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Background and purpose: Patients with epilepsy and malformations of cortical development (MCDs) are at high
risk for language and other cognitive impairment. Specific impairments, however, are not well correlated with
the extent and locale of dysplastic cortex; such findings highlight the relevance of aberrant cortico-cortical inter-
actions, or connectivity, to the clinical phenotype. The goal of this study was to determine the independent con-
tribution of well-described white matter pathways to language function in a cohort of pediatric patients with
epilepsy.
Materials and methods: Patients were retrospectively identified from an existing database of pediatric epilepsy
patients with the following inclusion criteria: 1. diagnosis ofMCDs, 2. DTI performed at 3 T, and 3. language char-
acterized by a pediatric neurologist. Diffusion Toolkit and Trackvis (http://www.trackvis.org) were used for seg-
mentation and analysis of the following tracts: corpus callosum, corticospinal tracts, inferior longitudinal fasciculi
(ILFs), inferior fronto-occipital fasciculi (IFOFs), uncinate fasciculi (UFs), and arcuate fasciculi (AFs). Mean diffu-
sivity (MD) and fractional anisotropy (FA) were calculated for each tract. Wilcoxon rank sum test (corrected for
multiple comparisons) was used to assess potential differences in tract parameters between language-impaired
and language-intact patients. In a separate analysis, a machine learning algorithm (random forest approach) was

applied tomeasure the independent contribution of themeasured diffusion parameters for each tract to the clin-
ical phenotype (language impairment). In other words, the importance of each tract parameter was measured
after adjusting for the contribution of all other tracts.
Results: Thirty-three MCD patients were included (age range: 3–18 years). Twenty-one patients had intact
language, twelve had language impairment. All tracts were identified bilaterally in all patients except for the
AF, which was not identified on the right in 10 subjects and not identified on the left in 11 subjects. MD and/
or FA within the left AF, UF, ILF, and IFOF differed between language-intact and language-impaired groups.
However, only parameters related to the left uncinate, inferior fronto-occipital, and arcuate fasciculi were inde-
pendently associated with the clinical phenotype.
Conclusions: Scalar metrics derived from the left uncinate, inferior fronto-occipital, and arcuate fasciculi were
independently associated with language function. These results support the importance of these pathways in
human language function in patients with MCDs.
© 2013 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Patients with epilepsy and malformations of cortical development
(MCDs) are at high risk for language and other cognitive impairment.
Specific deficits, however, are not well correlated with the extent and
DWI, diffusion-weighted imag-
y; IFOF, inferior fronto-occipital
lformations of cortical develop-
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locale of dysplastic cortex, highlighting the import of aberrant
cortico-cortical interaction, or connectivity, to the clinical pheno-
type (Krsek et al., 2009). Given that surgical resection of focal epi-
leptogenic lesions has become a frequent choice in management of
the patient with intractable focal seizures, delineation of those path-
ways crucial to language function would be of great potential value
to optimal patient management.

With the advent of diffusion-weighted imaging, the microstructural
properties of a tissue of interest can be non-invasively probed at a spa-
tial scale that is otherwise unattainable using even the most advanced
structural MR techniques. Diffusion tensor imaging (DTI) is a variation
on the theme of DWIwhichquantifieswatermotion in three orthogonal
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dimensions and, therefore, is better able to capture the anisotropic ten-
dencies of diffusion in highly organized tissues such as cerebral white
matter (Basser et al., 1994). Diffusion tractography is an extension of
DTI in which the directional tendencies of water diffusion are used to
create three dimensional representations of white matter tracts based
on their structural coherence (Lee et al., 2005; Melhem et al., 2002). In
many instances, the functional role of the constructed pathways is at
least in part known, which enables assessment of brain parenchymal
abnormalities in terms of functional systems (Catani et al., 2008;
Vishwas et al., 2010).

Numerous scalarmetrics can be derived from the tensor and used to
probe the microstructural character of individual white matter path-
ways; the most commonly referenced are MD and FA. MD provides a
measure of overall incoherent motion within a voxel without regard
for direction and reflects tissue organization at the cellular level
(Chenevert et al., 2000). Increased MD is a common manifestation of
white matter pathology of diverse etiology (Vishwas et al., 2010;
Lochner et al., 2012; Della Nave et al., 2008). By contrast, FA provides
a measure of the degree to which a single direction of water motion
dominates overall diffusivity in a voxel. As such, FA has been shown to
be a relatively robust measure of white matter integrity (Lee et al.,
2012; Beppu et al., 2012; Qiu et al., 2010; Ptak et al., 2003; Deppe
et al., 2007).

Abnormalities within several white matter pathways have been re-
ported in patients with language dysfunction (Harvey et al., 2013;
McDonald et al., 2008;Mills et al., 2013). However, great potential exists
to detect indirect associations (epiphenomena) between a proposed
biomarker and a particular cognitive function, particularly in patient
populations whose cerebral connectivity and brain function are both
extensively abnormal. Furthermore, the ability to apply quantitative in-
formation garnered from such imaging techniques towardmanagement
of an individual patient has, to date, proved elusive. We sought to use a
random forest approach, a form of machine learning, to overcome these
two commonly encountered challenges in quantitative imaging.

Random forests are an ensemble learning method for classification
that operate by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes output by
individual trees (Breiman, 2001). At a fundamental level, this approach
is based on bootstrap aggregating, or bagging, in which numerous
models are fitted using individual bootstrap samples then combined
by averaging. A strength of this particular technique is its ability to esti-
mate the independent contribution of an individual variable while ac-
counting for the contribution of all other variables. This estimate of
variable importance is accomplished by measuring the error for each
data point over the forest compared to that error which results when
that variable is negated during bagging. Another strength of the random
forest algorithm lies in its ability to provide an unbiased measure of
classification accuracy. During each bootstrap iteration, approximately
one third of the cohort is omitted at random from the training set –
this omitted portion of the dataset is considered “out-of-bag” – classifica-
tion of out-of-bag individuals is then predicted based on the generated
model.

The goals of this studywere two-fold: 1. to quantify the independent
contribution of well-described white matter pathways to language
function in a cohort of pediatric patientswith epilepsy and 2. tomeasure
the accuracy of the random forest algorithmwith respect to classification
of language phenotype in an individual patient.

2. Methods

This health insurance portability and accountability act-compliant
study was approved by the local institutional review board. Patients
were identified retrospectively from an existing database of pediatric
patients undergoing clinical evaluation as part of the institutional
multidisciplinary epilepsy work-group. The following inclusion criteria
were applied: 1. pediatric age group (≤18 years), 2. diagnosis of
malformation of cortical development established by MRI, 3. MRI of
the brain performed at 3 T, including DTI, and 4. language development
characterized by a pediatric neurologist. Refinements to the above-
defined population were based on the following exclusion criteria:
1. motion or other degradation to image quality and 2. increase in con-
fidence in the clinical determination of language delay; patients youn-
ger than 3 years of age were also excluded.

Patients were divided initially into three groups based on character-
ization of their language development by a pediatric neurologist: 1. in-
tact: age-appropriate, 2. mild-to-moderate impairment: delayed by
comparison to peers (either expressive or receptive), and 3. profound
impairment: absence of oral language. This three-point scalewas select-
ed as it has been shown to provide both a clinicallymeaningful and a re-
producible estimate of language function (Im et al., 2014). Twenty-one
MCDpatients had intact language, 9mild-to-moderate impairment, and
3 profound impairment.

2.1. Magnetic resonance imaging

All imaging was performed on two 3 Tesla magnets (Siemens, Tim
Trio, Erlangen, Germany). The following sequences were obtained: 1.
sagittal magnetic preparation rapid acquisition gradient echo (TR/TE:
2530ms/3.39ms; 1 acquisition; flip: 7°, inversion time: 1100ms; accel-
eration: 2; voxel (mm): 1 × 1 × 1), 2. axial fast spin echo T2-weighted
(FSE; TR/TE: 11,730 ms/89 ms; 2 acquisitions; flip: 120°; acceleration:
2; voxel (mm): 0.6 × 0.4 × 2.5), 3. axial fluid attenuation inversion recov-
ery (FLAIR; TR/TE: 9000ms/137ms; 1 acquisition; flip: 150°; FOV: 22 cm;
voxel (mm): 0.7 × 0.7 × 4), and 4. axial single-shot echo planar imaging
DTI (EPI; TR/TE (ms): 7000/90; flip: 90°; 1 acquisition; voxel (mm):
2 × 2 × 2). For DTI, 35 image sets were acquired, five without diffusion
weighting (b0) and thirty with non-collinear diffusion-weighting gradi-
ents (b value: 1000 s/mm2). All images were visually inspected for arti-
facts, including subject motion.

2.2. Image processing and analysis

A single user experienced in tractography performed tract recon-
struction, segmentation, and analysis. Maps of MD and FA were created
using Diffusion Toolkit (http://www.trackvis.org). For each voxel, a ten-
sor matrix was derived. After diagonalization of thematrix, eigenvalues
were obtained and MD and FA were quantified for each pixel according
to standard equations (Basser and Pierpaoli, 1996). Diffusion Toolkit
(http://www.trackvis.org) was also used for deterministic tract recon-
struction using a Fiber Association by Continuous Tracking algorithm
(FACT; 35 degree angular threshold). A DWI mask was used to remove
cerebrospinal fluid, a process which has been shown to effectively pre-
vent spurious tract reconstruction (Vishwas et al., 2010). Trackvis
(http://www.trackvis.org)was then used for segmentation and analysis
of the following major commissural, projection, and intra-hemispheric
association pathways: 1. corpus callosum, 2. corticospinal tracts, 3. arcu-
ate fasciculi, 4. inferior longitudinal fasciculi, 5. inferior fronto-occipital
fasciculi, and 6. uncinate fasciculi. Regions of interest for tract segmen-
tation were placed manually on the color FA maps cross-referenced to
the b0 images according to previously described methods (Wakana
et al., 2007). MeanMD andmean FAwere then calculated for each iden-
tifiable tract.

2.3. Data analysis and statistics

Statistical testing was performed using R statistical software
package, version 3.0.2 (R Foundation for Statistical Computing,
Vienna, Austria).Wilcoxon rank sum test (corrected formultiple compar-
isons) was used to assess potential differences in tract parameters
between language-impaired and language-intact patients (alpha: 0.05
corrected).

http://www.trackvis.org
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Table 1
Summary of mean diffusion metrics by individual white matter tract. In this case, the
p-value measures the likelihood that the magnitude of difference (or greater) between
the normal and abnormal language populations might be observed if the null hypothesis
was true (adjusted for multiple comparisons).

Variable Normal language
(N = 21)

Abnormal language
(N = 12)

p-Value

Mean Standard
dev

Mean Standard
dev

Age (years) 11.33333 4.31663 8.75 5.61046 N0.99
CC_MD 0.00087 0.00008 0.00089 0.00007 N0.99
CC_FA 0.60851 0.04542 0.55348 0.08094 0.3105
Left CSP_MD 0.00077 0.00003 0.0008 0.00004 0.4669
Left CSP_FA 0.59926 0.03842 0.57653 0.05007 N0.99
Right CSP_MD 0.00076 0.00003 0.0008 0.00005 0.9959
Right CSP_FA 0.5975 0.04471 0.59278 0.05036 N0.99
Left AF_MD 0.00079 0.00005 0.00099 0.00009 b0.0023
Left AF_FA 0.50591 0.03796 0.40714 0.1173 b0.0023
Right AF_MD 0.00079 0.00004 0.0009 0.00011 0.3726
Right AF_FA 0.495 0.03288 0.40814 0.1074 0.6072
Left ILF_MD 0.00089 0.00008 0.00093 0.00009 N0.99
Left ILF_FA 0.48974 0.05185 0.42366 0.08636 0.0483
Right ILF_MD 0.00086 0.00007 0.00093 0.00009 0.4232
Right ILF_FA 0.47922 0.06934 0.43784 0.06716 N0.99
Left IFOF_MD 0.00082 0.00004 0.00108 0.00018 b0.0023
Left IFOF_FA 0.5756 0.03127 0.40371 0.09905 b0.0023
Right IFOF_MD 0.00085 0.00005 0.0009 0.0001 N0.99
Right IFOF_FA 0.53205 0.05223 0.48369 0.07525 N0.99
Left UF_MD 0.00086 0.00004 0.00098 0.00005 b0.0023
Left UF_FA 0.50771 0.03591 0.36668 0.06277 b0.0023
Right UF_MD 0.00087 0.00007 0.00095 0.00009 0.1449
Right UF_FA 0.48541 0.03813 0.4632 0.04536 N0.99

MD: mean diffusivity (units of 10−3 mm2 s−1); FA: fractional anisotropy; CC: corpus
callosum; CSP: corticospinal tract; AF: arcuate fasciculus; ILF: inferior longitudinal fasciculus;
IFOF: inferior fronto-occipital fasciculus; UF: uncinate fasciculus.
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In a separate analysis, a machine learning algorithm was used to
quantify the independent contribution of the measured diffusion pa-
rameters for each tract to the clinical phenotype (language impair-
ment). In other words, the importance of each tract parameter was
measured after adjusting for the contribution of all other tracts. This
analysis was accomplished using a random forest approach, which has
been previously described in detail (Breiman, 2001). In short, to mea-
sure the independent contribution of an individual variable, the error
for each data point was recorded over the forest and compared to that
error which resulted after that variable had been negated during bag-
ging; variable importance is presented normalized to the standard devi-
ation of these differences.

Classification accuracy was also estimated internally by the random
forest algorithm, as follows: During each bootstrap, approximately one-
third of the cohort was omitted at random from the training set. This
omitted portion of the dataset is considered “out-of-bag”. Classification
of out-of-bag individuals was then predicted based on the fitted model.
The out-of-bag error was calculated as the number of individuals incor-
rectly classified divided by the total number of individuals out-of-bag.
Sensitivity, specificity, and positive and negative predictive values
were also calculated for the language classification of out-of-bag indi-
viduals as predicted by the forest. The random forest algorithm was
first performed allowing access to all diffusion metrics from all white
matter pathways, as well as to age and gender. It was repeated for a
reduced model, during which the algorithm was allowed access only
to variables deemed to make an independent contribution (as deter-
mined above) to the classification of language function.

3. Results

3.1. Patients

Imaging was performed from January 2009 to August 2011. 33
patients (age range: 3–18 years; median: 10 years) comprised the
final study group. Malformations of cortical development included:
polymicrogyria (n = 15), focal cortical dysplasia (n = 13),
schizencephaly (n = 4) and gray matter heterotopias (n = 1).
Tract reconstruction and analysis identified all expected tracts in
all subjects, with the exception of the arcuate fasciculus which was
not identified on the left in eleven subjects and not identified on
the right in ten subjects. To be specific, the arcuate was deemed to
be absent when no streams could be visualized at tractography to
directly connect the frontal and temporal lobes. As such, in addition
to MD and FA measured from the arcuate fasciculus, its presence/
absence was included as a variable in the model. Twenty-one pa-
tients had intact language; twelve had impaired language (9 mild-
to-moderate; 3 profound). All patients (and their parents) were
native English speakers.

3.2. Diffusion metrics and variable importance

Population averaged diffusion metrics measured from individual
white matter pathways are presented in Table 1. After correcting for
multiple comparisons, MD and/or FA within several left-sided tracts
(left AF, UF, ILF, and IFOF) differed significantly between the language-
intact and language-impaired groups (Table 1). However, only metrics
related to the left arcuate, inferior fronto-occipital, and uncinate fascic-
uli were associated with the clinical phenotype of language impairment
when accounting for the contribution of all other tracts (Fig. 1). For the
left arcuate, MD, FA as well as the absence/presence of the pathway all
contributed to language function. For the left uncinate and inferior
fronto-occipital fasciculi, both of which were identified in all patients,
MD and FA were both important contributors to the clinical phenotype.
Out-of-bag error was estimated at 3.03% over the forest. Sensitivity,
specificity, NPV and PPV of the forest-predicted classification for lan-
guage function were all greater than 95% (Table 2). Out-of-bag error
and diagnostic accuracy were all unchanged when training and classifi-
cation were performed using only variables related to the left AF, IFOF,
and UF.

4. Discussion

Using a machine learning approach, we report two main findings
in a cohort of pediatric patients with malformations of cortical develop-
ment: 1. diffusionmetrics derived from the left uncinate, inferior fronto-
occipital, and arcuate fasciculi were independently associated with
language function and 2. individual patient language functionwas accu-
rately classified by applying themachine learning algorithm to variables
derived from whole brain tractography.

Although incompletely understood, the fluent comprehension and
production of language is best conceptualized as an emergent property
that results from complex interactions between distributed cortical re-
gions across the cerebrum. Traditionally, it was thought to be predicated
primarily uponWernicke3s (WA) and Broca3s (BA) areas, located in the
left posterior temporal and left inferior frontal lobes respectively,
interacting via the arcuate fasciculus. However, current understanding
suggests that WA and BA are but a part of a richly-interconnected,
large-scale languagenetwork that extends to additional frontal, parietal,
and temporal association areas in both hemispheres (Turken and
Dronkers, 2011). A dual stream architecture of white matter pathways
that promote such cortico-cortical interaction, and therefore subserve
language function, has been proposed (Hickok and Poeppel, 2004). In
general terms, the ventral stream is believed to link phonemic informa-
tion with conceptual knowledge. The pathways that form the anatomic
basis for this “stream” remain the subject of debate; roles for the unci-
nate, inferior longitudinal, and inferior fronto-occipital fasciculi have
been suggested (Dick and Tremblay, 2012). Specific functional attri-
butes of the dorsal stream are less well documented, but generally
thought to involve the linkage between auditory andmotor representa-
tions (Hickok and Poeppel, 2004). The arcuate/superior longitudinal



Fig. 1. Importance of scalar metrics derived from individual white matter pathways depicted by whole brain tractography. The independent contribution of an individual variable was
estimatedbymeasuring the error for eachdata point recordedover the forest and comparing it to that errorwhich results after that variable is negated duringbagging. Variable importance
is presented normalized to the standard deviation of these differences.
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fasciculus is generally considered to form the anatomic basis of the dor-
sal stream (Ellmore et al., 2009).

We observed an independent association of metrics derived from
the left uncinate, inferior fronto-occipital, and arcuate fasciculi with lan-
guage dysfunction in a cohort of pediatric patients with malformations
of cortical development. These findings lend strong support to the
idea that the AF, IFOF, and UF contribute significantly to those associa-
tion fibers that form the connectional underpinnings of the human lan-
guage network. Interestingly, MD and FA of these pathways both added
valuewith respect to the predictive capacity of themodel. This observa-
tion is consistentwith the idea that eachmetric probes different aspects
of tissue microstructure and suggests that they have distinct (or at least
non-identical) physiologic implications. By contrast, metrics related to
Table 2
Diagnostic performance of the random forest algorithm for prediction of language
impairment.

Diagnostic performance 95% LCI 95% UCI

Sensitivity (%) 100 67.9 100
Specificity (%) 95.4 75.1 99.7
PPV (%) 91.6 59.8 99.6
NPV (%) 100 80.8 100

LCI: lower limit of the 95% confidence interval; UCI: upper limit of the 95% confidence
interval; PPV: positive predictive value; NPV: negative predictive value.
the left inferior longitudinal fasciculus were not associated with the
clinical phenotype when accounting for the contribution made by
other white matter pathways.

We also found that individual language impairment could be accu-
rately predicted by a machine-learning algorithm applied to variables
derived fromwhole brain tractography. Despite the extensive literature
on quantitative imaging and its functional significance at the population
level, clinical applications of these techniques remain few and far be-
tween (Jeong et al., 2014; Radhakrishnan et al., 2011; Powell et al.,
2005; Tiwari et al., 2011). This shortcoming reflects, to a large degree,
the relatively large inter-individual variation and the resultant difficulty
in assigning a binary outcome (e.g., normal vs abnormal) to such contin-
uous variables. Our findings suggest thatmachine learning is a potential
mechanism bywhich quantitative imaging data could be translated into
clinically relevant information in an individual epilepsy patient.
Furthermore, the fact that the predictive capacity of the model was
maintained when the software was given access only to metrics related
to the left AF, IFOF, and UF lends further support to the idea that these
particular pathways play a dominant role in the emergence of language
function.

At the population level, abnormalmicrostructural properties of asso-
ciation pathways in the left hemisphere have been previously reported
both in patients with localization related epilepsy (McDonald et al.,
2008; Kucukboyaci et al., 2012; Govindan et al., 2008; Kim et al.,

image of Fig.�1
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2011) and in patients with malformations of cortical development
(Bernal et al., 2010; Munakata et al., 2006). Studies regarding the rele-
vance of these abnormalities to language in the epilepsy population
are relatively rare; however, in a small series of patients with congenital
bilateral perisylvian syndrome, Saporta et al. observed a more severe
language phenotype in patients with no identifiable arcuate fasciculus
(Saporta et al., 2011). Similarly, McDonald et al. demonstrated a direct
relationship between language, as measured by the Boston Naming
Test, and diffusion properties within the left AF, UF and IFOF in patients
with temporal lobe epilepsy; the ILF was not analyzed (McDonald et al.,
2008). The authors in this study used hierarchical regression to control
for age and hippocampal volume but did not account for the contribution
of other white matter pathways. Despite the paucity of data in patients
with seizures, the relevance of connectivity in the left hemisphere, specif-
ically themicrostructural character of the left AF, IFOF andUF, to language
function has been suggested in other neurodevelopmental disorders, in-
cluding autism, Angelman syndrome, and global developmental delay
(Catani et al., 2013; Gopal et al., 2012; Jeong et al., 2011; Nagae et al.,
2012; Peters et al., 2011; Sundaram et al., 2008; Wilson et al., 2011).
Ourworknot only is consistentwith this body of literature, but also signif-
icantly strengthens the evidence that the left AF, IFOF, and UF support
connectivity in the language network in pediatric patients with localiza-
tion related epilepsy.

Results supporting a role for the left ILF in human language have
been less consistent. Mills et al. observed a relationship between
white matter integrity of the left ILF and morphologic accuracy during
a spoken narrative in patients with high functioning autism (Mills
et al., 2013). In addition, Peters et al. observed a relationship between
language and metrics derived from the left UF, AF, and ILF in patients
with Angelman syndrome; the authors did not account for the contribu-
tion of other pathways to the clinical phenotype, however (Peters et al.,
2011). By contrast, Harvey et al. demonstrated a relationship between
structural integrity of the left UF, but not the ILF, and semantic control
in a group of aphasic patients (Harvey et al., 2013). We found similar
discrepant results in our study: whereas a statistical difference in left
ILF FA was observed when comparing the language-impaired and
language-normal study populations, metrics derived from the left ILF
were not associated with the clinical phenotype when accounting for
the contribution of other white matter pathways. The proximity of por-
tions of the ILF to other important language pathways could potentially
account for this discrepancy. In other words, anatomic abnormalities
involving crucial language pathways in the left hemispheremight be ex-
pected to be more likely to also involve the ILF, potentially resulting in
an indirect association, or epiphenomenon. Alternatively, the specific
role(s) of the ILF in human language functionmay not be readily appar-
ent during evaluation by a pediatric neurologist; rather, they may re-
quire detailed neuropsychologic testing to be detected. Findings by
Mandonnet et al. suggest a final potential explanation (Mandonnet
et al., 2007). In their study, subcortical stimulation during awake crani-
otomy at the level of the ILF elicited no language disturbance (Wilson
et al., 2011; Mandonnet et al., 2007). Similarly, although they experi-
enced transient language deficits, all patients recovered completely
after resection of at least some part of the ILF. Taken together their
results suggest that the ILF may not be indispensable for language. Yet
consistent transient deficits after its resection in their study raise the
possibility that the ILF may play a role in language that can be compen-
sated after surgery or in other pathologic settings.

The use of machine learning to predict a clinical phenotype on the
basis of quantitative imaging data has not, to our knowledge, been pre-
viously studied.

This study has several limitations. First, this is a study of a highly se-
lected cohort of patients with localization-related epilepsy. As alluded to
above, extrapolation of these results to patients with other types of CNS
pathology may not be valid. Second, estimation of variable importance
by the random forest algorithm can only dissociate the importance of
those variables provided to it. In otherwords, the contribution of variables
other thanMD and FAwithin the included tracts, or evenmetrics derived
from other parts of the brain entirely, could not be estimated. It is worth
noting, however, that the algorithm was highly accurate, accounting for
the vast majority of the variance in language phenotype with the provid-
ed variables. Third, functional assessment of language in this study was
limited to the evaluation of a pediatric neurologist; this assessment was
chosen in order to capture differences in language function with clear
clinical relevance. Detailed neuropsychologic evaluation was not per-
formed, but would be of great potential value to future studies. In partic-
ular, such an evaluationmight allow the identification of specific domains
of language dysfunction in each patient which could further elucidate
functional sub-specializationwithin the language network. Finally, the in-
herent limitations of the tensor model should be acknowledged. The as-
sumption that diffusivity in every voxel can be accurately described by a
single ellipsoid is not always valid. The reliance of deterministic tracking
algorithms on this model, therefore, compromises their ability to accu-
rately characterize complex white matter architecture at the voxel/
sub-voxel scale. Newer techniques, including high angular resolution dif-
fusion imaging and diffusion spectrum imaging, are able to accommodate
more complex probability displacement functions, allowing for more ac-
curate tract construction (Kuo et al., 2008). This limitation, however, did
not preclude in this case the accurate classification of language function
by the machine learning algorithm.
5. Conclusion

In conclusion, we have used a machine learning approach to
examine the relationship between structural connectivity in the left
hemisphere and language dysfunction in pediatric epilepsy patients. In
particular, we report the following: 1. diffusion metrics derived from
the left uncinate, inferior fronto-occipital, and arcuate fasciculi were
all independently associated with language function and 2. individual
patient language function was accurately classified by applying thema-
chine learning algorithm to variables derived from whole-brain
tractography. These findings solidify the notion that the AF, IFOF, and
UF form the connectional underpinnings of the human language
network and, further, suggest that machine learning is a potential
mechanism by which quantitative imaging data could be used to
guide management in an individual patient with MCDs.
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