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Quantum Chemical Approach to
Estimating the Thermodynamics of
Metabolic Reactions
Adrian Jinich1, Dmitrij Rappoport1, Ian Dunn1, Benjamin Sanchez-Lengeling2, Roberto Olivares-Amaya3,
Elad Noor4, Arren Bar Even4 & Alán Aspuru-Guzik1

1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 2Lab. Chimie et Physique Quantiques,
CNRS-Université de Toulouse, Toulouse, France, 3Department of Chemistry, Princeton University, Princeton, NJ, 4Department of Plant
Sciences, The Weizmann Institute of Science, Rehovot, Israel.

Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We
present the first nonempirical computational method for estimating standard Gibbs reaction energies of
metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing
thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical
approach is comparable in accuracy to group contribution methods for isomerization and group transfer
reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction
energy estimates are correlated with the charges of the participating molecules. The quantum chemical
approach is amenable to systematic improvements and holds potential for providing thermodynamic data
for all of metabolism.

T
hermodynamics is fundamental for understanding the design principles of natural metabolic processes and
for engineering efficient new metabolic pathways. Accurate standard Gibbs reaction energies of biochemical
reactions DGo

r ’ are crucial inputs for thermodynamics-based flux balance analysis, in which they are used to
impose constraints on metabolite concentrations1 and to determine the ratios of forward and backward fluxes2.
However, experimental DGo

r ’ values are available only for a small fraction of all known metabolic reactions3. The
group contribution methods (GCMs) are empirical computational approaches that are currently used for estim-
ating DGo

r ’ values from standard Gibbs formation energies of reactants and products4–7. GCMs employ additive
schemes with increments for functional groups obtained from fitting to experimental data. Modern GCMs
account for pH and combine group contribution estimates with more accurate reactant contributions7,8.

Here, we present the first nonempirical high-throughput computational method for estimating DGo
r ’ values of

metabolic reactions from quantum chemistry. Our objective is to develop a quantum-chemistry based computa-
tional framework for thermodynamics of metabolism that is competitive with GCMs. Using first-principles
methods for predicting thermodynamic parameters offers several crucial advantages: Nonempirical methods
are not limited by the available experimental data, thus reducing the risk of overfitting and providing a consistent
approach throughout all of metabolism. Additionally, they can take advantage of an established hierarchy of
increasingly accurate (and increasingly costly) quantum chemical methods. In this work, we analyze the different
contributions to the errors in predicting Gibbs reaction energies using quantum chemistry. Finally, we outline
future research directions that can deliver chemical accuracy to metabolic reaction thermochemistry by using
quantum chemical approaches.

Quantum chemistry has been successful at predicting the thermodynamics of gas phase chemical reactions
with chemical accuracy9–11. However, predicting standard Gibbs reaction energies of metabolic reactions is
significantly more challenging since biochemical reactions occur in solution. Solution phase thermochemistry
faces two major challenges. First, it has to accurately account for the different minimal energy geometric con-
formations that coexist in the solution phase. The Gibbs energy of a particular species comprises contributions
from many geometric conformers and can thus be obtained by averaging over their respective Gibbs energies.

Second, a useful first-principles quantum chemistry methodology should accurately reflect the protonation
equlibria in aqueous solution at neutral pH12. Metabolites usually contain multiple ionizable groups such as
amine, phosphate, or carboxylate, and at a given pH, each compound consists of an ensemble of different
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protonation states. The apparent Gibbs formation energy of a meta-
bolite can then be found by applying the Legendre transform of
Alberty12 to the standard Gibbs formation energies of the individual
protonation states. Ignoring the change in the relative abundance of
the different protonation states with pH can result in errors in the
estimated standard Gibbs reaction energy. Importantly, some meta-
bolic compounds carry large negative charges in aqueous solutions,
and solution phase thermochemistry needs to accurately model these
highly charged species. For example, phosphate groups, ubiquitous
throughout biochemistry, are largely deprotonated at pH 5 7.
Therefore, metabolites with phosphate groups, such as fructose-
1,6-biphosphate, have a highly negative charge. Accurate description
of negatively charged molecules presents challenges to approximate
density functional methods13–16.

Finally, hydrogen bonding between the metabolite and solvent
molecules requires that one or more solvation shells be included in
the quantum chemical model17. Since the computational cost of
quantum chemical methods scales with the size of the molecular
system, accurate solution thermochemistry studies are expectedly
computationally more demanding than the corresponding gas-phase
thermochemistry calculations18.

In contrast to empirical methods such as GCMs, the quantum
chemical approach presented here aggregates the detailed informa-
tion about the structures and energies of metabolites in solution into
a transformed absolute Gibbs energy, G9, at the given pH and tem-
perature. This ‘‘bottom up’’ strategy makes necessary a heuristic
exhaustive sampling of conformers and protonation states of meta-
bolites in solution. We represent each metabolite by an ensemble of
protonation states (microspecies)–molecular structures that differ in
their degree of protonation–which are present in the equilibrium
mixture at a given pH and temperature. We represent each protona-
tion state by an ensemble of conformers–distinct stable three-dimen-
sional structures associated with it. The short-range solvation effects,
in particular hydrogen bonding, are taken into account by explicit
inclusion of a fixed number of water molecules. The long-range
electrostatic interactions are described by means of a continuum
solvation model19.

We investigate the effect of the explicit and implicit solvation
modeling on the accuracy of the quantum chemical predictions.

To this end, we consider a test set of 9 reactions from core metabol-
ism, for which accurate standard Gibbs free reaction energies in
solution are available from experiment. We investigate the influence
of the size of the explicit water cluster, the water molecule balancing
procedure, and the inclusion of the conductor-like screening model
(COSMO)20 to account for long-range electrostatic effects.
Furthermore, we assess the accuracy of our computational procedure
using a broader test set of 113 metabolic reactions from the NIST-
TECR database3. We find that the quantum chemical approach is
comparable in accuracy to GCMs for isomerization and group trans-
fer reactions and for reactions not including multiply charged
anions. The errors in the standard Gibbs reaction energy estimates
are correlated with the charges of the participating molecules.

Results
Assessments of density functional methodologies. We performed
the molecular structure optimizations on complexes of common
metabolites with explicit water molecules using density functional
theory (DFT) with the B3LYP functional21 and 6–31G* basis sets22.
All calculations were carried out using the ORCA package23. The
immediate output of each quantum chemical calculation is the
absolute Gibbs energy, G, of each metabolite–water complex,
which was computed in the rigid rotor–harmonic oscillator
approximation. The transformed standard Gibbs reaction energies
of metabolic reactions was then computed using the following three-
step strategy: (i) The averaged absolute Gibbs energy, �G, of each
protonation state in solution was computed as the Boltzmann
average of the standard Gibbs formation energies of the
metabolite–water complexes; (ii) The averaged absolute Gibbs
energy, �G, values of all protonation states present in the
equilibrium mixture at a given pH were combined using the pH-
dependent Legendre transform shown by Alberty12 to yield the
transformed absolute Gibbs energy of the metabolite in water, G9;
(iii) the transformed standard Gibbs energy of reaction, DGo

r ’, was
obtained from the difference of the G9 values of products and
reactants while balancing the numbers of explicit water molecules.

In order to determine a cost-efficient and accurate treatment of
solvation for high-throughput computation of DGo

r ’, we investigated

Table 1 | Experimental DGo
r ’ values and deviations of computed DGo

r ’ values from experiment in kcal/mol for nine test reactions using
different solvation schemes. Solvation schemes: 5(10), explicit solvation with 5(10) water molecules; I, implicit solvation model. Balancing
strategies: LC, large cluster; AC, additional cluster. MAD: Mean Absolute Deviation. Metabolites: Glc-6-P, glucose-6-phosphate; Fru-6-P,
fructose-6-phosphate; G3P, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; 2PG, 2-phosphoglycerate; 3PG, 3-phos-
phoglycerate; PEP, phosphoenolpyruvate; F-1,6-BP, fructose-1,6-biphosphate; 2MMA, 2-methylmalate; Ac, acetate; Pyr, pyruvate

Reaction Exp. Deviation from experiment

Solvation scheme 5 10 5/I 10/I

Balancing strategy LC AC LC AC

Glc-6-P R Fru-6-P 0.7 6.5 23.4 20.4 3.0
G3P R DHAP 21.9 4.2 21.1 2.5 21.3
2PG R 3PG 21.4 2.9 0.8 7.3 3.1

Isomerization MAD 4.5 1.8 3.4 2.5

2PG R PEP 1 H2O 20.8 31.8 20.5 7.1 21.0
Malate R Maleate 1 H2O 4.5 5.2 28.4 5.9 0.2
Fumarate 1 H2O R Malate 20.9 217.5 21.9 22.6 1.9

Hydration MAD 18.2 3.6 5.2 1.0

F-1,6-BP R DHAP 1 G3P 5.6 249.0 267.2 211.9 216.2
Gly 1 CH2O R Ser 24.9 23.6 5.7 3.6 2.8
2MMA R Ac 1 Pyr 0.9 42.5 21.2 20.7 217.3

C–C Bond Cleavage MAD 31.7 31.4 5.4 12.1

Total MAD 18.1 12.2 4.7 5.2

www.nature.com/scientificreports
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4 different solvation schemes across a test set of 9 biochemical reac-
tions (Table 1). The water molecules were initially placed randomly
around the metabolite molecule and subjected to unconstrained
structure optimization. The test set contained three reactions from
each of the following common reaction types: isomerizations,
(de)hydrations, and carbon–carbon bond cleavage/formation reac-
tions. The solvation scheme has to balance the requirement of accur-
ately representing the short-range environment of the solute with a
tractable size for an explicit quantum chemical treatment. The sol-
vation schemes investigated in this work included 5 or 10 explicit
water molecules, which should on average provide sufficient donor
and acceptor sites for hydrogen bonding in most metabolites. In
addition, the importance of the long-range electrostatic interactions
was probed by including the COSMO implicit solvation model20. For
(de)hydrations, and carbon–carbon bond cleavage/formation reac-
tions, two strategies were employed to balance the number of water
molecules on both sides of the reaction equation. We refer to them as
large cluster (LC) and additional cluster (AC). The AC strategy
added an extra cluster of water molecules to the side with fewer
metabolites. The LC strategy increased the size of the water cluster
surrounding the metabolite on the side with fewer molecules. Both
strategies are illustrated in more detail in the Supporting Information.

The models including only explicit water molecules (denoted in
Table as 1 5/LC and 10/AC, respectively) varied in their accuracy
across different reaction types. Isomerizations gave the smallest
deviations from experiment, and we found that the 10/AC model
was more accurate than the 5/LC model. The DGo

r ’ values for iso-
merizations of three-carbon species (D-glyceraldehyde 3-phosphate
(G3P) R dihydroxyacetone phosphate (DHAP) and 2-phospho-D-
glycerate (2PG) R 3-phospho-D-glycerate (3PG)) were predicted
with an accuracy of ,1 kcal/mol. For hydrations, predicted DGo

r ’
values were within 2 kcal/mol of the experiment for two out of three
reactions with the 10/AC scheme. These results compared favorably
with the average accuracy of 1.6 kcal/mol found for the latest-gen-
eration GCMs7. However, carbon-bond cleavage/formation reac-
tions showed large deviations from experiments for explicit-only
solvation schemes irrespective of the number of explicit water mole-
cules. DGo

r ’ of the retroaldol reaction of D-fructose-1,6-bisphosphate
(F-1,6-BP, aldolase reaction) was underestimated by more than
40 kcal/mol with both 5/LC and 10/AC models.

Combining explicit solvation shells with the COSMO implicit
solvation model (denoted as 5/I/LC and 10/I/AC in Table 1, respect-
ively) reduced the deviation from experimental DGo

r ’ values across all
reaction types. The improvements were rather small for isomeriza-
tions and some hydrations but quite substantial for carbon-bond
cleavage/formation reactions, with the aldolase reaction showing
the largest improvement. We attribute these results to the consid-
erable change in the molecular charge of the most abundant micro-
species at pH 5 7 from 24 for F-1,6-BP to 22 for G3P and DHAP.
Inclusion of an implicit solvation model is important for the descrip-
tion of long-range electrostatic effects, improving accuracy.
However, the experimental DGo

r ’ value of this reaction is still under-
estimated by more than 10 kcal/mol with the 5/I/LC and 10/I/AC
models. Tentative studies on larger metabolite–water complexes
containing 10 or 20 explicit water molecules showed that further
improvements in accuracy are possible by increasing the size the
explicit solvent shell, however at the expense of higher computa-
tional cost. See Supporting Information for further details. This find-
ing indicates that the deviations of the 5/I/LC and 10/I/AC models
from the experiment (Table 1) are at least partly due to medium-
range solvation effects associated with second and further solvent
shells.

Furthermore, the anionic metabolites at pH 5 7 are challenging
systems for approximate DFT methods, in particular multiply
charged anions. As is well known from previous theoretical and
computational works, the errors in the asymptotic shape of the

approximate exchange–correlation potential lead to an incomplete
cancellation of the interelectronic Coulomb repulsion at larger dis-
tances. As a result, electron affinities of molecules are typically over-
estimated in approximate DFT13–16. The use of hybrid functionals
such as B3LYP13,14 or converged orbitals from Hartree–Fock calcula-
tions have been shown to improve the accuracy16. However, the
extent of the error cancellation in reactions involving metabolites
of different negative charges is not entirely known. We investigate
this issue later in this work.

The choice of the initial placement of explicit water molecules can
affect which conformation of the metabolite–water complex is
reached by structure optimizations, the final minimal energy
obtained after energy optimization, and therefore the final DGo

r ’
estimate. In order to explore the effect of the initial water placement,
we generated multiple initial solvent conformations of the reactants
and products of the aldolase reaction from snapshots of an equili-
brated classical molecular dynamics (MD) trajectory at room tem-
perature. The median absolute deviation (MAD) from the
experimental DGo

r ’ value of the aldolase reaction using this alterna-
tive methodology was 14.7 kcal/mol for the 20/LC solvation, which
offered no improvement compared with 11.9 kcal/mol MAD
obtained by random initial placement of explicit water molecules24.
We refer to the Supplementary Information for additional details.

Large-scale density functional benchmark study. In order to
balance the computational cost and accuracy, we selected the 5/I/
LC solvation scheme to investigate the accuracy of the predicted
Gibbs free reaction energies with respect to experimental values of
113 reactions from the NIST–TECR database3 (Figure 1). We used
the Enzyme Commission (EC) codes of the corresponding enzymatic
reactions as proxies for different reaction classes25. The test set was
restricted to reactions that did not involve large cofactors and
covered reactions from classes EC 2 (isomerases), EC 4 (lyases),
and EC 5 (transferases). (See the Supplementary Information for
the full list of test reactions and selection procedure.) The full test
set consists of 5976 quantum chemical calculations, and the median
run time for geometry optimization and harmonic analysis of one
conformer was 3.4 h when parallelized over 16 CPUs. The isomerase
and transferase reactions showed MAD from experiment of 2.6 kcal/
mol and 3.1 kcal/mol, respectively, which were comparable to those
of GCMs4–7. The predicted DGo

r ’ values of lyase reactions were less
accurate with MAD of 4.7 kcal/mol.

Figure 1 | Absolute deviations of computed DGo
r ’ values from experiment

in kcal/mol for test set of 113 reactions as classified by the Enzyme
Commission (EC) codes. Subset sizes in parentheses.

www.nature.com/scientificreports
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Within each reaction class, some reactions showed significantly
larger deviations from experiment. Four outlier isomerase reactions
had deviations from experimental DGo

r ’ values . 10 kcal/mol. The
ring-opening reaction converting dihydro-oxofuran-acetate to cis-
cis-muconate (EC 5.5.1.1) exhibited the largest error in the test set of
18.7 kcal/mol. Within the set of transferase reactions, the phosphor-
olysis of guanosine monophosphate (EC 2.4.2.8) yielded the largest
deviation from experiment of 13.6 kcal/mol. Whether these large
deviations are due to differences in solvation patterns between reac-
tants and products, to complex tautomeric equlibria, or to errors of
the underlying quantum chemical methodology, are still open
questions.

Effect of metabolite charges. We explored the effects of the
metabolite charges on the accuracy of the predicted DGo

r ’ values.
For each metabolite in a reaction, we found the protonation state
with the lowest transformed absolute Gibbs energy G9 (i.e. most
abundant) and classified reactions according to the most negative
charge among the most abundant microspecies (Figure 2). The
groups of reactions not including multiply charged anions showed
MAD of 3.0 kcal/mol or smaller, comparable to GCMs. The median
and the width of the error distribution increased as the charge of the
dominant microspecies became more negative. Since errors of
approximate DFT could be responsible for the larger deviations for
reaction involving multiply charged anions, we computed the Gibbs
free reaction energies of two test reactions using electronic energies
from Møller–Plesset perturbation theory with resolution of the
identity (RI-MP2)26–28 instead of DFT. For the DHAP R G3P isome-
rization, we observed moderate improvement in accuracy, while for
the aldolase reaction the improvement was quite substantial. See
Supplementary Information for details. As discussed above, the
tentative results for the aldolase reaction using larger explicit
solvation shells also showed an improvement in the predicted
Gibbs free reaction energies. These findings are consistent with the
interpretation that multiply charged anions might require both a
larger solvent shell to adequately represent the electrostatic
screening in solution and quantum chemical methods that possess
the correct asymptotic behavior of the potential. The increased
accuracy for reactions with a lowest charge of 11 is probably due
to a small sample size.

Discussion
The quantum chemical approach is a promising avenue to fill the
gaps in thermodynamic data. It has broad coverage and is a first-
principles approach independent of experimental input. We have
demonstrated that a quantum chemical approach to estimate the
thermodynamics of metabolic reactions can achieve accuracies com-
parable to empirical methods currently used by the metabolic engin-
eering community. Although our results are highly encouraging,
several challenges remain to be overcome for ab initio metabolic
thermochemical estimates. The harmonic approximation approach
taken here has limitations. In particular, the inclusion of explicit
water molecules results in low-frequency, highly anharmonic inter-
molecular translational and rotational modes, which can make sig-
nificant contributions to the vibrational entropy component of the
free energy. However, it can be expected that the effect of these
vibrations on reaction energies are smaller due to considerable error
cancellation between reactants and products. A promising alterna-
tive that avoids the harmonic approximation completely is to use
autocorrelation functions from ab initio MD simulations to compute
thermodynamic properties of the reactants and products29,30. Based
on our tentative studies, another direction for obtaining more accur-
ate predictions is to increase the number of explicit water molecules
surrounding each metabolite. The considerable computational cost
associated with increasing the number of explicit water for hundreds
of metabolites is a challenge that could be addressed in the near
future with the use of GPU clusters.

Additionally, improvements in accuracy can be expected from
using range-separated exchange–correlation functionals31 from per-
forming single-point energies of optimized structures with wave-
function methods26–28,32 (e.g. MP2 or coupled-cluster methods), from
improved description of solvation using Quantum Mechanics/
Molecular Mechanics (QM/MM) methods33, and from MD-based
approaches to thermochemistry29,30.

One approach towards high-throughput quantum chemical meth-
ods for predicting metabolic thermodynamics with chemical accu-
racy is to improve on the density functional utilized. In this work we
have used the B3LYP density functional, however other functionals
can potentially yield higher accuracies for organic molecules in
solution phase34. For example, the long-range corrected vB97X-D
functional31, when tested against a molecular test set, yields
improvements on the accuracy of the predicted thermodynamic
properties.

The use of wave function methods instead of DFT to perform
single-point energy estimates on DFT-optimized geometries can also
lead to potential improvements in accuracy. Wave-function meth-
ods, such as MP2 and coupled-cluster, although resulting in a higher
computational cost, can yield higher accuracies when used to per-
form single point energy estimates of DFT-optimized geometries to
obtain the electronic contribution to the standard Gibbs formation
energy32. Recent advances in linear-scaling coupled-cluster methods,
such as DLPNO-CCSD(T)35, are a promising avenue to develop
accurate metabolic thermochemical methods that are useful for
high-throughput applications. Also, recent highly parallelized GPU
implementations of MP2 perturbation theory can significantly accel-
erate calculations28.

One approach to increase the size of the water cluster surrounding
the solute is to include a larger number of waters, which are modeled
with molecular mechanics, around the quantum mechanical sys-
tems. Such Quantum Mechanics/Molecular Mechanics (QM/MM)
approaches have been used to predict transition states and equilib-
rium structures of organic reactions in solution and in enzymes33,36.
This water modeling strategy can be coupled to an alternative
approach to exploring the potential energy landscape of each meta-
bolic species, which is performing molecular dynamics simulations
of the system. Ab initio MD can be used to obtain thermodynamic
properties of molecular systems. In this approach, the vibrational

Figure 2 | Absolute deviations of computed DGo
r ’ values from experiment

in kcal/mol for reaction test set of Fig. 1 by charge of dominant
microspecies.

www.nature.com/scientificreports
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contribution to the Gibbs formation energy can be obtained from
autocorrelation function techniques29,30.

Finally, another challenge is the treatment of larger metabolites
such ATP/ADP and NAD1/NADH. The larger number of minimal
energy conformations, and complex formation with cations such as
Mg21 make an accurate treatment of these compounds computation-
ally expensive. Possible solutions for reactions involving cofactors
include using highly parallelized computational frameworks37 and
combining ab initio Gibbs energies of small metabolites with experi-
mental formation energy values for the cofactors. This latter
approach has been used in the context of GCM with encouraging
results7. We are conducting further work along all of these lines.

Methods
Computational details. We compute reaction Gibbs free energies from differences of
absolute Gibbs free energies of individual metabolites in solution. Each metabolite is
represented by an ensemble of protonation states (microspecies), which exist at
equilibrium concentrations at a given pH12. Each protonation state has a different
number of protons and therefore electric charge. An ensemble of conformers, distinct
geometrical configurations of the atoms composing the protonation state, represents
each microspecies. The geometry of each conformer is a local minimum in the
potential energy surface (PES) of the molecular system.

We begin with a SMILES string representation of each metabolite involved in a
metabolic reaction38 (see Supplementary Information for the complete list of SMILES
representation strings). From the SMILES representation of each metabolite, we
sample microspecies and conformers using empirical rules as implemented in the
ChemAxon conformation tool, version 5.2.2.). We first generate a set of protonation
states that are predicted to be above a 0.5% relative equilibrium abundance cutoff at
pH 5 7. For each microspecies we then generate a set of 10 geometric conformers that
approximate the minimal energy conformations of each metabolite. Each conformer
is described as a set of atoms accompanied by its Cartesian coordinates.

Once we have obtained an ensemble of microspecies and conformers for each
metabolite involved in the reaction, we account for solvation effects by surrounding
each conformer with several explicit water molecules. This method is coined the
‘‘explicit water model’’ since it involves the placement of individual waters in the
system, in contrast to the implicit water model described below. We use the software
PACKMOL to randomly place water molecules in a 5 Å radius around the
metabolite24.

In order to account for long-range electrostatic interactions in solution, we also use
the conductor-like screening model (COSMO)20. This implicit water model helps to
account for long-range electrostatic interactions by approximating the bulk solvent as
a uniform conducting continuum with a cavity where the metabolite and explicit
waters reside. By solving for the charge density on the surface of the cavity and scaling
the charge density according to the dielectric constant of water, we can imitate the
effects of bulk solvent when we run quantum chemistry calculations on these systems.
We use the static dielectric constant of water e 5 80.4 and the refractive index n 5

1.33, respectively.
The initially generated conformers approximate the minima of the potential energy

surface using heuristics. To find minimal energy conformers we optimize the geo-
metry of the solvated conformers using B3LYP18 functional and the 6-31G* basis19

within the ORCA quantum chemical program (version 2.9)23. Normal mode fre-
quencies are obtained by calculating the Hessian matrix in the basis of displacements
along all 3N 2 6 internal coordinates. The Hessian matrix is then diagonalized to find
the normal mode frequencies.

With the information we have calculated using quantum chemistry, we can find the
translational, rotational, and vibrational enthalpies and entropies in the rigid rotor–
harmonic oscillator approximation39. We assume the solvated conformer behaves as
an ideal gas since it is in a dilute solution.

Using these formulas and the final electronic energy after the structure optimiza-
tion, we can then calculate the standard state enthalpy and entropy for each solvated
conformer and therefore the absolute Gibbs free energy of each conformer.

The absolute Gibbs energy of a protonation state is obtained as the Boltzmann
average of the absolute Gibbs energies of the sampled conformers,

�G jð Þ~
P

k G kð Þe
{G kð Þ

RTP
k e

{G kð Þ
RT

: ð1Þ

Where the index k refers to conformers and the index j refers to protonation states.
An alternative approach is to treat the system as an equilibrated mixture consisting of
all the minimal energy structures found to obtain a Gibbs free energy,

G jð Þ~{RT ln
X

k

e
{G kð Þ

RT

 !
: ð2Þ

Importantly, our results are not sensitive to using either approach to combining
conformer Gibbs energies. We combine the Gibbs energies of the different proto-

nation states by applying the Legendre transform12. This transform yields the
appropriate thermodynamic potential of each microspecies at the pH and ionic
strength specified in the experimental database,

G’ jð Þ~�G jð Þ{NH jð ÞDf Go Hzð Þ, ð3Þ

where the formation energy of a proton is taken to be 2268.61 kcal/mol. This value
was obtained by computing the solvation Gibbs energy of a hydronium ion using 4
explicit water molecules and the COSMO implicit model.

These transformed G9(j) values are then combined into a single transformed Gibbs
energy for each reactant at a given pH, temperature, and ionic strength according to

G’ ið Þ~{RT ln
X

j

e
{G’ jð Þ

RT

 !
, ð4Þ

where the index i refers to a reactant. Finally, The G9(i) values of the substrates are
subtracted from those of the products

DrGo ’~
X

i

niG’ ið Þ, ð5Þ

where ni is the stoichiometric coefficient of each metabolite, and is negative for
substrates and positive for products. This yields the prediction for the standard Gibbs
reaction free energy DrGo ’.

For many reactions, the NIST-TECR database contains multiple experimental
equilibrium constant values3. These are generally specified at different values of
temperature and pH. For each reaction, we account for all different experimental
values in NIST-TECRDB when estimating the deviation from experiment. For each
reported value in NIST, we estimate a Dr Go ’ at the specified temperature and pH, and
compute the deviation from experiment for that particular value. We repeat this for
all experimental values for the particular reaction in NIST, and average the deviation
from experiment over all of these estimates.

Random subsampling of geometric conformers. OurDrGo ’ estimates depend on the
exact geometry of the ensemble of conformers used to represent each protonation
state of each metabolite. In order to minimize the sensitivity of our estimates on the
exact set of conformers used, we average out the variability of DrGo ’ estimates due to
the conformers distinct geometries and absolute Gibbs energies. To do this, we
perform the following conformer subsampling procedure.

We first perform a filtering step to discard conformers with outlier absolute Gibbs
energies. After obtaining the absolute Gibbs energy of every conformer associated to a
given protonation state, we filter out conformers according to an interquartile range
(IQR) procedure. Specifically, we discard conformers with absolute Gibbs energies
that are more than one standard deviation - obtained after multiplication the inter-
mediate quartile by an IQR factor of 1.349 - away from the median absolute Gibbs
energy of all conformers.

After filtering, we are then left, for each protonation state (j) involved in a reaction,
with a set of conformers of size Nj. We then randomly sample, without replacement, a
subset of size nj of these filtered conformers. We compute the Boltzmann average of
their absolute Gibbs energies, equation (1). As mentioned above, an alternative
approach is to treat the system as an equilibrated mixture consisting of all the minimal
energy structures found to obtain a Gibbs free energy, equation (4). This yields an
individual estimate for the absolute Gibbs energy of each individual protonation state
(microspecies).

For a fixed value of nj - the number of conformers subsampled after filtering - we
perform this random subsampling procedure for every protonation state of every
metabolite in a reaction. This yields, for every protonation state involved in the
reaction, an absolute Gibbs energy estimate. These can then be combined, as detailed
in the hierarchical procedure described above, to obtain a singleDrGo ’ estimate for the
reaction.

We then iterate, for a fixed subsample size nj, this conformer subsampling pro-
cedure I 5 30 times. This effectively averages out the variability of the DrGo ’ estimate
due to distinct geometries of conformers. Averaging the individual DrGo ’ estimates
obtained in each of these 30 iterations yields the final value for the estimated standard
Gibbs reaction energy.

We tested the effect of subsampling different numbers of geometric conformers, on
the summary statistics of the reaction test set. We vary the value of nj– the number of
subsampled conformers for each microspecies involved in the reaction - from 1 to
njMax. njMax is the number of conformers associated to the protonation state with the
smallest value of Nj - the total number of conformers belonging to that protonation
state, 1 # nj # minj{Nj}.

Although the DrGo ’ estimate of a particular reaction may vary by a few kcal/mol
with conformer subsample size, the summary statistics (i.e. median absolute deviation
from experimental value) of the reaction test set are insensitive to the number of
conformers subsampled. Additionally, the correlation between the charge of proto-
nation states and the accuracy of predicted DGo

r ’ values is observed for all subsample
sizes considered here We refer to the Supporting Information for further details on
the subsampling procedure.

Reaction test set. The reaction test set was chosen from the NIST – TECRDB3

database according to the following criteria. Since computational cost of quantum
chemical calculations increases with molecular size, we ordered the available reaction
data set according to the sum of the number of atoms in all molecules involved in the
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reaction. We approximated the number of atoms of each metabolite by the length of
its SMILES string representation. We defined the reaction size as the sum of the
numbers of atoms for all metabolites involved in the reaction. We divided reactions in
NIST-TECRDB according to the Enzyme Commission (EC) number scheme24.
Within each EC class, reactions were sorted according to the reaction size measure,
from smallest to largest. We excluded EC classes with reactions involving large
cofactor molecules such as ATP/ADP and NADH/NAD1, and focused on EC classes
2, 4 and 5 for further analysis. Given our available computational resources, we
performed DFT calculations for a total of 113 metabolic reactions.

We refer to the Supplementary Information for the full list of reactions used in the
test set, the deviations from experimental values obtained, as well as the set of
SMILES35 strings used to represent each metabolite.
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