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Mutualistic interaction between Salmonella enterica
and Aspergillus niger and its effects on Zea
mays colonization

Roberto Balbontín,* Hera Vlamakis and
Roberto Kolter
Department of Microbiology and Immunobiology,
Harvard Medical School, 77 Avenue Louis Pasteur, HIM
building, Room #1042, Boston, MA 02115, USA.

Summary

Salmonella Typhimurium inhabits a variety of envi-
ronments and is able to infect a broad range of hosts.
Throughout its life cycle, some hosts can act as inter-
mediates in the path to the infection of others.
Aspergillus niger is a ubiquitous fungus that can
often be found in soil or associated to plants and
microbial consortia. Recently, S. Typhimurium was
shown to establish biofilms on the hyphae of A. niger.
In this work, we have found that this interaction is
stable for weeks without a noticeable negative effect
on either organism. Indeed, bacterial growth is pro-
moted upon the establishment of the interaction.
Moreover, bacterial biofilms protect the fungus
from external insults such as the effects of the anti-
fungal agent cycloheximide. Thus, the Salmonella–
Aspergillus interaction can be defined as mutualistic.
A tripartite gnotobiotic system involving the bacte-
rium, the fungus and a plant revealed that
co-colonization has a greater negative effect on plant
growth than colonization by either organism in
dividually. Strikingly, co-colonization also causes a
reduction in plant invasion by S. Typhimurium. This
work demonstrates that S. Typhimurium and A. niger
establish a mutualistic interaction that alters bacterial
colonization of plants and affects plant physiology.

Introduction

Salmonella enterica serovar Typhimurium (S. Typhimu-
rium hereafter) and Aspergillus niger are two important
model systems in the study of microbial pathogens.

Aspergillus niger is distributed worldwide and can colo-
nize diverse habitats and hosts (Wilson et al., 2002;
Nielsen et al., 2009). Aspergillus species are successful
symptomless endophytes and pre- and post-harvest
pathogens of plants (Perrone et al., 2007; Palencia et al.,
2010). Salmonella Typhimurium survives in different envi-
ronments and is able to colonize a plethora of hosts,
causing from no symptoms to death (Baumler et al.,
1998). The life cycle of S. Typhimurium comprises an
infection/persistence phase within the host and a survival/
spread stage in the external environment while
transitioning to a new host (Foltz, 1969; Thomason et al.,
1977). Plants play a key role in the survival and dissemi-
nation of S. Typhimurium in the environment. Indeed, Sal-
monella outbreaks have been often linked to the
consumption of foods of plant origin (Brandl et al., 2013).
In both phases, S. Typhimurium interacts with a number
of other microorganisms. These interactions can be syn-
ergistic, neutral or antagonistic, and might influence the
colonization of a given niche/host by this bacterium. For
example, several members of the intestinal flora have an
antagonistic effect on gut colonization by S. Typhimurium
(Servin, 2004). Moreover, antagonism by other microbes
can occur outside of the host as well (Servin, 2004). In
contrast, gut inflammation induced by S. Typhimurium
causes changes in the composition of the intestinal
microbiota (Thiennimitr et al., 2012). Furthermore, when
co-infection with Plasmodium species occurs, the ability
of S. Typhimurium to cause systemic infection in humans
increases (Roux et al., 2010). Finally, plant infection by
S. Typhimurium is also facilitated by the presence of other
pathogens (Meng et al., 2013; Potnis et al., 2014).

Bacteria and fungi are often found associated in nature,
in soils or in association with plants and animals. Fungal–
bacterial interactions can positively or negatively affect
either participant (Wargo and Hogan, 2006). For instance,
the interaction between A. niger and Collimonas
fungivorans results in bacterial mycophagia (Mela et al.,
2011) and S. Typhimurium can kill the fungal pathogen
Candida albicans (Tampakakis et al., 2009; Kim and
Mylonakis, 2011). In contrast, the co-incubation of A. niger
with Bacillus subtilis leads to a metabolic change and
downregulation of defence mechanisms in both microbes,
suggesting a neutral interaction (Benoit et al., 2014).
Alternatively, members of the Aspergillus genus interact
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beneficially with mycobacteria by facilitating bacterial
infection (Mussaffi et al., 2005).

A recent study reported that S. Typhimurium forms
biofilms on the hyphae of A. niger, and found that the
association depends on the interaction between bacterial
cellulose and fungal chitin (Brandl et al., 2011). Curli
fibres, which are important for biofilm formation on inert
surfaces (reviewed in Barnhart and Chapman, 2006),
were important for biofilm maintenance on A. niger
hyphae but not necessary for early attachment (Brandl
et al., 2011). Mutants in csgD, which do not produce curli,
form biofilms on A. niger that breakdown by 7 h of colo-
nization and are almost completely detached by 24 h
(Brandl et al., 2011). Importantly, the biological conse-
quences of the relationship between A. niger and
S. Typhimurium remained unexplored.

Here, we provide evidence that the interaction between
S. Typhimurium and A. niger is mutualistic. Moreover, our
results demonstrate that the fungal–bacterial interaction
modifies the effects of the microbes on maize plants. In
addition, we found that S. Typhimurium can invade maize
plants and internalization is affected by the interaction
with A. niger.

Experimental procedures

Strains, media and culture conditions

Strains used in this work are listed in Table S1. All Salmo-
nella enterica strains belong to the serovar Typhimurium
strain ATCC 14028 (Jarvik et al., 2010). Salmonella
Typhimurium mutants were generated using the λ Red
recombination system (Datsenko and Wanner, 2000;
Murphy et al., 2000; Yu et al., 2000) and transferred to a
clean background using P22 HT 105/1 int201 transduction
(Schmieger, 1972). To obtain phage-free isolates, trans-
ductants were purified by streaking on ‘green’ plates (Chan
et al., 1972; Watanabe et al., 1972). Strain RB164 harbours
a constitutively expressed superfolder green fluorescent
protein (sfGFP) (Pédelacq et al., 2006) inserted in the chro-
mosomal pseudogene locus malX-malY (Jarvik et al.,
2010). RB164 was generated using isothermal assembly of
polymerase chain reaction products (Gibson et al., 2009)
and λ Red recombination. Primers used for the construction
of this strain were ORB007, ORB002, ORB003 and
ORB008 (Table S2). Template DNAs used were plasmids
pXG-1 (Urban and Vogel, 2007) and pTB263 (Dinh and
Bernhardt, 2011). Strains RB242, RB243 and RB244 are
derivatives of strains SV6062, SV6063 and SV6106
(Baisón-Olmo et al., 2012), respectively, where the consti-
tutive sfGFP from RB164 was introduced by transduction.
Strains RB225, RB226 and RB229 derive from strains
MA9999, MA10314 and MA8933 (Figueroa-Bossi et al.,
2009), respectively, where the constitutive sfGFP from
RB164 was introduced by transduction.

The A. niger strain used in this study (ZK3055) is a wild
environmental isolate.

Solid Luria-Bertani (LB) medium contained agar at a 2%
(w/v) final concentration. Antibiotics were used at the final

concentrations described elsewhere (Maloy, 1990). All bac-
terial cultures were incubated in LB broth at 30°C and 130
r.p.m until late exponential growth. Bacterial cells were
washed twice with 10 mM potassium phosphate buffer (pH 7)
and resuspended in either 10 mM potassium phosphate
buffer (pH 7) or 10% M9 (Miller, 1972) (v/v) supplemented
with 0.01% sucrose (w/v).

Aspergillus niger was grown on potato dextrose agar
at 20°C for 7 days. Spores were collected and stored
in 0.2% Tween 80 (Sigma, St. Louis, MO, USA) (v/v) at 4°C
and spore counts were determined with a haemocytometer.
Potato dextrose broth was inoculated with 9 × 104 spores
ml−1 and incubated over night at 30°C and 130 r.p.m to
promote spore germination. Then 5 ml of germinated spore
suspension was added to 100 ml of M9 supplemented with
0.1% sucrose (w/v). The fungal culture was incubated at
30°C and 130 r.p.m for 24 h, and mycelia were washed five
times with either 10 mM potassium phosphate buffer (pH 7)
or 10% M9 (v/v) supplemented with 0.01% sucrose (w/v)
prior to co-incubation with bacteria.

Co-incubations took place in either 10 mM potassium phos-
phate buffer (pH 7) or 10% M9 (v/v) supplemented with
0.01% sucrose (w/v), at 30°C and 130 r.p.m (unless indicated
otherwise) for different periods of time prior to the correspond-
ing analysis. Fungal concentration in co-cultures was 1
mycelial microcolony per millilitre and bacterial one was
2 × 107 cells ml−1. In the experiments involving propidium
iodide (PI; Figs 3 and 5), mycelia were incubated for 20 min in
a freshly made solution at 2.5 μg ml−1 in 10 mM potassium
phosphate buffer (pH 7), prior to the analysis. PI is red fluo-
rescent when bound to nucleic acids and membrane
impermeant. Therefore, PI is excluded from viable cells and
only can penetrate cells when their membrane is compro-
mised so it can be used to identify dead cells (Bjerknes, 1984).

Microscopy

Samples were imaged with a Nikon Eclipse TE2000-U
(Nikon, Tokyo, Japan) microscope equipped with a 20X
Plan Apo (Nikon) objective. Pictures were taken with a
Hamamatsu digital camera model ORCA-ER (Hamamatsu
Photonics, Hamamatsu, Japan). Epifluorescence signal was
detected using GFP (Chroma #41020) or Texas Red
(Chroma #62002v2) filter sets. All images were taken at the
same exposure time, processed identically for compared
image sets, and prepared for presentation using MetaMorph
(Molecular Devices, Sunnyvale, CA, USA) and ImageJ
(public domain freeware) software. A minimum of three dif-
ferent positions for each of three independent biological
replicates were analysed in microscopy experiments, and
images shown in the figures are representative results.
Fluorescence intensity of samples for Figs 3 and 5 was cal-
culated using ImageJ software.

Alternatively, samples were imaged using a Zeiss Stemi
SV6 stereoscope (Carl Zeiss Microscopy, Jena, Germany)
attached to a fluorescence illumination system (X-cite 120,
Lumen Dynamics; Excelitas Technologies Corp., Waltham,
MA, USA). Pictures were taken with a Zeiss Color AxioCam
(Carl Zeiss Microscopy). All images were taken at the same
exposure time, processed identically for compared image
sets and prepared for presentation using ImageJ software.

590 R. Balbontín, H. Vlamakis and R. Kolter

© 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial
Biotechnology, 7, 589–600



Competition assays

Fungi (at 1 mycelia ml−1) were mixed with 2 × 107 cells ml−1

of a 1:1 mixture of either ZK2851 (wild-type
S. Typhimurium):RB231 (wild-type S. Typhimurium harbour-
ing a tetracycline resistance gene inserted in a neutral
chromosomal locus), ZK2851:RB206 (cheY mutant) or
ZK2851:RB207 (fliGHI mutant) in 10 mM potassium phos-
phate buffer (pH 7) and incubated at 30°C without shaking for
1 h. Mycelia were then scooped out, washed three times with
potassium phosphate buffer, sonicated (20 pulses of 1 s with
1 s interval, amplitude 30%, on a QSonica Q125 sonicator;
Qsonica, Newtown, CT, USA) and vortexed for 10 s. These
conditions were optimized to maximize bacterial detachment
from the fungus as observed by microscopy while minimizing
cell death. Then dilutions of bacterial solutions were plated
onto selective media and colony-forming units (cfu) were
calculated. Ratios of attached cells in the mutant versus the
wild type were calculated and normalized to the ratio of the
corresponding input mixture.

Bacterial growth assays

Bacteria at 2 × 107 cells ml−1 were incubated either alone, in
the presence of live A. niger or in the presence of heat-killed
(i.e. autoclaved) fungi (1 mycelia ml−1) in 24-well plates con-
taining either 10 mM potassium phosphate buffer (pH 7) or
10% M9 (v/v) supplemented with 0.01% sucrose (w/v). At
different time points, wells were sonicated (10 pulses of 1 s
with 1 s interval, amplitude 30%), their contents were trans-
ferred to microcentrifuge tubes, sonicated again (10 pulses of
1 s with 1 s interval, amplitude 30%) and vortexed for 10 s.
Then bacterial solutions were plated onto selective media
and cfu were calculated and normalized to input values.

In experiments involving physical separation of fungi and
bacteria (Fig. 4A), Millicell® Cell Culture Inserts (EMD
Millipore, Merck KGaA, Darmstadt, Germany) were used.
The membranes were reinforced by adding 100 μl of 0.7%
agarose (w/v). Diffusion through the membrane was
assessed by measuring optical density of coloured solutions.

Plant experiments

Zea mays used in these experiments was the commercial
variety Sugar Buns F1 (se+) obtained from Johnny Selected
Seeds (Winslow, ME, USA). Seeds were surface sterilized
with 70% ethanol (v/v) followed by 5% sodium hypochlorite
(v/v) and rinsed three times with sterile distilled water. Seeds
were incubated at 30°C in the dark for germination. Germi-
nated seeds with roots of around 1 cm were planted on assay
tubes containing 20 ml of Murashige-Skoog basal salt
mixture (Sigma) at 4.3 g l−1 with 0.8% (w/v) agar and incu-
bated in a growth chamber (24°C, 16 h daytime, 8 h dark
time) for 4 days prior to inoculation. Plant roots were inocu-
lated with 100 μl of 10 mM potassium phosphate buffer (pH
7) as a control or with buffer containing either 107 cells of
S. Typhimurium, 104 spores of A. niger or a mixture of 107

cells bacteria and 104 fungal spores. Plants were then incu-
bated in a growth chamber (24°C, 16 h daytime, 8 h dark
time) for 14 days. Root or leaf samples were obtained and
analysed. Root samples for fluorescence microscopy were
obtained by peeling root epidermis using a sterile surgical

blade and placing tissue fragments onto microscope slides.
Leaf samples were obtained by cutting 1 cm of the tip of the
flag leaf of each plant. The statistical analysis to evaluate the
effect of the organisms on plants was carried out using one-
way analysis of variance (ANOVA) (P < 0.01) on Gnumeric
software (open-source public domain freeware).

Results and discussion

Bacterial attachment to fungi starts rapidly, is extensive,
robust and does not occur on dead mycelia

In order to study the S. Typhimurium–A. niger interaction
over time, a co-culture system was developed. Diluted
minimal medium supplemented with sucrose as the sole
carbon source allowed for slow fungal growth and,
because S. Typhimurium cannot metabolize sucrose
(Gutnick et al., 1969), bacteria did not take over the culture.
In order to facilitate visualization, the S. Typhimurium
strain we used constitutively expressed sfGFP whereas
the A. niger strain was not fluorescently labelled. Both
microbes were co-cultured at 30°C with gentle shaking
(130 r.p.m) and analysed by fluorescence microscopy at
different time points (see Experimental Procedures). As
has been previously reported (Brandl et al., 2011), at time
zero (immediately after co-inoculation) we observed bac-
teria (false coloured green) approaching the tip of the
hyphae (Fig. 1A, left panel). After 2 h, large bacterial
aggregates were found at the extremes of the hyphae
(Fig. 1A, centre panel). At 24 h, the fungus was completely
covered by bacterial biofilms (Fig. 1A, right panel). In order
to test the stability of the interaction and to determine if the
fungus must be alive for bacteria to colonize it, we per-
formed a longer assay in which fungal cells were either
alive or heat killed prior to co-inoculation. Although the
bacterial biofilm present on the live hyphae was stable and
grew for over 2 weeks (Fig. 1B, upper panels), bacterial
attachment to heat-killed mycelia was weak and disap-
peared over time (Fig. 1B, lower panels). These results
indicate that fungal viability is required for the association,
perhaps due to active release of molecules such as nutri-
ents from the fungus. However, it is possible that heat
treatment causes modifications of fungal cell wall compo-
nents that result in weak attachment of S. Typhimurium to
dead mycelia. The rapidity and duration of the attachment
suggest that the S. Typhimurium–A. niger interaction is
causal and stable.

S. Typhimurium is attracted towards A. niger

Because S. Typhimurium is found associated with the
fungal hyphae within minutes of co-inoculation, we
hypothesized that the bacteria might be using directed
motility and chemotaxis (Krell et al., 2011) to move
towards the fungus. To test if motility and chemotaxis were
involved in the initial attraction of bacteria to the fungus,
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we performed competition experiments where we ana-
lysed attachment of wild-type bacteria compared with
either a motility mutant that completely lacks flagella
(fliGHI) or a mutant that can swim, but is defective in
chemotaxis (cheY). Competition between two differen-
tially labelled wild-type strains was used as a control.
When wild-type cells were challenged against each other
the competition index was 1, which is what would be
expected if equivalent numbers of each strain attached to
the fungi (Fig. 2). The ability to swim was essential for
fungal colonization by S. Typhimurium as the mutant
without flagella was decreased to only 5% of the attached
population when competed with the wild type. The
chemotaxis mutant also showed a defect, although not as
pronounced; the cheY mutant showed a 40% reduction in
the attachment to the fungus with respect to the wild type
(Fig. 2). These results indicate that S. Typhimurium must
be able to swim directionally towards the fungus in order
for colonization to occur and the bacterial cells are able to
sense the fungus in order to actively move towards it. All
in all these results suggest that the interaction is specific.

Chitin does not function as a signal or as a source of
energy in the interaction

Recently, chitin was found to be essential for bacterial
attachment to A. niger hyphae (Brandl et al., 2011). We

Fig. 1. Bacteria require live fungus to form a biofilm. In vitro co-incubation of live and heat-killed mycelia of A. niger with sfGFP-labelled
S. Typhimurium cells (false coloured green). Images are overlay of transmitted light (grey) with GFP fluorescence.
A. Time-course of biofilm initiation on fungal hyphae (blue arrows) over a period of 24 h.
B. Dense biofilms are formed on live hyphae (upper panels) after 6 h and are maintained for 15 days. In contrast, bacterial attachment to
heat-killed mycelia (lower panels) is limited and disappears with time. Scale bars: 50 μm.

Fig. 2. Ratios of attached bacteria normalized to input ratios. Mix-
tures of mutant : wild-type S. Typhimurium strains or wild type with
an antibiotic resistance gene : wild type with no resistance marker
(WT : WT, as a control) at 1:1 proportion were incubated with
A. niger mycelia for 1 h. Mycelia were then rinsed and attached
bacteria were detached and plated onto selective media. The ratio
of attached bacteria was calculated for each mutant and a control
wild type, and subsequently normalized to the corresponding ratios
of the input mixtures. Error bars represent standard deviation of the
values obtained in three independent biological replicates (n = 3).
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hypothesized that chitin may also participate in regulatory
mechanisms involved in the interaction or, alternatively,
that it might be utilized by bacteria as a source of
energy during the association. To test this, a set of
S. Typhimurium mutants involved in chitin uptake, degra-
dation or catabolism (see Fig. S1) were tested for their
ability to interact with the fungus. The mutants were not
affected in the interaction (Fig. S1), suggesting that chitin
does not act as a signal or as an important source of
energy in the interaction between S. Typhimurium and
A. niger.

The two main Salmonella pathogenicity islands do not
participate in the interaction

Salmonella Typhimurium possesses several genomic
islands called Salmonella pathogenicity islands (SPIs),
where many virulence factors are encoded. The main two
SPIs are the so-called SPI-1 and SPI-2 and each one
encodes a type III secretion system (T3SS). T3SSs are
involved in the translocation of virulence effectors into the
cytoplasm of host cells (Fàbrega and Vila, 2013). In order
to test whether protein translocation or SPIs are involved
in the S. Typhimurium–A. niger interaction, strains har-
bouring deletions of either SPI-1, SPI-2 or both were
tested for their ability to interact with the fungus. None of
the single mutants or the double mutant showed differ-
ences with the wild type (Fig. S2A), indicating that SPI-1
and SPI-2 do not participate in the association.

Mutants in attachment factors are not defective for
the interaction

Brandl and colleagues (2011) discarded the participation
of the fimbrial operons bcf, fim, lpf, pef, stf, std, stb, sth
and stc in the S. Typhimurium–A. niger interaction. To
investigate if other known attachment factors might be
important for the interaction with the fungus, several
mutants were constructed. The fimbrial operons sti and
stj, the putative fimbrial operon sadAB, and the adhesins
misL (located in SPI-3), shdA (located in CS54 island),
siiABCDEF (located in SPI-4) and bapABCD (located in
SPI-9) were deleted and tested individually. None of the
individual mutants showed defects in the interaction
(Fig. S2B), suggesting that none of these attachment
factors are required for the association with the fungus.
Alternatively, functional redundancy could have masked
any effects from single mutants. The study of the effects of
double, triple or multiple mutants might help clarify this
issue.

The interaction does not cause any noticeable negative
effect on either of the participants

Fungi and bacteria are able to harm each other (Wargo
and Hogan, 2006). Therefore, it could be possible that the

interaction between S. Typhimurium and A. niger would
result in fungal or bacterial death. To investigate if fungi or
bacteria were killed during the co-incubation, mycelia
were co-cultured with sfGFP-expressing bacteria,
retrieved at different time points, stained with PI and ana-
lysed by fluorescence microscopy (Fig. 3). As a control,
heat-killed mycelia were stained and analysed. Average
fluorescence intensity for the PI staining was quantified
and the heat-killed control samples had an integrated
density value of 1337.20 ± 239.11. In contrast, dead
fungal hyphae were not observed in the co-incubation
samples at any time (integrated density values from PI
staining were 163.47 ± 8.77 at 6 h and 437.64 ± 16.67 at
15 days), demonstrating that the interaction does not
harm the fungus. A faint and disperse PI staining can be
observed in areas of high bacterial aggregation (Fig. 3).
This weak signal is not specifically localized to filaments
as one observes for PI staining of dead fungi. Such diffuse
staining is likely due to the presence of some dead bac-
teria or to non-specific staining of the extracellular matrix
of bacterial biofilms. Thus, we tested survival of bacteria in
co-culture.

The presence of the fungus promotes bacterial growth

In order to test bacterial survival and growth in co-culture
with the fungus, S. Typhimurium was incubated in potas-

Fig. 3. Aspergillus niger remains alive when colonized by
S. Typhimurium. Epifluorescence microscopy overlay images of live
and heat-killed A. niger mycelia (filaments, grey) co-incubated with
sfGFP-labelled S. Typhimurium cells (false coloured green, left
panels) stained with propidium iodide (white, right panels). Scale
bars: 50 μm.
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sium phosphate buffer in three conditions: alone, in the
presence of live A. niger mycelia or in the presence of
heat-killed fungus that had been washed in buffer. At time
zero and every 24 h for 3 days, bacterial cfu were calcu-
lated. As might be expected, potassium phosphate buffer
does not support the growth of S. Typhimurium alone
(Fig. 4A, light grey bars). However, bacterial growth was
observed in the presence of live fungus (Fig. 4A, dark
grey bars). In contrast, bacteria did not grow when
co-cultured with heat-killed mycelia (Fig. 4A, striped bars).
This suggests that bacteria can utilize metabolites pro-
duced by the fungus but are not feeding directly on fungal
cells. To investigate whether attachment to the fungus is
necessary for bacterial growth, the co-culture was per-
formed in a millicell vessel where the bacteria were physi-
cally separated from the live fungus by a permeable
barrier with a 0.2 μm pore size that allows for diffusion of
small molecules, but not fungi or bacteria. In this case,
bacterial growth was observed in the presence of live
mycelia, even with a barrier (Fig. 4A, white bars). Notably,
when the microbes are physically separated, the growth
rate is lower than when they are co-incubated (compare
Fig. 4A, white bars to Fig. 4A, dark grey bars). Thus, the
attachment is not essential for growth promotion but it

improves it, probably due to better diffusion and/or higher
local concentration of the fungal nutrients. Because
secretions from fungi were sufficient to support bacterial
growth when fungi and bacteria are separated by a mem-
brane, we revisited the experiment where dead fungi were
used as a host. We reasoned that perhaps by washing the
heat-killed fungal mycelia described in Fig. 4A we were
removing metabolites that had been secreted in the
medium or released by cells during heating. Therefore,
the experiment was repeated using dead mycelia in the
very same potassium phosphate buffer where the fungus
was heat killed so the nutrients released by fungal lysis
remained in the buffer upon co-incubation. In these con-
ditions, the bacteria showed a similar growth rate to that
observed in the presence of live fungus (Fig. 4B). This
verifies that the nutrients used by S. Typhimurium are
fungal metabolites and, importantly, indicates that these
fungal nutrients are not produced as a consequence of
the interaction but were already being synthesized by the
fungus before the introduction of bacteria. We next won-
dered if using fungal filtrate from a mature culture
(obtained after 3 days of fungal growth) would support the
growth of S. Typhimurium. At 24 h, bacterial growth in the
presence of 3-day-old fungal filtrate was poor but after 5

Fig. 4. Bacterial growth requires live fungi or dead fungal lysate. Bacteria were detached and quantified at different time points, and cfu were
normalized with respect to input values.
A. Light grey bars represent growth of bacteria alone, dark grey bars represent growth of S. Typhimurium in co-incubation with live A. niger,
striped bars represent bacterial growth in co-incubation with heat-killed fungal filaments (washed after killing) and white bars represent growth
in co-incubation with live fungi separated by a semipermeable membrane.
B. Light grey bars represent growth of bacteria alone, dark grey bars represent growth of S. Typhimurium in co-incubation with live A. niger
and striped bars represent bacterial growth in co-incubation with heat-killed fungi in the same potassium phosphate buffer where it was killed.
C. Light grey bars represent growth of bacteria alone and dark grey ones represent growth of S. Typhimurium in presence of A. niger filtrate.
All co-incubations were performed in potassium phosphate buffer. Error bars represent standard deviation of the values obtained in three inde-
pendent biological replicates (n = 3). Y-axis values are represented in logarithmic scale.
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days it was comparable with that of cells grown in the
presence of the fungus (compare Fig. 4C with Fig. 4B).
This suggests that the utilization of fungal compounds by
S. Typhimurium occurs at a relatively slow rate, but that
there are sufficient nutrients present to support growth
even in the absence of fungal cells.

S. Typhimurium biofilms protect A. niger against the
action of cycloheximide

The results presented thus far indicate that fungal cells
remain alive and that the presence of the fungus is
required to stimulate bacterial growth under our co-culture
conditions. We next examined if there was a benefit to the
fungi. Biofilm-associated bacteria have an increased
resistance to antimicrobials, starvation, desiccation and
other stresses (Nickel et al., 1985a,b; Anriany et al., 2001;
Scher et al., 2005; Lapidot et al., 2006; Wong et al.,
2010). We hypothesized that S. Typhimurium biofilms
might confer protection to A. niger. To test this, mycelia
were incubated alone or co-incubated with either wild-
type bacteria or a ΔcsgD mutant, which is unable to form
biofilms or persist on fungal filaments (Römling et al.,

1998; Brandl et al., 2011). After 48 h of incubation, the
antifungal agent cycloheximide was added to each culture
at a final concentration of 50 μg ml−1. Cycloheximide kills
fungi but is harmless for bacteria (Whiffen, 1948). After
12 h of exposure to cycloheximide, mycelia were stained
with PI and observed by fluorescence microscopy (Fig. 5).
Mycelia incubated in the absence of bacteria show exten-
sive damage as the filaments clearly stained with PI
(integrated density value: 541.89 ± 74.11). Interestingly,
mycelia co-incubated with wild-type bacteria do not show
any PI-staining hyphae (integrated density value:
266.12 ± 38.49), although there was diffuse PI staining
around the bacterial aggregates similar to what was
observed in Fig. 3. In contrast, fungi incubated in the
presence of the ΔcsgD mutant were severely affected by
cycloheximide as there was distinct staining of filaments
by PI (integrated density value: 550.90 ± 17.76) com-
pared with mycelia co-incubated with wild-type bacteria
(see above) or untreated controls (integrated density
value of untreated mycelia alone was 215.97 ± 53.24;
untreated mycelia co-incubated with wild-type bacteria
was 277.78 ± 9.01 and untreated mycelia co-incubated
with the ΔcsgD mutant was 299.15 ± 22.05) (Fig. 5).

Fig. 5. Bacteria protect A. niger from killing by cycloheximide. Epifluorescence microscopy overlay images of A. niger mycelia (filaments, grey)
grown alone or co-incubated with wild-type or ΔcsgD mutant S. Typhimurium cells tagged with sfGFP (false coloured green) for 48 h. Samples
were either untreated or exposed to cycloheximide for 12 h prior to staining with propidium iodide (white). Scale bars: 50 μm.
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Thus, S. Typhimurium biofilm formation protects the
fungus from the toxic effects of cycloheximide.

Given that the fungus promotes bacterial growth
(Fig. 4) and bacterial biofilms protect the fungus against
the action of an antifungal (Fig. 5), we concluded that the
interaction between S. Typhimurium and A. niger is
mutualistic.

S. Typhimurium and A. niger co-colonize maize roots

Because both S. Typhimurium and A. niger can often be
found associated with plants (Perrone et al., 2007;
Schikora et al., 2008), plant roots may be an environmen-
tal niche where this fungal–bacterial interaction could take
place. To study that possibility, we developed a tripartite
system involving the bacterium, the fungus and a plant.
For these studies, we used maize (Zea mays) because
both microorganisms have been reported to colonize this
plant (Singh et al., 2004; Palencia et al., 2010). We used
a gnotobiotic system where sterile maize roots were
inoculated with either 10 mM potassium phosphate buffer
(pH 7), S. Typhimurium, A. niger or co-inoculated with
both microbes. At 14 days post-inoculation (dpi), plants
were analysed for the presence of the organisms on the
roots. Salmonella Typhimurium colonized maize roots in
this gnotobiotic system (Fig. 6A). Aspergillus niger was
also observed associated with the roots (blue arrow,
Fig. 6B). In addition, co-colonization was observed when
the fungi and bacteria were both introduced to the plant

(Fig. 6C). As a negative control, an uninoculated root is
shown in Fig. 6D. We next wondered if the fungal–
bacterial co-colonization might have a different effect on
the plant than colonization by either organism alone.

We noticed that colonization of maize roots by either
S. Typhimurium, A. niger or a mixture of both microbes
caused a decrease in the number of lateral roots (Lynch,
1995) and we decided to quantify this effect. To test this,
groups of 23 plants treated with either buffer, bacteria,
fungi or a mixture of bacteria and fungi were assayed for
the number of lateral roots 14 days post-inoculation. The
percentage of plants belonging to different categories
according to the number of lateral roots was calculated for
each inoculation, and each distribution was compared
with that of the control group (plants treated with buffer
alone). Plants colonized by either S. Typhimurium or
A. niger individually and those co-colonized by both
microbes showed a statistically significant (P-values
below 0.01) reduction in their number of lateral roots with
respect to control plants. (Fig. 7A). However, no signifi-
cant difference was found between plants co-colonized by
both microorganisms relative to those colonized by bac-
teria or fungi individually (Fig. 7A). This indicates that root
development is affected by the presence of either
S. Typhimurium or A. niger, but co-colonization does not
alter this effect.

We also measured the effects of colonization on plant
growth, as measured by plant height (from the seed to the
tip of the flag leaf) (Peiffer et al., 2014). To do this, the
increase in plant height at 14 dpi relative to the height of
the plant at 0 dpi was assessed for groups of 50 plants
treated with buffer, bacteria, fungi or a mixture of both.
The distributions of data were compared using one-way
ANOVA test (P-value < 0.01) and resulted to be statisti-
cally different. We observed that individual colonization by
either bacteria or fungus caused a minor decrease in plant
height (Fig. 7B). However, the effect of co-colonization is
greater (Fig. 7B). This suggests additive or synergistic
effect of fungal–bacterial co-colonization on suppression
of maize growth.

Finally, it has been reported that S. Typhimurium is able
to invade and survive inside many plants (Jablasone
et al., 2005; Schikora et al., 2008; Gu et al., 2011; 2013;
Ge et al., 2013). We thus sought to determine if
S. Typhimurium is also able to invade maize plants and, if
so, whether invasion is affected by the interaction with
A. niger. To this end, roots of groups of four plants were
inoculated with either buffer, bacteria, fungi or both. At 14
dpi, the 1 cm at the tip of the flag leaf of each plant was cut
and assessed for the presence of bacteria. Leaf tissue
was weighed, homogenized and cfu g−1 tissue was calcu-
lated for each plant. As expected, control plants and
plants inoculated with A. niger alone showed no bacteria
(Fig. 7C). In contrast, all plants inoculated only with

Fig. 6. Maize roots are colonized by S. Typhimurium and A. niger.
Images are overlay of transmitted light (grey) with sfGFP fluores-
cence (false coloured green).
A. Epidermal maize root tissue colonized by sfGFP-labelled
S. Typhimurium.
B. Epidermal maize root tissue colonized by A. niger (blue arrow).
C. Epidermal maize root tissue colonized by sfGFP-labelled
S. Typhimurium and A. niger. Blue arrow points at a representative
fungal filament.
D. Non-inoculated maize root tissue is shown as control. Scale
bars: 50 μm.
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S. Typhimurium consistently showed the presence of bac-
teria in leaf tissue, although the total bacterial counts for
each plant varied, as was previously observed in tomato
plants (Gu et al., 2013). Surprisingly, bacteria were never
detected in leaf samples from plants co-colonized by both
bacteria and fungi (Fig. 7C). Given that the levels of colo-
nization of maize roots by S. Typhimurium are equivalent
in the presence or the absence of A. niger (Fig. S3), it
seems that fungi are able to affect bacterial ability to
invade plants.

This study presents evidence of a fast-forming, stable
and specific interaction between S. Typhimurium and
A. niger. This association promotes bacterial growth and
results in fungal protection by bacterial biofilms, indicating

the mutualistic nature of the relationship. Moreover, the
interaction takes place in maize roots and colonization by
either organism alone causes a slight decrease in plant
growth. However, co-colonization has a greater effect.
This work also unveiled that S. Typhimurium is able to
invade maize, as has been previously found for other
plants (Gu et al., 2011). However, co-colonization with
A. niger inhibits the invasion of maize by S. Typhimurium.
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Supporting information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Fig. S1. Epifluorescence microscopy overlay images of
mycelia of A. niger co-incubated with wild type and different
mutant strains of S. Typhimurium tagged with sfGFP (false
coloured green).
A. Mutants lacking the proteins involved in chitooli-
gosaccharide uptake ChiP and ChiQ (Figueroa-Bossi et al.,
2009) or ChiA, which is the only potential chitinase encoded
in the S. Typhimurium genome that has been shown to have
activity in vitro (Larsen et al., 2011), show extensive attach-
ment to the fungus at both early incubation time and after
24 h.
B. The ΔchiX mutant, which overexpresses chiPQ
(Figueroa-Bossi et al., 2009), does not show any difference
with respect to the wild type regarding interaction with the
fungus after 6 h of co-incubation.
C. At 4 h of co-incubation, the mutants involved in chitobiose
transport and catabolism ΔchbC and ΔchbF (Keyhani and
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Roseman, 1997) show similar levels of interaction with the
fungus than the wild type. Scale bars: 50 μm.
Fig. S2. Epifluorescence microscopy overlay images of
mycelia of A. niger co-incubated with wild-type and different
mutant strains of S. Typhimurium tagged with sfGFP (false
coloured green).
A. None of the single mutants ΔSPI-1 and ΔSPI-2 nor the
double mutant ΔSPI-1 ΔSPI-2 show any difference with
respect to the wild type in terms of attachment to the fungus
at early incubation time (3 h).
B. Mutants Δsti, Δshd, ΔmisL, Δbap, Δstj, Δsad and Δsti show
similar attachment than the wild type at 4 h of co-incubation.
Scale bars: 50 μm.

Fig. S3. Epifluorescence dissecting microscopy images of
maize root colonization by sfGFP-labelled S. Typhimurium
alone or in co-colonization with non-labelled A. niger. Bacte-
rial attachment takes place at equivalent levels when
S. Typhimurium is alone (top panels) and when it is in
co-colonization with A. niger (bottom panels). Scale bars:
1 mm.
Table S1. Relevant strains used in this work.
Table S2. DNA oligonucleotides used in this work.
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