
with efficient network analysis and visualization tools for
intuitive data exploration and easy interpretation. We have
already incorporated a large amount of GWAS catalog,
gene expression data, microRNA expression data and text-
mined knowledge to discover disease–disease connectivity
based on molecular mechanisms. To advance further our
understanding of the disease landscape, we have supple-
mented the system with clinical comorbidity data. Finally,
to facilitate the development of new mechanism-based drug
treatment and therapeutic strategies, we equipped the server
with a comprehensive compilation of known drug–disease
relationships. The DiseaseConnect web server contains 18
707 disease–disease, 660 985 disease–gene, 12 617 drug–
gene and 113 498 drug–disease relations; all together, these

data cover 4791 diseases, 6215 drugs and 15 182 genes. This
is, therefore the most comprehensive resource documenting
the shared molecular bases of diseases currently in existence.

The web server uses the advanced web interactive visu-
alization technology ‘Cytoscape Web’ (23), which provides
an interactive and user-friendly interface to visualize net-
works and results in many different ways. Nodes, edges and
labels of different types of networks are rendered with dis-
tinct and easy-to-recognize colors and sizes. The interface
also supports various network layouts, zooming and drag-
gable functions to facilitate network exploration and com-
prehension of the analysis and results.

To validate the server’s usefulness to biologists, we show
that diseases with shared molecular mechanisms are likely
(i) to be linked with clinical comorbidity and (ii) to have
the common drug treatments. Through several examples,
we also demonstrate how DiseaseConnect can be used to re-
veal the molecular mechanisms shared between diseases and
suggest potential drug treatments. In summary, our Dis-
easeConnect web server characterizes common pathobio-
logical mechanisms across diseases in different organ sys-
tems. This new and rapidly expanding tool has the great
potential to redefine disorders based on their underlying
molecular and cellular pathobiology. It is also useful for the
rational, mechanism-based development of new diagnostic,
prognostic and therapeutic strategies.

MATERIALS AND METHODS

Our web server compiles a set of comprehensive data re-
sources that can be categorized into eight types: disease an-
notations, disease-related gene and microRNA expression
changes, disease-related single-nucleotide polymorphisms
(SNPs), disease–drug relationships, disease comorbidity re-
lationships, drug–gene relations, disease–gene relationships
from literature mining and disease–gene relationships from
OMIM. The processed data are organized by the system
schema shown in Figure 1. This section details the process-
ing procedure for each data type.

Disease annotations

To construct systematically disease–gene and disease–drug
relations using multiple databases, we used the unified med-
ical language system (UMLS) that provides a comprehen-
sive set of medical concepts and DO terms and includes
a metathesaurus (24). We selected two vocabularies: Med-
ical Subject Headings (MeSH) and the UMLS Metathe-
saurus. To describe disease–gene relations, DiseaseConnect
uses only UMLS concepts with one of the following disease-
related semantic types: ‘Pathologic Function’, ‘Injury or
Poisoning’ and ‘Anatomical Abnormality’. To support a
wide range of diseases, we combined all of the disease
concepts from gene expression data, OMIM and GWAS
databases. To avoid too general concepts, we only used those
UMLS concepts that are associated with < 50 descendant
concepts. These criteria result in a universe of 4791 disease
concepts.
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Figure 1. Constructing the mechanism-based disease–disease network based on the GWAS/OMIM/DEG records. (A) We combine the disease–gene
connections derived from GWAS, OMIM and DEG records to build a comprehensive disease–gene network (D1, D2, D3 and D4 indicate diseases and G1,
G2, G3 and G4 indicate genes). For each disease pair, we calculate the hypergeometric P-value to assess the significance of the number of genes involved
in both diseases. We also add drug–treatment relations to complement further the database. (B) In the disease–disease network, when users click the edge
between disease D1 and D2, the web server generates the detailed network of disease D1 and D2, including DEG/GWAS/OMIM/GeneRIF/GeneWays
disease–gene relations and drug treatment/target relations.

Disease-related gene expression

We collected a total of 1366 human gene expression datasets
on 27 February 2014 from the Gene Expression Omnibus
(GEO) (25), which consist of all 1355 human GEO datasets
(GDS) that are pre-processed by GEO, and additionally
11 GEO series (GSE) processed by us as part of an NIH-
funded project studying heart, lung, blood and sleep dis-
orders. If one gene has several probes, we used the mean
expression value for the gene. Within each sample, the ex-
pression values of all genes were log-transformed, median-
centered and normalized to have unit standard deviation.
The 1366 datasets contain in total 6024 subsets and 30 300
samples. Each subset is a group of samples with specific phe-
notypic traits or treatments. These subsets can be classified
into different types, e.g. disease state, agent, cell line, cell

type, tissue, protocol and infection. To concentrate on the
disease studies, we selected 1178 subsets with the ‘disease
state’ type. We manually assigned UMLS concepts to sub-
sets, and then retrieved their parental UMLS concepts to
complete the UMLS annotation for all subsets. To iden-
tify differentially expressed genes (DEGs) in each dataset,
we selected all disease subsets with at least three samples
and manually identified the normal subset in the dataset.
We then performed a t-test between two subsets without
overlapping samples. DEGs are defined as the top 100 genes
with t-test P-values < 1e−6 for each subset pair. This analy-
sis identified 928 subset pairs with DEGs. Overall, the 1366
gene expression datasets contributed 173 992 disease–gene
relations, including 505 diseases and 11 812 genes.
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Disease-related microRNA expression

We collected 233 human microRNA expression datasets
from the GEO, which consist of 5194 samples. Each
dataset has multiple phenotype-specific subsets. For study-
ing disease-related microRNA data, we selected 84 datasets
with disease and normal subsets. To systematically process
phenotype information for microRNA expression data, we
transferred the text description of microRNA datasets to
UMLS concepts using the MetaMap program (26). To iden-
tify differentially expressed microRNAs in each dataset,
we selected the disease subsets with at least three sam-
ples as well as the normal subset. We then performed a
t-test between the normal subset and each disease sub-
set without overlapping samples. We obtained the differ-
entially expressed microRNAs with t-test P-values < 0.001
for each subset pair. This analysis resulted in 956 differen-
tially expressed microRNAs identified in 73 subset pairs.
The microRNA expression data contributed 17 088 disease–
microRNA relations, including 20 diseases and 745 microR-
NAs.

Disease-related SNP

We downloaded the catalog of published GWAS from the
National Human Genome Research Institute (27). This
data is a manual curation of published GWAS hits, which
may contain causative SNPs (27). The GWAS catalog con-
tains descriptions of diseases/traits, associated SNPs, and
reported genes. We converted these disease annotations to
UMLS concepts using the MetaMap program (26) and se-
lected GWAS genes with P-values < 1e−6. The GWAS data
contributed 21 865 disease–gene relations, including 719
diseases and 3397 genes.

Disease–drug relationships

We extracted the disease–drug annotations and relation-
ships from the UMLS National Drug File Reference Termi-
nology (NDFRT). This database contributed 113 498 drug–
disease relations, including 8995 drugs and 1525 diseases.

Disease comorbidity relationships

We downloaded disease comorbidity relations from the
Phenotypic Disease Network (PDN) (1), which uses ICD9
disease codes. We selected disease–disease connections with
t-value > 1.96 (P < 0.05), and then translated the ICD9 dis-
ease codes into UMLS concepts using the UMLS Metathe-
saurus. The PDN data contributed 132 786 disease–disease
connections, including 2991 diseases.

Drug–gene relations

We downloaded 12 617 human drug–gene relations from
the DrugBank database (28). These data included 3417
drugs and 1481 genes.

Disease–gene relationships from GeneRIF

GeneRIF is a database archiving short statements about the
functions and disease relevance of genes. Each GeneRIF

statement has a pointer to the PubMed ID of a scien-
tific publication that provides evidence for the statement.
We downloaded the GeneRIF database from the NCBI
Gene database, and then for each gene we extracted UMLS
disease concepts from its GeneRIF statements using the
UMLS natural language processing tool, MetaMap pro-
gram (26). This source provided 276 089 disease–gene re-
lations, including 3113 diseases and 11 190 genes.

Disease–gene relationships from literature corpus mining
(GeneWays)

We extracted all human disease–gene relationships from the
GeneWays system (version 8.0) that we developed previ-
ously (29). This system has automatically extracted, ana-
lyzed, visualized and integrated molecular pathway data in
483 107 full-text articles and 11 826 299 abstracts down-
loaded from PubMed. We obtained 170 329 disease–gene
relations, including 2046 diseases and 7239 genes. This set
of disease–gene relationships has less than 20% overlap (33
137 shared) with those derived from GeneRIF. This dif-
ference in the two derived knowledge sources can be at-
tributed to the different text-mining approaches: GeneRIF
was curated by a mixed effort of manual annotation and
various user-designed text-mining approaches, while Ge-
neWays used natural language processing tools. The two
sets of disease–gene relationships are complementary to a
great extent; we, therefore, retained both resources for our
web server.

Disease–gene relationships from OMIM

We downloaded the OMIM database (30), then converted
annotations of the OMIM Gene Map to UMLS concepts
using the UMLS natural language processing tool (26). This
analysis resulted in 18 710 disease–gene relations, including
4457 diseases and 3749 genes.

After collecting the above data, we constructed a disease–
disease connectivity network summarizing the molecules
shared between diseases. We evaluated the connection
strength between two diseases based on the enrichment
of genes that are relevant to both diseases. The statistical
significance of the connection between two diseases is as-
sessed by a hypergeometric test on shared genes derived
from the GWAS, OMIM, DEG, GeneRIF and GeneWays
sources. We did not include disease–disease connections de-
rived from GeneRIF and GeneWays in this server, because
the disease–gene relationships extracted from the curated
literature have low performance in terms of the relatedness
to the comorbidity and drug treatment data (see Figures 3
and 4). In addition, those literature-based disease–gene re-
lationships were included in the server as the complemen-
tary data.

SERVER IMPLEMENTATION AND USAGE

The DiseaseConnect web server was implemented using
JSP, MySQL, JavaScript and an advanced web interactive
visualization technology, Cytoscape Web (23). The server
permits rapid, dynamic user interaction and network visu-
alization. The nodes, edges and labels of different types of
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Figure 2. Illustrations of the gene, disease and disease connection views in the DiseaseConnect web server. (A) Gene view: user inputs STAT3 to search for
all diseases related to this gene based on the GWAS/OMIM/DEG records. The web server generates a disease–disease network on the diseases associated
with STAT3. In this network, the disease–disease connection indicates that two diseases involve a significant number of common genes based on the
GWAS/OMIM/DEG records. (B) Disease view: user inputs arthritis, and then the web server displays a disease–disease network (using the diseases
connecting arthritis) in the left panel and the disease–gene–drug network (using the arthritis-related drugs and genes) in the right panel. The disease–gene–
drug network of arthritis includes the following molecules: (i) genes associated with arthritis, (ii) the drugs targeting the disease-related genes and (iii) the
drugs treating arthritis. (C) Disease connection view: user inputs arthritis and Crohn disease, and then the web server displays a network connecting the
two diseases. Users can enable the drug option to show the drug–disease treatment relations. In each view, the web server automatically adjusts the P-value
threshold to maintain the size of the network to less than 100 nodes.

networks are rendered with distinct and easy-to-recognize
colors and sizes. Users can choose between various network
layouts, zoom in and out and use draggable functions to fa-
cilitate better understanding of the analysis and results.

As illustrated in Figure 2, the server provides three views:
a gene view, a disease view and a disease connection view.
In the gene view (Figure 2A), users enter a gene of inter-
est, and the web server returns a set of diseases that have
similar molecular mechanisms as well as association with
the queried gene. The diseases are, therefore, represented

as networks, where edges indicate diseases with a shared
molecular basis. The strength of the connection is quanti-
fied as the P-value of a hypergeometric enrichment test in
the number of shared genes; the P-value threshold is set by
the server to limit the size of the network to 150 nodes. Users
can also enter a disease (in the disease view, Figure 2B) or a
disease pair (in the disease connection view, Figure 2C). In
both cases, the web server returns all diseases connected to
the queried disease(s) in a network representation. Again,
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Figure 3. Diseases pairs sharing more involved genes are more likely to
have disease comorbidity. The statistical significance (P-value) of the con-
nection between two diseases is assessed by a hypergeometric test on shared
genes derived from each individual data source of GWAS, OMIM, DEG,
GeneRIF and GeneWays. We used various P-value thresholds (x axis) to
select significant disease–disease connections for each data source, and
then calculated the fraction (y axis) of those disease–disease connections
that overlap with the disease comorbidity connections.

the edges in these networks indicate a strong connection in
terms of shared genes, as explained for the gene view.

The interface includes numerous features to facilitate ex-
ploration for the user. If the user enters only the starting
symbol of a gene or disease, the auto-complete field au-
tomatically provides a list of partially matched terms. To
retrieve all genes and drugs associated with a disease or
connection of interest, the users can click a node or edge
of the disease network. The web server then retrieves and
displays the gene–drug network associated with the dis-
ease or disease connection of interest. This network in-
cludes seven types of associations: DEG, GWAS, OMIM,
GeneRIF, GeneWays, Drug target and Drug treatment. For
detailed query examples, refer to the section ‘Example Ap-
plications’.

In summary, the main features of the DiseaseConnect
web server are as follows:

• Construct comprehensive networks describing disease–
disease connectivity, disease–gene associations, drug–gene
targeting and drug–disease treatments.

• Integrate detailed lists and representations of disease–gene
relations derived from various sources (GWAS, OMIM,
DEG, GeneRIF and GeneWays).

• Provide flexible network visualization tools with different
choices of network layout, as well as customizable node
and edge types; allow the user to zoom and drag the net-
work diagram.

• Use edge opacity to indicate the strength of the disease–
disease connections in the network.

• Automatically adjust the hypergeometric P-value threshold
to present a subnetwork of a reasonable size.

• Auto-complete the search field with full names of diseases,
UMLS IDs and gene symbols.

• Export the network as standard image file formats, such as
PNG, SVG and XGMML.

VALIDATION

In this section, we theoretically validate the utility of our
server in helping biologists study mechanism-based disease
connectivity. The following analyses show that diseases with
shared molecular mechanisms are likely (i) to be linked with
clinical comorbidity data and (ii) to have the same drug
treatment.

Diseases with shared molecular mechanisms are more likely
to have clinical comorbidity

We assessed the strength of disease connections based on
the significance of the number of genes involved in both
disorders, which were derived from genomic data and the
literature. We are interested in the extent to which these
mechanism-based disease connections are related to dis-
ease comorbidity relationships of the same disease pairs,
based on patient clinical records. The mechanism-based and
comorbidity-based disease networks can be compared in
terms of the fraction of shared edges. To construct the co-
morbidity network, we used only high-quality comorbid-
ity relationships, with P-values <0.01, retrieved from the
PDN (1). So that the comparison is unbiased, we excluded
disease pairs with ancestor–descendant relationships in the
disease semantic hierarchy (i.e. ‘is-a’ relations of UMLS dis-
ease concepts). The results of this comparison are shown in
Figure 3. The overall trend is that two diseases with stronger
mechanism-based connections are more likely to have a sig-
nificant clinical comorbidity relation. When we randomize
the mechanism-based disease network by degree-preserving
edge rewiring (31) , this trend disappears and the random
network shares few edges with the disease comorbidity net-
work.

Among all data sources, the disease network derived from
GWAS records showed the highest level of consistency with
the comorbidity network. Interestingly, the OMIM-derived
network not only is less consistent but has the ‘seesaw’ per-
formance curve. The DEG- and GWAS-based networks
both have stable performance. A possible explanation is that
although OMIM has high-quality data and has expanded
to polygenic complex maladies in recent years (4,32), many
(i.e. 35.5%) of its records are monogenic disorders for which
our assessment of disease connection strength may not be
precise. Finally, it is not surprising that the networks based
on GeneRIF and GeneWays data from the literature have
the worst performance because they include too much noisy
data incurred by the use of automatic human language pro-
cessing tools. However, both these networks still perform
better than chance. Overall, these results validate our claim
that diseases with shared molecular mechanisms are more
likely to have comorbidity.

Diseases with shared molecular mechanisms are more likely
to have the same drug treatment

To validate the intuitive hypothesis that diseases with shared
molecular mechanisms are more likely to be treated by the
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Figure 4. Disease pairs sharing more genes are more likely to have the same drug treatment. The statistical significance (P-value) of the connection between
two diseases is assessed by a hypergeometric test on shared genes derived from each individual data source of GWAS, OMIM, DEG, GeneRIF and
GeneWays. We used various P-value thresholds (x axis) to select significant disease–disease connections for each data source, and then calculated the
fraction (y axis) of the disease–disease connections in which both diseases can be treated by the same drug(s).

Figure 5. Disease module 109 is enriched of the diseases that can be treated
by fludarabine. There are nine total diseases, and fludarabine can treat
five of those diseases. Although multiple myeloma and acute lymphocytic
leukemia are currently not treated with fludarabine, we found strong liter-
ature evidence that supports this potential treatment.

same drug(s), we performed a network comparison simi-
lar to that described above. In this case, we calculated the
fraction of mechanism-based disease connections for which
both diseases are treated by the same drug or drugs. The
drug–disease treatment resources were collected from ND-
FRT (see the Material and Methods section). We individ-
ually evaluated the disease networks derived from differ-
ent sources (GWAS/OMIM/DEG/GeneWays/GeneRIF).
For an unbiased comparison, we used only those diseases
with drug–treatment relations and excluded disease pairs

with ancestor–descendant relationships in the disease se-
mantic hierarchy (i.e. ‘is-a’ relations of UMLS disease con-
cepts).

Figure 4 displays the results of this comparison: (i) the
more significant the mechanism-based connection between
two diseases (derived from any data sources), the higher
the likelihood they can be treated by the same drugs. For
example, for the data source OMIM, we identified 1243
disease–disease connections (covering 424 diseases and 599
drugs) in each of which both diseases share significant (P-
value <0.01) common molecular mechanisms and both dis-
eases have known drug–treatment data. Among those, the
fraction in which both diseases are treated by the same
drug(s) for OMIM is 33%. Figure 4 shows that this frac-
tion increases with the strength (i.e. P-value) of mechanism-
based disease connections. (ii) Connections derived from
the GWAS and OMIM data sources are the strongest pre-
dictors of common drug treatments. It is also interesting
to note that while connections derived from text mining
(GeneRIF/GeneWays) are not good predictors, they still
perform better than random networks. The GWAS data
source consistently outperforms OMIM by a small amount.
The chance for two diseases to be treated by the same
drug(s) increases with the significance of their GWAS- or
OMIM-based connection; however, DEG-based connec-
tions show no such trend. This implies that the molecular
mechanisms indicated by GWAS and OMIM records are
more closely relevant to drug treatment than those present
in the DEG records. A possible reason is that DEG records,
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Figure 6. Disease connections with drug treatment implications. (A) PSMB5 is a DEG for both hemorrhagic disorders and multiple myeloma, and PSMB5
also has GeneRIF association with multiple myeloma. (B) Arthritis and Crohn disease are associated with TNF based on the GWAS and GeneRIF records.
Thalidomide is an immunomodulatory drug that targets TNF and can treat both arthritis and Crohn diseases. Adalimumab also targets TNF and can
treat arthritis, suggesting its potential treatment of Crohn disease.

derived from gene expression data, may more likely reflect
downstream effect rather than causes of diseases.

Diseases modules in the connectivity network are more likely
to have the same drug treatment

Having confirmed that disease pairs with significant
mechanism-based connections are likely to be treated by
the same drug(s), we further hypothesize that diseases com-
prising a dense subgraph in the disease connectivity net-
work, termed a disease module (33), are likely to benefit
from the same drug treatment. To validate this hypothe-
sis, we constructed a large, high-quality disease connectiv-
ity network, comprising 5189 connections with hypergeo-
metric P-values < 1e-6 for disease module discovery. We
applied MODES, a network clustering method to discover
overlapping dense clusters (34) in this network and iden-
tified 141 distinct disease modules (details see Supplemen-
tary Table S1). We ran MODES using the following parame-
ters: minimum module size 3, maximum module size 30 and
density cutoff 0.7. In 38 (27%) of the discovered modules,
more than half of the member diseases can be treated by
the same drug. In contrast, our randomization test (we gen-
erated 141 similar-sized modules by randomly permuting
drug–treatment relations) has only 3 (2.1%) such modules.
This result indicates that highly connected diseases are more
likely to have the same drug treatment. Figure 5 illustrates
Module-109 as an example. This densely connected disease
subnetwork consists of nine diseases, of which the drug
‘fludarabine’ can treat five. Fludarabine is effective in the
treatment of chronic lymphocytic leukemia (35). Although
multiple myeloma (MM) and acute lymphocytic leukemia
(ALL) are not currently treated with fludarabine, we found
strong evidence for a potential effect on MM and ALL in
the literature: (i) Caballero-Velázquez et al. reported that a
combined treatment consisting of bortezomib, fludarabine,
and melphalan showed advantage in high-risk MM patients
(36). (ii) Daly et al. reported that fludarabine and busulfan

achieved excellent outcomes with older ALL patients (37).
(iii) There are several ongoing clinical trials using fludara-
bine to treat MM (e.g. ClinicalTrials.gov ID: NCT01131169
and NCT01453101) and ALL (e.g. ClinicalTrials.gov ID:
NCT01435447 and NCT01572662). Therefore, identifying
disease modules such as this one in the disease connectivity
network can point the way to effective drug repositioning
strategies.

EXAMPLE APPLICATIONS

DiseaseConnect offers a variety of functions and analyses.
While a mechanism-based disease network has many po-
tential applications, this section provides examples for two
basic and yet informative functions of the server, e.g. how to
query a disease for obtaining its related diseases, genes and
drugs, and how best to query a disease–disease connection
for exploring possible drug repositioning.

Example of a disease query (arthritis)

When researching a disease, biologists usually consider
what other diseases are relevant to it. In the disease view,
users can enter a full or partial disease name in the input
field. The server automatically matches and completes a
partial name with a list of full disease names. For example,
when entering ‘arthritis’, the web server yields the disease–
disease network shown in the left panel of Figure 2B. In this
network, a disease–disease connection indicates that two
diseases involve a significant number of shared genes based
on the GWAS/OMIM/DEG records. If the user clicks a
disease (node) in the network, the web server shows the
network of all molecules associated with this disease. For
example, the right panel of Figure 2B shows the disease–
gene–drug network associated with arthritis, which includes
the following molecules: (i) genes associated with arthritis
based on the GWAS/OMIM/DEG/GeneRIF/GeneWays
records, (ii) drugs that target these genes and (iii) drugs that
treat arthritis.
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Given the heterogeneous diseases connected to arthri-
tis in Figure 2B, it is worth noting that arthritis is al-
ready known to relate to large group diseases, subsuming
its Diagnosis Related Group (DRG). DRG is a system to
classify hospital cases into one of originally 467 groups
(38) and is currently the main system documenting disease
groups. DRG however has major shortcomings being highly
focused and directly linked to specific molecular mecha-
nisms in some cases (such as mitochondriopathies or mus-
cular dystrophies) and highly nonspecific with a clinical syn-
drome emphasis in others (such as heart failure). Our sys-
tem, however, provides a comprehensive and unbiased way
to identify diseases sharing molecular similarities, given a
large amount of collected genomic and literature data.

Examples of disease pair queries and their applications to re-
vealing potential drug treatments

After viewing all diseases and molecules related to a query
disease, users can further explore the shared molecular
mechanism(s) between two specific diseases by clicking an
edge in the disease network. For example, when a user
queries MM, the web server generates a disease–disease
network. The user can then click the connection between
MM and hemorrhagic disorders (HD) to view a network
of shared genes and drugs between HD and MM. Figure
6A shows a small part of this network with the shared
gene PSMB5 and the drug bortezomib. PSMB5 is a DEG
for both HD and MM, and also has a GeneRIF associa-
tion with MM. Bortezomib is a therapeutic proteasome in-
hibitor for treating MM, and targets PSMB5 (39). Interest-
ingly, bortezomib can also treat HD (40), suggesting that
shared disease genes can serve as good targets for drug repo-
sitioning strategies.

Figure 6B shows another example network for the
queried disease pair ‘arthritis’ and ‘Crohn disease’, both
involve the tumor necrosis factor (TNF), based on the
data sources GWAS and GeneRIF. Thalidomide is an
immunomodulatory drug that targets TNF. Interestingly,
thalidomide can treat both arthritis and Crohn diseases
(41), supporting our hypothesis that diseases with a shared
molecular mechanism are likely to be treated by the same
drug. Another drug shown in Figure 6B, ‘adalimumab’,
is known to target TNF and can treat arthritis, suggest-
ing that it may also be effective for Crohn disease. In fact,
this inference is confirmed independently by a recent re-
port of Peters et al. (42). Also, several clinical trials about
Adalimumab and Crohn disease (e.g. ClinicalTrials.gov ID:
NCT01556672 and NCT01958827) are currently ongoing.

CONCLUSIONS

We developed the DiseaseConnect web server for the anal-
ysis and visualization of a comprehensive knowledge based
on shared molecular mechanisms between diseases, includ-
ing gene expression data, GWAS hits, OMIM records, text
mining of the literature, clinical comorbidity data and a
comprehensive compilation of known drug–disease rela-
tionships. Our analyses have shown that disease connec-
tions based on a shared molecular mechanism are closely
tied to disease comorbidity and common drug treatments.

The web server will not only facilitate studies of dis-
ease mechanisms but also has practical usages for the
mechanism-based development of new drug treatments and
therapeutic strategies. The latter were demonstrated by
two online analysis examples. DiseaseConnect possesses an
interactive and user-friendly visualization interface pow-
ered by advanced web interactive visualization technology.
Therefore, it has a quick response time and an intuitive
schema so that both novice and experienced users can read-
ily perform a variety of network analyses. With the rapid ac-
cumulation of disease-related omics data and text literature
that are publicly available, our server will be continuously
updated to serve the research and clinical communities ef-
fectively.
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